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Abstract: Chlorine- and nitrogen-containing carbon nanofibers (CNFs) were obtained by combined
catalytic pyrolysis of trichloroethylene (C2HCl3) and acetonitrile (CH3CN). Their efficiency in the
adsorption of 1,2-dichlorobenzene (1,2-DCB) from water has been studied. The synthesis of CNFs was
carried out over self-dispersing nickel catalyst at 600 ◦C. The produced CNFs possess a well-defined
segmented structure, high specific surface area (~300 m2/g) and high porosity (0.5–0.7 cm3/g).
The addition of CH3CN into the reaction mixture allows the introduction of nitrogen into the CNF
structure and increases the volume of mesopores. As a result, the capacity of CNF towards adsorption
of 1,2-DCB from its aqueous solution increased from 0.41 to 0.57 cm3/g. Regardless of the presence
of N, the CNF samples exhibited a degree of 1,2-DCB adsorption from water–organic emulsion
exceeding 90%. The adsorption process was shown to be well described by the Dubinin–Astakhov
equation. The regeneration of the used CNF adsorbent through liquid-phase hydrodechlorination
was also investigated. For this purpose, Pd nanoparticles (1.5 wt%) were deposited on the CNF
surface to form the adsorbent with catalytic function. The presence of palladium was found to have a
slight effect on the adsorption capacity of CNF. Further regeneration of the adsorbent-catalyst via
hydrodechlorination of adsorbed 1,2-DCB was completed within 1 h with 100% conversion. The
repeated use of regenerated adsorbent-catalysts for purification of solutions after the first cycle of
adsorption ensures almost complete removal of 1,2-DCB.

Keywords: chloroaromatics; adsorption; hydrodechlorination; N-containing carbon nanofibers;
trichloroethylene; nickel catalyst

1. Introduction

Chlorinated organic compounds (COCs) are among the most persistent and toxic
pollutants. They are widely used as pesticides, propellants, refrigerants, degreasers, sol-
vents, as well as reagents and intermediate products in organic synthesis [1,2]. The use
of COCs in various technological processes is accompanied by their release into the en-
vironment. On the other hand, the chlorination of water-containing organic substances
may also result in the formation of a number of COCs which have carcinogenic and mu-
tagenic effects [3]. COCs are known to be very stable and only slightly dissolvable. They
have a high resistance to degradation. Considerable amounts of COCs can be found in
industrial effluents, groundwater, rivers, seas, rainwater, and even in drinking water [1,2,4].
Therefore, the research aiming to improve the purification technologies for removing
such dangerous chemicals from liquid waste and wastewater is of high demand. Various
methods have been proposed for the removal of COCs from water, including catalytic
oxidation [5]; biodegradation [6]; advanced oxidation processes, such as photocatalytic
destruction [7] or electrochemical degradation [8]; reductive dechlorination [9]; as well
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as non-destructive methods, such as adsorption [10–12]. Each of these methods has its
advantages and limitations [1]. For example, catalytic oxidation technology has been widely
utilized because of its relative simplicity. Meanwhile, it remains costly, requires elevated
temperatures, and poses a certain risk to the environment due to the potential emission of
highly toxic byproducts (e.g., dioxins, furans, and phosgene) derived as a result of their
incomplete combustion [13].

The catalytic pyrolysis of chlorinated hydrocarbons and related wastes is known to be
one of the most powerful techniques for their processing [14,15]. This process is carried out
in a reductive atmosphere, which completely eliminates the risk of the formation of side
ecotoxicants. The self-dispersing Ni-based catalysts can be used for this purpose as the most
active and tolerant to deactivation by chlorine systems [16]. “Self-dispersing” implies fast
fragmentation (disintegration) of bulk Ni or Ni-based alloys (Ni-M, where M = Pd, Mo, W
etc.) in the reaction atmosphere, which leads to the formation of disperse active particles [17].
The decomposition of aliphatic chlorinated hydrocarbons (i.e., 1,2-dichloroethane (DCE)
and trichloroethylene (TCE)) over alloyed Ni-M catalysts is accompanied by accumula-
tion of the chlorine-containing graphite-like nanomaterials represented mostly by carbon
nanofibers (CNFs) [17–20]. The filamentous carbon product resulted from the catalytic
decomposition of chlorinated hydrocarbons is known to possess both a unique segmental
structure and high textural parameters (specific surface area of 300–400 m2/g, pore volume
of 0.5–0.8 cm3/g), which makes this type of nanomaterial very attractive for adsorption
applications [21,22]. The appearance of the segmented secondary structure of CNFs is
believed to be driven by the periodic ‘chlorination-dechlorination’ process taking place
over the surface of nickel catalyst during the H2-assisted catalytic pyrolysis of chlorinated
hydrocarbons [23]. Thus, the potential use of such carbon nanomaterial obtained via
catalytic pyrolysis of COCs is of particular practical interest.

It should be noted that real industrial organochlorine wastes are usually composed
of a complex mixture of polychlorinated hydrocarbons, including a portion of organics
functionalized by O- and N-containing groups. As recently demonstrated, the use the
nitrogen-containing compound acetonitrile (AN) as a co-reagent in the catalytic pyrolysis of
DCE or TCE vapors allows the obtainment of N-containing CNF materials with a nitrogen
content of up to 3 wt% [24]. The addition of AN vapors into the reaction mixture was also
shown to have a boosting effect on the catalyst’s productivity with respect to the CNF
material. In addition, the produced N-containing CNF (N-CNF) exhibited the preserved
segmental structure of fibers, along with an enhanced specific surface area (up to 550 m2/g)
and porosity [24]. The high textural parameters of such filamentous carbon product make it
a very attractive nanomaterial for various fields of application, including adsorption [25,26].

Carbon materials are commonly used as adsorbents for water purification from di-
verse types of contamination [27,28]. As recently shown, CNFs produced via the catalytic
decomposition of DCE demonstrate very high efficiency in adsorption of chloroaromatic
pollutants from water [29,30]. At the same time, the possibility of reusing the carbon
adsorbent for water purification should include the removal of the chloroaromatic com-
pound adsorbed during the first purification cycle. Thus, the regeneration of the adsorbent
can be carried out under mild conditions using the catalytic reaction of liquid-phase hy-
drodechlorination (HDC) [22,31,32]. HDC is a widespread method that is recognized
as the most effective method for the degradation of polychlorinated aromatics. Various
supported catalysts containing Pd, Pt, Ni and its alloys can be used as active components
for this purpose [33,34]. In the case of using carbon adsorbents, palladium at a mod-
erate concentration of 1–3% is to be deposited on their surface in order to provide the
necessary catalytic function [35]. In other words, the purification cycle involves the ad-
sorption of COCs from the aqueous solution and the reductive regeneration of the catalyst
by the liquid-phase HDC of adsorbed species with molecular hydrogen [21]. Such an
approach allows for both concentrating the chloroaromatic pollutants and obtaining the
products useful in the chemical industry. The object of study for water purification was
1,2-dichlorobenzene (1,2-DCB), which is a high-priority pollutant. It is widely used as a high-
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boiling solvent in chemical industry, as well as a reagent and an intermediate for dyes and
agrochemical manufacture [36].

In the present paper, a complex approach for the disposal of the chlorinated organic
multi-component wastes is proposed. In the first stage, TCE, which was chosen as the
model aliphatic polychlorinated hydrocarbon, was converted over Ni-catalyst into seg-
mented CNF material. In addition, the N-containing CNF was obtained in the same way
via combined pyrolysis of TCE and AN. In the second stage, the produced CNF and
N-CNF samples were explored in the adsorption of 1,2-DCB from aqueous solutions in
the static regime. The opportunity to regenerate the spent CNF adsorbent by liquid-phase
catalytic hydrodechlorination was also examined. For this purpose, 1.5 wt% palladium was
deposited on both of the CNF samples. These adsorbent-catalysts were then tested in the
adsorption–regeneration cycle.

2. Materials and Methods

A schematic representation of the principle experimental stages is presented in Figure 1.
A detailed description of each step is given below.
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Figure 1. Schematic representation of the experimental work. The HDC setup consists of the following
parts: (1) thermostat; (2) temperature-controlled reactor; (3) magnetic stirrer; (4) reflux condenser;
(5) odor trap; (6) three-way valve; (7) gas bottle; (8) gas reducer; (9) measuring burette.

The following commercial reagents were used as received: trichloroethylene (C2HCl3,
chemically pure, Component-Reactiv, Moscow, Russia); acetonitrile (CH3CN, chemically
pure, Component-Reactiv, Moscow, Russia); PdCl2 (pure, Aurat, Moscow, Russia); NaBH4
(purity of 98 wt%, Chemical Line, Saint Petersburg, Russia); 1,2-dichlorobenzene (C6H4Cl2,
purity of 99 wt%, Sigma-Aldrich, St. Louis, MO, USA); KOH (analytically pure, Reakhim,
Moscow, Russia); and 2-propanol (CH3CH(OH)CH3, high purity grade, Baza No.1 Khim-
reactivov, Staraya Kupavna, Russia). Microdispersed Ni-catalyst was synthesized as de-
scribed elsewhere [37].
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2.1. Synthesis of Functionalized CNFs

The H2-assisted catalytic pyrolysis of C2HCl3 vapors (or the joint decomposition
of C2HCl3 and CH3CN) resulting in the formation of carbon nanomaterial was carried
out in a flow-through horizontal quartz reactor (Zhengzhou Brother Furnace Co., Ltd.,
Zhengzhou, China).

A specimen of the catalyst (microdispersed powder of Ni), 300.00 ± 0.5 mg each, was
spread throughout the entire quartz plate. The plate was then placed inside the reactor,
after which the reactor was heated in an Ar atmosphere up to the reaction temperature
of 600 ◦C. The samples were then treated in a hydrogen flow at 600 ◦C for 10 min in
order to reduce the oxide film on their surfaces. After the reduction, the reactor was
fed with the reaction mixture containing vapors of TCE (6 vol%) or TCE (6 vol%) + AN
(25 vol%), hydrogen (37 vol%), and argon, at 600 ◦C. The flow rate of the reaction mixture
was 54 L/h. The duration of the synthesis was 2 h. When the experiment was completed,
the reactor was cooled in an argon flow to room temperature, after which the carbon
product was unloaded and weighed. The measured carbon yield, YC (expressed in grams
of CNF per 1 g of catalyst, gCNF·gcat

−1), was found to be 9.8 gCNF·gcat
−1 (for TCE only) and

10.6 gCNF·gcat
−1 (in the case of TCE + AN).

The resulting carbon nanomaterials were further treated with hydrochloric acid (12%)
for 12 h in order to remove the metallic particles of residual catalyst. The etched CNF
material was then washed with water to neutral pH, filtered out, and dried at 120 ◦C.
The resulting CNF material produced via the decomposition of TCE only was labeled as
«CNF-Cl», whereas the CNF sample obtained by the joint decomposition of TCE and AN
was labeled as «CNF-Cl-N».

2.2. Synthesis of the Pd/CNF Adsorbent-Catalysts

The adsorbent-catalysts were prepared by incipient wetness impregnation of the CNF-
Cl and CNF-Cl-N samples with hydrochloric solutions of PdCl2. The obtained samples
were dried at 110–130 ◦C for 4 h. The reduction of deposited PdCl2 was performed at
room temperature by treatment with an aqueous solution of NaBH4 (Pd:NaBH4 molar
ratio was 1:3). The synthesized adsorbent-catalysts were labeled as «Pd/CNF-Cl» and
«Pd/CNF-Cl-N». According to X-ray fluorescence analysis data, the palladium content in
all the Pd-containing samples was 1.5 ± 0.05 wt%.

2.3. Study on 1,2-DCB Adsorption from Aqueous Solution under Equilibrium Conditions
2.3.1. Measurement Procedure

The adsorption characteristics of the prepared CNF and Pd/CNF samples were stud-
ied under equilibrium conditions by a static method at 25 ◦C for 24 h. For this purpose,
3 mg of each sample was added to a 60 mL solution of 1,2-DCB, with concentrations
in the range from 0.0493 to 0.986 mmol·L−1. In order to exclude the effect of the pore-
diffusion factor, the mixtures were evenly shaken with a shaker LOIP LS-110 (RNPO
RusPribor, Saint-Petersburg, Russia) at an orbiting speed of 200 rpm. Changes in the con-
centration of 1,2-DCB during the adsorption cycle were monitored by the UV-spectroscopy
technique [38–40] using a Varian Cary 100 instrument (Agilent, Santa Clara, CA, USA). To
obtain reliable data, each experiment was repeated at least three times. Differences between
experimental values did not exceed ±3%.

The amount of the adsorbed 1,2-DCB was calculated as follows [41]:

A =
∆C×V

m
(1)

where A is the adsorption capacity of the CNFs or Pd/CNF, mol·g−1; ∆C is the difference
in 1,2-DCB concentration before and after adsorption, mol·L−1; V is the volume of 1,2-DCB
solution, L; m is the loading of the adsorbent, g.
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The pore filling was determined as a ratio of the volume of 1,2-DCB in CNF pores to
the total pore volume:

Fpores =
A∗

V∑ pore
× 100% (2)

where Fpores is the pore filling of 1,2-DCB, %; A∗ is the adsorption capacity, which was
achieved by adsorption of 1,2-DCB from an aqueous solution, cm3·g−1; VΣpore is the total
pore volume of CNF, cm3·g−1.

2.3.2. Adsorption Isotherm Modeling

Both the Langmuir and Dubinin–Astakhov isotherm models were used to analyze the
adsorption data. The applicability of the models was checked via a comparison of their
correlation coefficients (R2 values).

Langmuir Isotherm

The Langmuir isotherm is often used to study the adsorption processes of various
pollutants. This model is applicable for monolayer adsorption onto a surface with a limited
amount of identical sites. Uniform adsorption energies and no adsorbate transmigration
in the plane of the surface are considered. The equation for the Langmuir isotherm is
given below [42]:

A =
KL AmaxCeq

1 + KLCeq
, (3)

where A is the amount of 1,2-DCB adsorbed per gram, mol·g−1; Amax is the adsorption ca-
pacity or the adsorption maximum, mol·g−1; Ceq is the equilibrium 1,2-DCB concentration,
mol·L−1; KL is the Langmuir constant, L·mol−1.

The surface area of adsorbent occupied by one molecule of 1,2-DCB (ω) was calculated
by the Langmuir isotherm model [43]:

ω =
SSA

AmaxNA
(4)

where SSA is the specific surface area of the adsorbent, m2·g−1; Amax is the adsorption
capacity or the adsorption maximum, mol·g−1; NA is the Avogadro number
(6.02 × 1023 mol−1).

Dubinin-Astakhov Isotherm

As is reported [44], the Dubinin theory, which considers volume filling for vapor
adsorption, can be applied to study the adsorption of organic compounds from their
solutions [45,46]. The Dubinin–Astakhov equation can be expressed as follows [47]:

A = Amax exp

−
RT × ln(Cmax

Ceq
)

Ee f f
ads

n, (5)

where Amax is the adsorption maximum or adsorption capacity, mol·g−1; Cmax is the highest
concentration of 1,2-DCB in water, mol·L−1; Ceq is the equilibrium 1,2-DCB concentration,

mol·L−1; Ee f f
ads is the characteristic energy of 1,2-DCB adsorption, kJ·mol−1.

The maximum amount of 1,2-DCB (W0) adsorbed per gram (or maximum adsorption
capacity), and the average diameter (d) of the adsorbent’s pores filled with 1,2-DCB were
defined by the Dubinin–Astakhov isotherm model [21,43]:

W0 =
Amax × M1,2−DCB

ρ1,2−DCB
, (6)



Materials 2022, 15, 8414 6 of 19

d = 2·
KC6 H6 × β

Ee f f
ads

, (7)

where M1,2−DCB is the molar mass of 1,2-DCB, g·mol−1; ρ1,2−DCB is the density of 1,2-DCB,
g·cm−3; KC6 H6 is the coefficient for the standard (benzene), equal to 12 kJ·nm·mol−1; β is
the affinity coefficient (for 1,2-DCB, equal to 1.28).

2.4. Testing Pd/CNF in the Adsorptive-Catalytic Cycle

Purification of the aqueous medium from 1,2-DCB was conducted in two steps compris-
ing an adsorptive–catalytic cycle: (1) adsorption of 1,2-DCB on Pd/CNF-Cl and Pd/CNF-
Cl-N samples from the emulsion; (2) regeneration of adsorbent-catalysts by hydrodechlori-
nation in a liquid phase. First, an emulsion of 0.15 mL of 1,2-DCB in 100 mL of water was
prepared by sonication for 20 min, after which 0.5 g of catalyst was added. The adsorption
time was 2 min while shaking. The catalyst was then separated by decantation (2 min) and
immediately used in the liquid-phase hydrodechlorination experiment.

The calculation of the maximum amount of 1,2-DCB in the reaction medium during
the regeneration of adsorbent-catalysts by hydrodechlorination was performed according
to the equation:

Cmax
1,2−DCB =

A×m×V0

V
, (8)

where Cmax
1,2−DCB is the concentration of 1,2-DCB adsorbed on the adsorbent-catalyst,

mmol·L−1 (or M); A is the adsorption capacity, which was achieved by the adsorption of
1,2-DCB from an aqueous emulsion, mol·g−1; m is the mass of the adsorbent-catalyst, g; V0
is the standard volume, 1000 mL; V is the volume of 2-propanol in the reaction medium of
1,2-DCB hydrodechlorination, 11 mL.

The apparatus for 1,2-DCB hydrodechlorination consisted of two main parts: a 50 mL
temperature-controlled glass reactor equipped with a magnetic stirrer and a volumetric
block to maintain a constant H2 pressure. The reaction medium consisted of two immiscible
fluids: 11 mL of 2-propanol and 4 mL of a 50 wt% solution of KOH. Alkali was used
to bind HCl formed during the hydrodechlorination, thus preventing the catalyst from
deactivation [48]. 2-Propanol serves as the organic phase which is able to dissolve 1,2-DCB
efficiently and facilitate the formation of active hydrogen species on the surface of the
catalyst during the hydrodechlorination process [49].

The regeneration of the adsorbent-catalyst by liquid-phase hydrodechlorination of
1,2-DCB was performed at 25 ◦C under a constant hydrogen pressure of 0.1 MPa and
continuous stirring at 1200 rpm. When the stirring rate is above 800 rpm, the external
diffusion processes have a negligible influence [50]. Following the complete conversion
of 1,2-DCB, the catalyst was separated from the reaction medium by filtration, washed
with water, dried at 110–130 ◦C for 4 h, and then used in the adsorptive–catalytic cycle for
the second run. It is important to note that each experiment was repeated at least 3 times.
Differences between the experimental points from different repetitions do not exceed ±4%.

Analysis of the hydrodechlorination products was performed using a Chromos GH-
1000 gas chromatograph (Chromos Engineering, Dzerzhinsk, Russia) with a flame-ionization
detector and a column (2.5 mm × 2 m) filled with Chromaton N-AW sorbent. The instru-
ment was operated under argon using a hydrogen flame at temperatures from 60 to 120 ◦C
(heating rate 10 ◦C/min).

2.5. Characterization of the Samples

Pure CNF as Pd-containing samples were explored by means of high-resolution
transmission electron microscopy (HR TEM) using a JEM-2010CX microscope (JEOL, Tokyo,
Japan). The device works at an accelerating voltage of 100 kV. The spherical aberration
coefficient of an objective lens is 2.8 mm. The line resolution of the microscope is 1.4 Å.

The X-ray diffraction (XRD) study of the synthesized CNF samples was performed on
a Shimadzu XRD-7000 (Shimadzu, Tokyo, Japan) diffractometer (CuKα radiation) at room
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temperature using a graphite monochromator. The average crystallite size was determined
from the integral broadening of the profiles of the 002 diffraction peak described by the
Pearson function VII (PVII), using the Scherrer formula in WINFIT 1.2.1 software [51].

X-ray photoelectron spectroscopy (XPS) data were collected on a SPECS (SPECS Sur-
face Nano Analysis GmbH, Berlin, Germany) spectrometer equipped with a hemispherical
PHOIBOS-150-MCD-9 analyzer. The non-monochromatic Mg Kα radiation (hν = 1253.6 eV)
at 180 W was used as the primary excitation. For calibration of the spectrometer, the Au
4f7/2 (binding energy (BE) at 84.0 eV) and Cu 2p3/2 (932.7 eV) peaks from metallic gold and
copper foils were used [52]. The samples were located on a holder with a 3 M double-sided
adhesive copper conducting tape. The Peak 4.1 XPS software package was applied for both
spectral analysis and data processing. To determine the binding energy values and the
areas of XPS peaks, the Shirley background was subtracted, and an analysis of line shapes
was performed. Gaussian–Lorentzian functions were used to fit the curves in each XPS
area. The atomic ratios of elements were determined from the integral photoelectron peak
intensities. The corresponding relative atomic sensitivity factors [52] and the transmission
function of the analyzer were used for the correction.

In order to determine the specific surface area (SSA) and pore volume (Vpore) of the
obtained CNF, nitrogen adsorption/desorption at 77 K (Brunauer–Emmett–Teller (BET)
method) was used. The samples were degassed under an oil-free vacuum at 300 ◦C for 5 h.
The isotherms of adsorption were measured using an ASAP-2400 automated instrument
(Micromeritics, Norcross, GA, USA).

The loading of palladium in adsorbent-catalysts was measured by means of X-ray
fluorescence analysis using a VRA-30 instrument (Carl Zeiss, Jena, Germany) with a Cr
anode X-ray tube. The relative determination error was ±5%.

3. Results and Discussion
3.1. Characterization of CNF Samples

The morphology and structure of the synthesized carbon nanomaterial was studied by
scanning and transmission electron microscopies. According to the SEM data, the carbon
products formed as a result of the catalytic decomposition of TCE and TCE + AN mixtures
over Ni catalyst are predominantly represented by rather long graphite-like filaments
(Figure 2). Note that the addition of AN to the reaction mixture has no evident effect on the
morphology of the produced carbon nanomaterial.
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Figure 2. SEM micrographs of the CNF-Cl (a) and CNF-Cl-N (b) samples.

The detailed structure of CNF samples is represented by the selected TEM images
shown in Figure 3. It is also clear from TEM data that the addition of AN into the
TCE/H2/Ar reaction mixture (Figure 3c,d) does not have any noticeable impact on the
structure of segmented carbon filaments. The formation of such a structure is caused by
the periodic process of chlorination–dechlorination, which takes place on the surface of
active Ni particles, catalyzing the growth of CNF. The dark sections of the fibers are densely
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packed graphite-like “flakes”, while the lighter ones are represented by graphite packs with
a looser arrangement and a greater interplanar spacing [23]. The diameter of the carbon
fibers varies from 100 to 300 nm.
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Figure 3. TEM micrograph of (a,b) CNF-Cl and (c,d) CNF-Cl-N.

XRD patterns of the synthesized CNF materials exposed to acidic treatment are pre-
sented in Figure 4. Both the CNF-Cl and CNF-Cl-N samples showed a broad reflection
from the (002) graphite planes at a 2θ of 25–26◦ (Figure 4). No reflexes attributed to traces
of the metallic component (Ni) were identified. The distance between the graphitic layers
(d002) determined from the position of the (002) peak was found to be 3.50 Å and 3.45 Å for
CNF-Cl and CNF-Cl-N, respectively. It should be noted that the calculated average distance
between the layers in CNFs (3.45–3.50 Å) is significantly larger than that corresponding to
the crystalline graphite (3.35 Å).
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Figure 4. XRD patterns for the synthesized CNF-Cl and CNF-Cl-N samples. Both samples were
washed from metallic particles by etching with HCl acid.
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The functional groups present on the surface of the obtained CNF samples were
studied using the XPS method (Tables S1 and S2). As seen in Figure 5, the main elements
are carbon and oxygen. In addition to the corresponding lines, the detailed analysis of
survey XPS spectra pointed to the presence of N1s and Cl2p low-intensity lines as well.
After survey recording, the region spectra for the main lines of elements were collected to
obtain a sufficient ‘signal/noise’ ratio for peak deconvolution and to define the positions
of the peaks and analyze their area (Figure 6). The calculated contents of the elements (in
atomic percent) are presented in Table 1. The results of the detailed quantitative XPS data
analysis are presented in Table 2 and Figure 6.
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Table 1. XPS data of the surface composition of the CNF-Cl and CNF-Cl-N samples.

CNF Sample
Content, wt%

N O Cl

CNF-Cl 0.07 2.65 0.09
CNF-Cl-N 0.39 1.47 0.17
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Table 2. Results of the quantitative XPS data analysis.

CNF Sample Element BE, eV Atomic Ratio to Carbon State Portion Total Atomic Ratio to Carbon

CNF-Cl

O1s
532.4 0.0049 0.18

0.027
533.8 0.022 0.82

N1s
400.8 0.00057 0.75

0.00077
402.7 0.00020 0.25

CNF-Cl-N

O1s

531.0 0.00088 0.059

0.015532.1 0.0039 0.26

533.6 0.010 0.68

N1s
398.5 0.0013 0.33

0.0040
401.2 0.0027 0.67

The oxygen-containing groups appear in the samples as a result of their contact with
atmospheric air after their removal from the reactor (see Table 2). The CNF-Cl-N sample
contains the greatest amount of functional groups (0.39 wt% of N and 0.17 wt% of Cl). It
was found that the introduction of nitrogen into the CNF structure promotes an almost
2-fold increase in the chlorine concentration (from 0.09 to 0.17 wt%). Presumably, the
higher content of Cl in the CNF-Cl-N sample might prevent the adsorption of oxygen, thus
leading to a drop in O concentration (from 2.65 to 1.47 wt%). It should be also noted that
an insignificant amount of nitrogen was also detected in the composition of the CNF-Cl
sample (Table 1).

The C1s spectra of the CNF samples are shown in Figure 6a. Since the amounts of O,
N, and Cl are low, the presence of the components of C1s spectra attributed to the carbon
bound with these elements is not expected. For both CNF-Cl and CNF-Cl-N samples, the
C1s line consists of three components: C-C sp2 (binding energy at 284.5 eV), C-C (C-H)
sp3 (at 286 eV), and π→π* shake-up satellite (at 290 eV) [53–55]. The comparison of the
C1s line shapes shows a drop in the portion of sp3 carbon for the CNF-Cl-N sample (C sp3

portion of 0.17) when compared with the CNF-Cl sample (C sp3 portion of 0.36).
The N1s spectra of the studied samples are presented in Figure 6b. Analysis of the

N1s region for the CNF-Cl sample reveals the presence of two components at 400.8 eV,
described as N-O bonds [56], and at 402.7 eV, assigned to quaternary N [55], trapped
N2 [56] or O=N-C groups [57]. For the CNF-Cl-N sample, the components of the N1s line
at 398.5 eV attributed to N≡C [56] and at 401.2 eV related to C-(NC)-C graphitic nitrogen
in aromatics [57] were found in a ratio of 1:2.

In Figure 6c, the O1s spectra of the studied samples are demonstrated. Peaks were
observed in the spectra of the CNF-Cl sample at 532.4 eV (C=O) and 533.8 eV (C-OH), and
at 531.0 eV (C(O)O), 532.1 eV (C=O), and 533.6 eV (C-OH) for the CNF-Cl-N sample [58,59].
It should be noted that the total amount of oxygen in the CNF-Cl-N sample is lower if
compared with the CNF-Cl sample.

The textural parameters of the obtained carbon nanomaterials were studied by low-
temperature adsorption of nitrogen. According to the data obtained (Table 3), the specific
surface area of the materials is almost the same: 297 m2·g−1 for CNF-Cl and 292 m2·g−1 for
CNF-Cl-N. This observation testifies once again to the fact that the addition of AN to the
reaction mixture (TCE/H2/Ar) does not alter the structural and textural properties of the
resulting carbon product.

Table 3. Textural characteristics of the CNF-Cl and CNF-Cl-N samples. BET analysis data.

Sample SSA, m2·g−1 V∑pore, cm3·g−1 Vmicropore, cm3·g−1 d, nm

CNF-Cl 297 0.55 0.017 7.4
CNF-Cl-N 292 0.69 0.019 9.4
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The pore structure of the produced CNF samples was also found to be very similar.
Both samples show a bimodal pore size distribution with peaks in micro- and mesoporous
regions (Figure 7). The volume of micropores is almost the same and does not exceed 3%
of the total pore volume (Table 3). However, the total pore volume and the average pore
diameter for the N-containing CNF-Cl-N sample are greater than those for CNF-Cl. The
measured values are 0.69 cm3·g−1 and 9.4 nm for CNF-Cl-N and 0.55 cm3·g−1 and 7.4 nm
for CNF-Cl, respectively (Table 3). The observed difference is due to a larger contribution
of mesopores in the case of N-containing CNF (Figure 7).
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Thus, the catalytic H2-assisted decomposition of TCE (or the mixture of TCE and AN)
over Ni-catalyst allowed for the filamentous carbon material to be obtained. The produced
carbon nanofibers have a diameter of 100–300 nm and a well-defined segmented structure
of densely and loosely packed Cl-containing graphite layers. They are characterized by
a comparatively high value of SSA (~300 m2·g−1) and a bimodal pore size distribution.
The use of AN as a co-reagent for CNF synthesis results in the incorporation of nitrogen
atoms into the structure of carbon product (0.39 wt%), along with an enhancement of total
porosity (from 0.55 to 0.69 cm3·g−1), owing to the increased value of mesopores.

Using the obtained CNFs, the palladium adsorbent-catalysts with a Pd content of
1.50 ± 0.03 wt% were prepared. When palladium is supported on CNF, the specific surface
area decreases from 297 to 293 m2·g−1 and from 292 to 284 m2·g−1 for CNF-Cl and CNF-
Cl-N, respectively. Such insignificant changes are due to the localization of palladium
nanoparticles on the outer surface of carbon fibers (Figure 8). Pd does not enter their pores,
as in the case of microporous carbon black [60].
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3.2. Adsorbtion of 1,2-DCB from Aqueous Solutions

To characterize the adsorption properties of the synthesized CNF samples and related
Pd/CNF materials, the 1,2-DCB adsorption from aqueous solutions under equilibrium
conditions at 25 ◦C was investigated. The experimental adsorption isotherms (Figure 9)
were analyzed using both the Langmuir and Dubinin–Astakhov models (Table 4).
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Table 4. Values of parameters calculated from the Langmuir and Dubinin–Astakhov adsorption
isotherms for 1,2-DCB on the CNF-Cl, Pd/CNF-Cl, CNF-Cl-N, and Pd/CNF-Cl-N samples.

Isotherm Linear Form Parameter
Sample

CNF-Cl Pd/CNF-Cl CNF-Cl-N Pd/CNF-Cl-N

Langmuir
1
A = 1

Amax
+ 1

KL Amax
× 1

Ceq

ω = SSA
Amax NA

Amax (mol·g−1) 0.0022 0.0034 0.0027 0.0030
ω (nm2) 0.22 0.14 0.18 0.16

R2 0.710 0.965 0.714 0.840

Dubinin–
Astakhov

ln A = ln Amax −
[

RT
Ee f f

ads

× ln Cmax
Ceq

]n

d = 2×
KC6 H6

×β

Ee f f
ads

n = 1

Amax (mol·g−1) 0.0038 0.0045 0.0048 0.0053
W0 (cm3·g−1) 0.43 0.51 0.54 0.60

Ee f f
ads (kJ·mol−1) * 5.0 4.3 6.4 4.7

d (nm) * 6.2 7.1 8.5 6.6
R2 0.924 0.969 0.950 0.935

n = 2

Amax (mol·g−1) 0.0025 0.0030 0.0033 0.0035
W0 (cm3·g−1) 0.29 0.34 0.38 0.39

Ee f f
ads (kJ·mol−1) * 7.7 6.5 9.6 7.5

d (nm) * 4.0 4.7 3.2 4.1
R2 0.733 0.927 0.765 0.783

* The average value.

The obtained adsorption isotherms are presented in Figure 9. They are character-
ized by an inflection in a low range of 1,2-DCB concentration (Figure 9), which corre-
sponds to a monolayer capacity of 0.0014 mol·g−1, calculated considering the SSA value
of these carbon materials (Table 4), and a 1,2-DCB molecule area of 0.35 nm2 [61]. As the
1,2-DCB concentration increases, the adsorption capacity of CNF increases as well. This is
most probably due to the volumetric filing of pores, as reported recently [21,33]. Indeed,
the experimental isotherms are not linearized by the Langmuir Equation (2), but well de-
scribed by the Dubinin–Astakhov Equation (4) (Table 4), which has been proposed for the
mathematical description of the volumetric filling of pores [62]. The empirical parameter
n, varying from 1 to 6, is linked to the degree of heterogeneity of the pore system. In our
case, n is equal to 1. It is consistent with the literature that n approaches one for adsorbents
with a wide pore distribution, including those with a bimodal structure [63]. As can be
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seen from the fitting results presented in Figure 9, the Dubinin–Astakhov model with
n = 1 describes the adsorption of 1,2-DCB on CNF samples well, which are the bimodal
adsorbents with two types of pores (Figure 7). The average diameter of the pores filled
with 1,2-DCB calculated by this approximation (Figure 10a,b) was found to be close to the
average diameter of the pores of CNFs obtained by the BET method (Table 3).
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SSA
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ω =  
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E
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d
β×
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R2 0.733 0.927 0.765 0.783 
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(b) CNF-Cl-N, (c) Pd/CNF-Cl, and (d) Pd/CNF-Cl-N samples at 25 ◦C.

It is worth noting that the carbon nanofibers doped with nitrogen, CNF-Cl-N, have a
greater adsorption capacity than the CNF-Cl sample. The achieved experimental maxima
were 0.0051 mol·g−1 and 0.0037 mol·g−1 for CNF-Cl-N and CNF-Cl, respectively. It is
assumed to be related to the larger pore volume and the more tailored pore structure in the
case of the CNF-Cl-N sample (Table 3). At the same time, a high level of pore filling (F),
84% for CNF-Cl-N and 76% for CNF-Cl, distinguishes both the nanomaterials. Moreover,
the synthesized CNFs have higher adsorption capacities in relation to 1,2-DCB if compared
with other carbon materials described in the scientific literature. For example, a value of
0.00019 mol·g−1 was achieved for graphite nanosheets prepared by the wet ball milling
of expanded graphite [38], a value of 0.00027 mol·g−1 for carbon nanotubes prepared by
the catalytic pyrolysis of a propylene–hydrogen mixture [41], a value of 0.00179 mol·g−1

for the carbon material Sibunit [21], a value of 0.0019 mol·g−1 for industrial multiwalled
carbon nanotubes NC7000 [61], and values of 0.00147 and 0.0028 mol·g−1 for commercially
available activated carbons AG-2000 [21] and AG-5 [61], respectively.

In addition, the experimental adsorption isotherms of 1,2-DCB showed that the de-
position of 1.5 wt% palladium has very slight effect on the adsorption capacity of CNF
material (Figure 9). However, the average diameter of the pores filled by 1,2-DCB estimated
using the Dubinin–Astakhov model is increased in this case (Figure 10). It appears that Pd
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nanoparticles (Figure 8) formed during the catalyst preparation partially block pores of a
small diameter, and the adsorption of 1,2-DCB occurs in larger mesopores (Figure 10).

Thus, the adsorption of 1,2-DCB on the CNF-Cl-N sample occurs in a mode of the
volume filling of pores, which are most likely located between the adjacent segments in the
structure of carbon nanofibers.

3.3. Adsorptive-Catalytic Cycle of the Purification of 1,2-DCB Aqueous Emulsions

When a large amount of 1,2-DCB enters water, a stable emulsion is formed due to
a low solubility of 1,2-DCB in water (0.986 mM at 25 ◦C). Thus, the development of the
adsorption method for the purification of aqueous emulsions from 1,2-DCB with subsequent
regeneration of adsorbent is of practical importance. In this stage of research, the efficiency
of using the Pd-containing adsorbent-catalysts based on the synthesized CNF was studied
for the purification of 1,2-DCB aqueous emulsions in the adsorptive-catalytic cycle. The
process was carried out in two stages: (I) adsorption of 1,2-DCB on the adsorbent-catalyst at
25 ◦C; (II) regeneration of the adsorbent-catalyst by the liquid-phase hydrodechlorination
of 1,2-DCB with molecular hydrogen [21] in the presence of KOH to remove formed HCl
from the reaction medium (Figure 11).
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The adsorption of 1,2-DCB was performed at a ratio of the weight of carbon nano-
material to the volume of emulsion equal to 5 gPd/CNF·L−1. As a result, the adsor-
bate concentration was reduced from 13 mM to 1.2 mM for Pd/CNF-Cl and to 1.1 mM
for Pd/CNF-Cl-N. The achieved adsorption capacities were also quite similar, being
2.36 and 2.38 mmol·g−1 for Pd/CNF-Cl and Pd/CNF-Cl-N samples, respectively. Such
a small difference is thought to be due to similar textural properties of the applied
carbon materials.

After the adsorption of 1,2-DCB from an aqueous emulsion, the Pd/CNF adsorbent-
catalysts were placed in 11 mL of 2-propanol (organic phase of the reaction medium)
for the regeneration by liquid-phase hydrodechlorination with molecular hydrogen at
25 ◦C. It was shown that 1,2-DCB releases from the pore space of the adsorbent-catalyst
by 2-propanol during the first minute (1,2-DCB concentration is 107 ± 1 mM) and then
undergoes complete dechlorination. It should be noted that 2-propanol competes with
1,2-DCB for adsorption sites on the surface of carbon material [48].

According to the data shown in Figure 12, the regeneration of Pd/CNF-Cl occurs faster
than that of the nitrogen-containing Pd/CNF-Cl-N sample. The presence of additional
N-containing groups (Table 1) appears to have a negative impact on the regeneration of the
adsorbent-catalyst. Meanwhile, it should be noted that the regeneration time was less than
1 h for both of the studied samples.
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Figure 12. 1,2-DCB concentration changes in the reaction medium during the regeneration of Pd/CNF-
Cl and Pd/CNF-Cl-N adsorbent-catalysts (25 ◦C, P(H2) = 1 atm).

After regeneration, the adsorbent-catalysts were used for post-treatment of the solution
with the remaining 1,2-DCB after the first adsorption procedure. According to UV-vis
spectroscopy data (Figure 13), the repeated use of regenerated adsorbent-catalysts made
it possible to achieve almost complete removal of 1,2-DCB from the aqueous medium.
However, its amount was very small, and during the subsequent regeneration, it was
possible to identify only trace amounts of benzene after 15 min.
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Thereby, the carbon nanomaterials synthesized via combined catalytic pyrolysis of the
Cl- and N-containing organic wastes could be also considered as promising adsorbents
for water purification from chloroaromatic compounds. Their subsequent regeneration
by means of the hydrodechlorination reaction enables one to obtain chemically valuable
products that can be returned to the production cycle. Thus, this approach represents
another step toward the rational utilization of hydrocarbon resources.

4. Conclusions

In this paper, carbon nanofibers were prepared by the catalytic decomposition of
trichloroethylene (or a mixture of trichloroethylene with acetonitrile) over Ni-catalyst. In
both cases, CNF showed a unique segmental structure of densely and loosely packed
Cl-containing graphite layers, as well as high specific surface areas (295 ± 3 m2·g−1) and
porosity. According to XPS data, nitrogen atoms were embedded on the CNF surface as
N≡C and C-(NC)-C (graphitic nitrogen in aromatics) groups. Furthermore, there was
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an increase in chlorine content and a decrease in oxygen concentration. In addition,
the N-containing CNF sample was characterized by a more tailored pore structure. It
had a 20% higher total pore volume (0.69 cm3·g−1 vs. 0.55 cm3·g−1) due to the greater
contribution of mesopores.

The synthesized Pd-containing adsorbent-catalysts based on the produced CNF sam-
ples were explored in the adsorption of 1,2-DCB from aqueous medium. It was found
that carbon materials efficiently adsorb 1,2-DCB from aqueous solutions, and the adsorp-
tion process proceeds via the pore volume filling mechanism. The presence of palladium
nanoparticles was found to have negligible effect on the adsorption capacity of CNF. The
increased pore volume of N-containing CNF results in a higher adsorption degree of
1,2-DCB from its aqueous solution. However, when CNF samples were used for purifica-
tion of emulsions with high concentrations of 1,2-DCB, the adsorption capacities achieved
were quite similar. Further regeneration of the Pd/CNF adsorbent-catalysts by reductive
liquid-phase hydrodechlorination was completed in 1 h with 100% yield. The use of re-
generated adsorbent-catalysts in the second adsorption cycle made it possible to achieve
almost complete removal of 1,2-DCB from the aqueous emulsion.

Thus, in this work, a complex approach to the disposal of chlorinated organic multi-
component wastes was suggested. In the first stage, carbon materials were produced by
utilizing a mixture of chlorine- and nitrogen-containing organic pollutants. The produced
CNF materials were then effectively used for water purification from chloroaromatic
compounds with further single-stage liquid-phase regeneration by hydrodechlorination at
low temperature. The resulting products can be recycled as valuable chemicals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15238414/s1, Table S1: The quantification of XPS peaks for
the sample CNF-Cl; Table S2: The quantification of XPS peaks for the sample CNF-Cl-N.
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