Fe Ions-Doped TiO2 Aerogels as Catalysts of Oxygen Reduction Reactions in Alkaline Solutions
Abstract
:1. Introduction
2. Material and Methods
2.1. Synthesis of the Fe Ions-Doped Titanium Oxide-Based Aerogel Catalysts
2.2. Synthesis of the Aerogel Catalyst Ink
2.3. Characterization Methods
2.4. Electrochemical Performance Measurements
3. Results and Discussion
3.1. Materials Characterizations
3.2. Electrochemical Performances
3.3. Influence of Oxygen Vacancies, Doping Effect, and Pore Structure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Xiao, X.; Li, Q.; Luo, L.; Ding, M.; Zhang, B.; Li, Y.; Zou, J.; Jiang, B. Recent progress of electrocatalysts for oxygen reduction in fuel cells. J. Colloid Interface Sci. 2022, 607, 791–815. [Google Scholar] [CrossRef]
- Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C.-j. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5, 1808–1825. [Google Scholar] [CrossRef]
- Kiani, M.; Tian, X.Q.; Zhang, W. Non-precious metal electrocatalysts design for oxygen reduction reaction in polymer electrolyte membrane fuel cells: Recent advances, challenges and future perspectives. Coord. Chem. Rev. 2021, 441, 213954. [Google Scholar] [CrossRef]
- Yi, S.J.; Jiang, H.; Bao, X.J.; Zou, S.Q.; Liao, J.J.; Zhang, Z.J. Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. J. Electroanal. Chem. 2019, 848, 113279. [Google Scholar] [CrossRef]
- Li, D.; Lv, H.; Kang, Y.; Markovic, N.M.; Stamenkovic, V.R. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 509–532. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.D.; Tao, L.; Yan, D.F.; Zou, Y.Q.; Wang, S.Y. Recent Advances on Non-precious Metal Porous Carbon-based Electrocatalysts for Oxygen Reduction Reaction. Chemelectrochem 2018, 5, 1775–1785. [Google Scholar] [CrossRef]
- Song, M.X.; Song, Y.H.; Sha, W.B.; Xu, B.S.; Guo, J.J.; Wu, Y.C. Recent Advances in Non-Precious Transition Metal/Nitrogen-doped Carbon for Oxygen Reduction Electrocatalysts in PEMFCs. Catalysts 2020, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Lang, P.; Yuan, N.N.; Jiang, Q.Q.; Zhang, Y.C.; Tang, J.G. Recent Advances and Prospects of Metal-Based Catalysts for Oxygen Reduction Reaction. Energy Technol. 2020, 8, 1900984. [Google Scholar] [CrossRef]
- Gonen, S.; Elbaz, L. Metal organic frameworks as catalysts for oxygen reduction. Curr. Opin. Electrochem. 2018, 9, 179–188. [Google Scholar] [CrossRef]
- Nolan, H.; Browne, M.P. Hydrogen energy currency: Beyond state-of-the-art transition metal oxides for oxygen electrocatalysis. Curr. Opin. Electrochem. 2020, 21, 55–61. [Google Scholar] [CrossRef]
- Liu, J.Y.; Liu, H.; Chen, H.J.; Du, X.W.; Zhang, B.; Hong, Z.L.; Sun, S.H.; Wang, W.C. Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach. Adv. Sci. 2020, 7, 1901614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.M.; Tripathi, M. A review of TiO2 nanoparticles. Sci. Bull. 2011, 56, 1639–1657. [Google Scholar] [CrossRef] [Green Version]
- Dubey, R.S.; Krishnamurthy, K.V.; Singh, S. Experimental studies of TiO2 nanoparticles synthesized by sol-gel and solvothermal routes for DSSCs application. Results Phys. 2019, 14, 102390. [Google Scholar] [CrossRef]
- Luchinsky, G.P. Chemistry of the Titanium; Khimija: Moskow, Russia, 1971. [Google Scholar]
- Gribb, A.A.; Banfield, J.F. Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral. 1997, 82, 717–728. [Google Scholar] [CrossRef]
- Zhang, H.; Banfield, J.F. Thermodynamic analysis of phase stability of nanocrystalline titania. J. Mater. Chem. 1998, 8, 2073–2076. [Google Scholar] [CrossRef]
- Serga, V.; Burve, R.; Krumina, A.; Romanova, M.; Kotomin, E.A.; Popov, A.I. Extraction–Pyrolytic Method for TiO2 Polymorphs Production. Crystals 2021, 11, 431. [Google Scholar] [CrossRef]
- Huang, K.K.; Sun, Y.; Zhang, Y.; Wang, X.Y.; Zhang, W.; Feng, S.H. Hollow-Structured Metal Oxides as Oxygen-Related Catalysts. Adv. Mater. 2019, 31, 1801430. [Google Scholar] [CrossRef]
- Mirshekari, G.R.; Shirvanian, A.P. Electrochemical behavior of titanium oxide nanoparticles for oxygen reduction reaction environment in PEM fuel cells. Mater. Today Energy 2018, 9, 235–239. [Google Scholar] [CrossRef]
- Chisaka, M.; Ishihara, A.; Ota, K.; Muramoto, H. Synthesis of carbon-supported titanium oxynitride nanoparticles as cathode catalyst for polymer electrolyte fuel cells. Electrochim. Acta 2013, 113, 735–740. [Google Scholar] [CrossRef]
- Dogan, D.C.; Choi, J.; Seo, M.H.; Lee, E.; Jung, N.; Yim, S.D.; Yang, T.H.; Park, G.G. Enhancement of Catalytic Activity and Durability of Pt Nanoparticle through Strong Chemical Interaction with Electrically Conductive Support of Magneli Phase Titanium Oxide. Nanomaterials 2021, 11, 829. [Google Scholar] [CrossRef]
- Tsai, M.C.; Nguyen, T.T.; Akalework, N.G.; Pan, C.J.; Rick, J.; Liao, Y.F.; Su, W.N.; Hwang, B.J. Interplay between Molybdenum Dopant and Oxygen Vacancies in a TiO2 Support Enhances the Oxygen Reduction Reaction. ACS Catal. 2016, 6, 6551–6559. [Google Scholar] [CrossRef]
- Ioroi, T.; Akita, T.; Yamazaki, S.; Siroma, Z.; Fujiwara, N.; Yasuda, K. Corrosion-Resistant PEMFC Cathode Catalysts Based on a Magneli-Phase Titanium Oxide Support Synthesized by Pulsed UV Laser Irradiation. J. Electrochem. Soc. 2011, 158, C329–C334. [Google Scholar] [CrossRef]
- Volochaev, V.A.; Novomlinskii, I.N.; Bayan, E.M.; Guterman, V.E. Nanostructured Platinum Catalyst Supported by Titanium Dioxide. Russ. J. Electrochem. 2019, 55, 1021–1030. [Google Scholar] [CrossRef]
- Dou, S.; Wang, X.; Wang, S.Y. Rational Design of Transition Metal-Based Materials for Highly Efficient Electrocatalysis. Small Methods 2019, 3, 1800211. [Google Scholar] [CrossRef] [Green Version]
- Ishihara, A.; Tominaka, S.; Mitsushima, S.; Imai, H.; Sugino, O.; Ota, K. Challenge of advanced low temperature fuel cells based on high degree of freedom of group 4 and 5 metal oxides. Curr. Opin. Electrochem. 2020, 21, 234–241. [Google Scholar] [CrossRef]
- Li, W.; Wang, D.D.; Zhang, Y.Q.; Tao, L.; Wang, T.H.; Zou, Y.Q.; Wang, Y.Y.; Chen, R.; Wang, S.Y. Defect Engineering for Fuel-Cell Electrocatalysts. Adv. Mater. 2020, 32, 1907879. [Google Scholar] [CrossRef] [PubMed]
- Giordano, L.; Akkiraju, K.; Jacobs, R.; Vivona, D.; Morgan, D.; Shao-Horn, Y. Electronic Structure-Based Descriptors for Oxide Properties and Functions. Acc. Chem. Res. 2022, 55, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Pei, D.-N.; Gong, L.; Zhang, A.-Y.; Zhang, X.; Chen, J.-J.; Mu, Y.; Yu, H.-Q. Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction. Nat. Commun. 2015, 6, 8696. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Du, G.; Zhang, M.; Kalam, A.; Ding, S.; Su, Q.; Xu, B.; Al-Sehemi, A.G. Porous Titanium Oxide Microspheres as Promising Catalyst for Lithium–Oxygen Batteries. Energy Technol. 2020, 8, 1901257. [Google Scholar] [CrossRef]
- Klym, H.; Karbovnyk, I.; Piskunov, S.; Popov, A.I. Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics. Nanomaterials 2021, 11, 3373. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Ren, J.; Zhao, Z.; Kong, Y.; Shen, X. Partially Reduced TiO2 Aerogel as a Catalyst of Oxygen Reduction Reaction in Alkaline Solution. Chem. Lett. 2022, 51, 862–866. [Google Scholar] [CrossRef]
Sample | Specific Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Median Pore Diameter (nm) |
---|---|---|---|
TA/Fe1 | 774 ± 77.01 | 1.22 ± 0.02 | 16.1 ± 0.81 |
TA/Fe2 | 475 ± 29.74 | 0.96 ± 0.01 | 22.9 ± 1.80 |
TA/Fe3 | 543 ± 50.66 | 1.72 ± 0.06 | 51.6 ± 5.87 |
TA/Fe4 | 551 ± 69.13 | 1.58 ± 0.04 | 28.1 ± 3.09 |
Sample | Peak Area of OL–Ti | Peak Area of Oads–Ti | Peak Area of C–O | Ratio |
---|---|---|---|---|
TA/Fe1 | 12,024.92 ± 112.4 | 5269.99 ± 64.23 | 7390.67 ± 76.54 | 0.51 |
TA/Fe2 | 6587.58 ± 82.5 | 6017.46 ± 68.12 | 5894.03 ± 60.03 | 0.64 |
TA/Fe3 | 4157.14 ± 64.6 | 10,971.72 ± 106.3 | 24,772.02 ± 232.35 | 0.89 |
TA/Fe4 | 3881.96 ± 58.2 | 8421.86 ± 91.02 | 25,195.61 ± 261.62 | 0.89 |
Sample | Epeak | Jpeak | Eonset (V) | E1/2 (V) | |Jlimit| (mA·cm−2) | |Tafel slope| (mV·dec−1) | Stability (mV) |
---|---|---|---|---|---|---|---|
TA/Fe1 | 0.67 | 1.21 | 0.81 | 0.70 | 4.73 | 89 | 2.0 |
TA/Fe2 | 0.67 | 0.74 | 0.80 | 0.71 | 4.51 | 117 | 4.5 |
TA/Fe3 | 0.67 | 1.18 | 0.78 | 0.71 | 5.34 | 97 | 4.5 |
TA/Fe4 | 0.68 | 1.41 | 0.78 | 0.71 | 4.88 | 92 | 2.5 |
Sample | Rs (Ω·cm2) | C1 (nF/cm2) | R1 (Ω·cm2) | Q1-Q (nF/cm2) | Q1-n | Rct (Ω·cm2) |
---|---|---|---|---|---|---|
TA/Fe1 | 2.53 | 25.4 | 6.955 | 0.78 | 0.788 | 444.4 |
TA/Fe2 | 1.88 | 21.1 | 8.225 | 0.98 | 0.834 | 828.2 |
TA/Fe3 | 1.25 | 22.9 | 7.191 | 1.41 | 0.841 | 497.8 |
TA/Fe4 | 2.57 | 28.3 | 6.656 | 1.13 | 0.812 | 313.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, C.; Tang, J.; Zhao, Z.; Kong, Y.; Shen, X. Fe Ions-Doped TiO2 Aerogels as Catalysts of Oxygen Reduction Reactions in Alkaline Solutions. Materials 2022, 15, 8380. https://doi.org/10.3390/ma15238380
Chu C, Tang J, Zhao Z, Kong Y, Shen X. Fe Ions-Doped TiO2 Aerogels as Catalysts of Oxygen Reduction Reactions in Alkaline Solutions. Materials. 2022; 15(23):8380. https://doi.org/10.3390/ma15238380
Chicago/Turabian StyleChu, Chen, Jinqiong Tang, Zhiyang Zhao, Yong Kong, and Xiaodong Shen. 2022. "Fe Ions-Doped TiO2 Aerogels as Catalysts of Oxygen Reduction Reactions in Alkaline Solutions" Materials 15, no. 23: 8380. https://doi.org/10.3390/ma15238380
APA StyleChu, C., Tang, J., Zhao, Z., Kong, Y., & Shen, X. (2022). Fe Ions-Doped TiO2 Aerogels as Catalysts of Oxygen Reduction Reactions in Alkaline Solutions. Materials, 15(23), 8380. https://doi.org/10.3390/ma15238380