One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsoukleri, G.; Parthenios, J.; Papagelis, K.; Jalil, R.; Ferrari, A.C.; Geim, A.K.; Novoselov, K.S.; Galiotis, C. Subjecting a Graphene Monolayer to Tension and Compression. Small 2009, 5, 2397–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; Wang, X.R.; Zhang, L.; Lee, S.W.; Dai, H.J. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 2008, 319, 1229–1232. [Google Scholar] [CrossRef]
- Liao, A.D.; Wu, J.Z.; Wang, X.R.; Tahy, K.; Jena, D.; Dai, H.J. Thermally Limited Current Carrying Ability of Graphene Nanoribbons. Phys. Rev. Lett. 2011, 106, 256801–256804. [Google Scholar] [CrossRef]
- Liu, X.H.; Wang, J.W.; Liu, Y.; Zheng, H.; Kushima, A.; Huang, S. In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon 2012, 50, 3836–3844. [Google Scholar] [CrossRef]
- Ouyang, Y.J.; Dai, H.J.; Guo, J. Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material. Nano Res. 2010, 3, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wright, A.R.; Zhang, C.; Ma, Z. Strong Terahertz Conductance of Graphene Nanoribbons under a Magnetic Field. Appl. Phys. Lett. 2008, 93, 041106. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, M.S. NT10: Recent Advances in Carbon Nanotube Science and Applications. ACS Nano 2010, 4, 4344–4349. [Google Scholar] [CrossRef]
- Bunch, J.S.; Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical Resonators from Graphene Sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Chen, C.; Rosenblatt, S.; Bolotin, K.I.; Kalb, W.; Kim, P.; Kymissis, I.; Stormer, H.L.; Heinz, T.F.; Hone, J. Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout. Nat. Nanotechnol. 2009, 4, 861–867. [Google Scholar] [CrossRef] [Green Version]
- Endo, M.; Strano, M.; Ajayan, P. Potential Applications of Carbon Nanotubes. Carbon Nanotub. 2008, 62, 13–62. [Google Scholar]
- Zhang, Y.B.; Tang, T.; Girit, C.; Hao, Z.; Martin, M.C.; Zettl, A.; Crommie, M.F.; Shen, Y.R.; Wang, F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459, 820–823. [Google Scholar] [CrossRef]
- dos Santos, J.; Peres, N.M.R.; Castro Neto, A.H. Continuum model of the twisted graphene bilayer. Phys. Rev. B 2012, 86, 12. [Google Scholar] [CrossRef] [Green Version]
- Bistritzer, R.; MacDonald, A.H. Moire bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Jarillo-Herrero, P. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80. [Google Scholar] [CrossRef] [Green Version]
- Mogera, U.; Walia, S.; Bannur, B.; Gedda, M.; Kulkarni, G.U. Intrinsic nature of graphene revealed in temperature-dependent transport of twisted multilayer graphene. J. Phys. Chem. C 2017, 121, 13938–13943. [Google Scholar] [CrossRef]
- Yu, Z.W.; Song, A.; Sun, L.Z.; Li, Y.; Gao, L. Under-standing interlayer contact conductance in twisted bilayer graphene. Small 2019, 16, 1902844. [Google Scholar]
- Deng, B.; Wang, B.B.; Li, N.; Li, R.; Wang, Y. Interlayer decoupling in 30° twisted bilayer graphene quasicrystal. ACS Nano 2020, 14, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; DaSilva, A.; Huang, S.Q.; Fallahazad, B.; Larentis, S. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.D.; Xin, W.; Jiang, W.S.; Liu, Z.B.; Chen, Y.S.; Tian, J.G. High-precision twist-controlled bilayer and trilayer graphene. Adv. Mater. 2016, 28, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, W.G.; Mandelli, D.; Urbakh, M.; Hod, O. Nanoserpents: Graphene Nanoribbon Motion on Two-Dimensional Hexagonal Materials. Nano Lett. 2018, 18, 6009–6016. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Huang, M.; Kim, N.Y.; Cunning, B.V.; Huang, Y. Controlled folding of single crystal graphene. Nano Lett. 2017, 17, 1467–1473. [Google Scholar] [CrossRef]
- Tang, C.; Guo, W.L.; Chen, C.F. Structural and mechanical properties of partially unzipped carbon nanotubes. Phys. Rev. B 2011, 83, 075410. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.Y.; Zhang, L.; Wang, X.R.; Diankov, G.; Dai, H.J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880. [Google Scholar] [CrossRef]
- Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–875. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.S.; Jammalamadaka, S.N.; Stesmans, A.; Moshchalkov, V.V.; van Tol, J.; Kosynkin, D.V.; Higginbotham-Duque, A.; Tour, J.M. Ferromagnetism in Graphene Nanoribbons: Split versus Oxidative Unzipped Ribbons. Nano Lett. 2012, 12, 1210–1217. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Oppenheim, T.; Tung, V.C.; Martini, A. Structure-stability relationships for graphene-wrapped fullerene-coated carbon nanotubes. Carbon 2013, 61, 458–466. [Google Scholar] [CrossRef]
- Talyzin, A.V.; Anoshkin, I.V.; Krasheninnikov, A.V.; Nieminen, R.M.; Nasibulin, A.G.; Jiang, H.; Kauppinen, E.I. Synthesis of Graphene Nanoribbons Encapsulated in Single-Walled Carbon Nanotubes. Nano Lett. 2011, 11, 4352–4356. [Google Scholar] [CrossRef]
- Patra, N.; Wang, B.; Král, P. Nanodroplet Activated and Guided Folding of Graphene Nanostructures. Nano Lett. 2009, 9, 3766–3771. [Google Scholar] [CrossRef]
- Patra, N.; Song, Y.; Král, P. Self-Assembly of Graphene Nanostructures on Nanotubes. ACS Nano 2011, 5, 1798–1804. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, H.; Li, Y.F.; Yu, H.Q.; Liew, K.M.; He, Y.Z.; Liu, X.F. Helical encapsulation of graphene nanoribbon into carbon nanotube. ACS Nano 2011, 5, 2126–2133. [Google Scholar] [CrossRef]
- Chuvilin, A.; Bichoutskaia, E.; Chamberlain, T.W.; Rance, G.A.; Kuganathan, N.; Biskupek, J.; Kaiser, U.; Khlobystov, A.N.; Gimenez-Lopez, M.C. Self-Assembly of a Sulphur-Terminated Graphene Nanoribbon within a Single-Walled Carbon Nanotube. Nat. Mater. 2011, 10, 687–692. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Shinoda, W.; Shiga, M.; Mikami, M. Rapid Estimation of Elastic Constants by Molecular Dynamics Simulation under Constant Stress. Phys. Rev. B 2004, 69, 16–18. [Google Scholar] [CrossRef]
- Brenner, D.W.; Shenderova, O.A.; Harrison, J.A.; Stuart, S.J.; Ni, B.; Sinnott, S.B. A Second-Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons. J. Phys. Condens. Matter 2002, 14, 783–802. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, A.N.; Crespi, V.H. Registry-dependent interlayer potential for graphitic systems. Phys. Rev. B 2005, 71, 235415. [Google Scholar] [CrossRef] [Green Version]
- Akiner, T.; Mason, J.K.; Erturk, H. A new interlayer potential for hexagonal boron nitride. J. Phys. Condens. Matter 2016, 28, 385401. [Google Scholar] [CrossRef] [PubMed]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Model Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Furusawa, S.; Nakanishi, Y.; Yomogida, Y.; Sato, Y.; Zheng, Y.; Tanaka, T.; Yanagi, K.; Suenaga, K.; Maruyama, S.; Xiang, R.; et al. Surfactant-Assisted Isolation of Small-Diameter Boron-Nitride Nanotubes for Molding One-Dimensional van der Waals Heterostructures. ACS Nano 2022, 16, 16636–16644. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Wan, Z.; Liu, Y.; Xu, J.Q.; Yang, X.D.; Shen, D.Y.; Zhang, Z.C.; Guo, C.H.; Qian, Q.; Li, J.; et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 2021, 591, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Liu, F. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption. Nano Lett. 2007, 7, 3046–3050. [Google Scholar] [CrossRef]
- Lim, H.E.; Miyata, Y.; Kitaura, R.; Nishimura, Y.; Nishimoto, Y.; Irle, S.; Warner, J.H.; Kataura, H.; Shinohara, H. Growth of carbon nanotubes via twisted graphene nanoribbons. Nat. Commun. 2013, 4, 2548. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Sun, F.W.; Li, H. Helical Wrapping and Insertion of Graphene Nanoribbon to Single-Walled Carbon Nanotube. J. Phys. Chem. C 2011, 115, 18459–18467. [Google Scholar] [CrossRef]
- Krasnenko, V.; Boltrushko, V.; Klopov, M.; Hizhnyakov, V. Conjoined structures of carbon nanotubes and graphene nanoribbons. Phys. Scr. 2014, 89, 044008. [Google Scholar] [CrossRef]
- Savin, A.V.; Korznikova, E.A.; Dmitriev, S.V.; Soboleva, E.G. Graphene nanoribbon winding around carbon nanotube. Comput. Mater. Sci. 2017, 135, 99–108. [Google Scholar] [CrossRef]
- Chen, C.X.; Lin, Y.; Zhou, W.; Gong, M.; He, Z.Y.; Shi, F.Y.; Li, X.Y.; Wu, J.Z.; Lam, K.T.; Wang, J.N.; et al. Sub-10-nm graphene nanoribbons with atomically smooth edges from squashed carbon nanotubes. Nat. Electron. 2021, 4, 653–663. [Google Scholar] [CrossRef]
- Hao, Z.Y.; Zimmerman, A.M.; Ledwith, P.; Khalaf, E.; Najafabadi, D.H.; Watanabe, K.; Taniguchi, T.; Vishwanath, A.; Kim, P. Electric field-tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 2021, 371, 1133–1138. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, K.; Wang, L.; Wang, R.; Wang, C.; Tang, C. One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes. Materials 2022, 15, 8220. https://doi.org/10.3390/ma15228220
Zhou K, Wang L, Wang R, Wang C, Tang C. One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes. Materials. 2022; 15(22):8220. https://doi.org/10.3390/ma15228220
Chicago/Turabian StyleZhou, Kun, Liya Wang, Ruijie Wang, Chengyuan Wang, and Chun Tang. 2022. "One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes" Materials 15, no. 22: 8220. https://doi.org/10.3390/ma15228220
APA StyleZhou, K., Wang, L., Wang, R., Wang, C., & Tang, C. (2022). One Dimensional Twisted Van der Waals Structures Constructed by Self-Assembling Graphene Nanoribbons on Carbon Nanotubes. Materials, 15(22), 8220. https://doi.org/10.3390/ma15228220