Phase Formation of Iron-Based Superconductors during Mechanical Alloying
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Superconducting Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x = 0.05–0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296–3297. [Google Scholar] [CrossRef]
- Fujioka, M.; Denholme, S.J.; Ozaki, T.; Okazaki, H.; Deguchi, K.; Demura, S.; Hara, H.; Watanabe, T.; Takeya, H.; Yamaguchi, T.; et al. Phase diagram and superconductivity at 58.1 K in α-FeAs-free SmFeAsO1−xFx. Supercond. Sci. Technol. 2013, 26, 085023. [Google Scholar] [CrossRef] [Green Version]
- Koblischka, M.R.; Koblischka-Veneva, A.; Schmauch, J.; Murakami, M. Microstructure and flux pinning of reacted-and-pressed, polycrystalline Ba0.6K0.4Fe2As2 powders. Materials 2019, 12, 2173. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Luo, H.; Wang, Z.; Wen, H.H. Fishtail effect and the vortex phase diagram of single crystal Ba0.6K0.4Fe2As2. Appl. Phys. Lett. 2008, 93, 142506. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Lin, H.; Shen, B.; Wen, H.H. Comparative study of vortex dynamics in CaKFe4As4 and Ba0.6K0.4Fe2As2 single crystals. Sci. Bull. 2019, 64, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Pervakov, K.S.; Vlasenko, V.A.; Khlybov, E.P.; Zaleski, A.; Pudalov, V.M.; Eltsev, Y.F. Bulk magnetization and strong intrinsic pinning in Ni-doped BaFe2As2 single crystals. Supercond. Sci. Technol. 2012, 26, 015008. [Google Scholar] [CrossRef] [Green Version]
- Tarantini, C.; Pak, C.; Su, Y.F.; Hellstrom, E.E.; Larbalestier, D.C.; Kametani, F. Effect of heat treatments on superconducting properties and connectivity in K-doped BaFe2As2. Sci. Rep. 2021, 11, 3143. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Dong, C.; Yang, H.; Zhang, Q.; Awaji, S.; Gu, L.; Wen, H.H.; Ma, Y. Strengthened proximity effect at grain boundaries to enhance inter-grain supercurrent in Ba1−xKxFe2As2 superconductors. Mater. Today Phys. 2022, 28, 100848. [Google Scholar] [CrossRef]
- Fang, L.; Jia, Y.; Mishra, V.; Chaparro, C.; Vlasko-Vlasov, V.K.; Koshelev, A.E.; Welp, U.; Crabtree, W.; Zhu, S.; Zhigadlo, N.D.; et al. Huge critical current density and tailored superconducting anisotropy in SmFeAsO0.8F0.15 by low-density columnar-defect incorporation. Nat. Commun. 2013, 4, 2655. [Google Scholar] [CrossRef] [Green Version]
- Kidszun, M.; Haindl, S.; Thersleff, T.; Hänisch, J.; Kauffmann, A.; Iida, K.; Freudenberger, J.; Schultz, L.; Holzapfel, B. Critical current scaling and anisotropy in oxypnictide superconductors. Phys. Rev. Lett. 2011, 106, 137001. [Google Scholar] [CrossRef]
- Ma, Y.; Ji, Q.; Hu, K.; Gao, B.; Li, W.; Mu, G.; Xie, X. Strong anisotropy effect in an iron-based superconductor CaFe0.882Co0.118AsF. Supercond. Sci. Technol. 2017, 30, 074003. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.C.; Liu, U.Q.; Lv, V.Y.; Gao, W.B.; Yang, L.X.; Yu, R.C.; Li, F.Y.; Jin, C.Q. The superconductivity at 18 K in LiFeAs system. Solid State Commun. 2008, 148, 538–540. [Google Scholar] [CrossRef] [Green Version]
- Iyo, A.; Kawashima, K.; Kinjo, T.; Nishio, T.; Ishida, S.; Fujihisa, H.; Gotoh, Y.; Kihou, K.; Yoshida, Y. New-structure-type Fe-based superconductors: CaAFe4As4 (A = K, Rb, Cs) and SrAFe4As4 (A = Rb, Cs). J. Am. Chem. Soc. 2016, 138, 3410–3415. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.R. Superconductivity in iron compounds. Rev. Mod. Phys. 2011, 83, 1589. [Google Scholar] [CrossRef]
- Hosono, H.; Yamamoto, A.; Hiramatsu, H.; Ma, Y. Recent advances in iron-based superconductors toward applications. Mater. Today 2018, 21, 278–302. [Google Scholar] [CrossRef]
- Nakajima, M.; Ishida, S.; Tanaka, T.; Kihou, K.; Tomioka, Y.; Saito, T.; Lee, C.H.; Fukazawa, H.; Kohori, Y.; Kakeshita, T.; et al. Normal-state charge dynamics in doped BaFe2As2: Roles of doping and necessary ingredients for superconductivity. Sci. Rep. 2014, 4, 5873. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.Q.; Cheng, P.; Wang, Z.S.; Yang, H.; Jia, Y.; Fang, L.; Ren, C.; Shan, L.; Wen, H.H. Normal state transport properties in single crystals of Ba1−xKxFe2As2 and NdFeAsO1−xFx. Phys. C Supercond. 2019, 469, 477–484. [Google Scholar] [CrossRef]
- Luo, H.; Yamani, Z.; Chen, Y.; Lu, X.; Wang, M.; Li, S.; Maier, T.A.; Danilkin, S.; Adroja, D.T.; Dai, P. Electron doping evolution of the anisotropic spin excitations in BaFe2−xNixAs2. Phys. Rev. B 2012, 86, 024508. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Tao, Q.; Li, L.; Shen, J.; Lin, X.; Cao, G. Ni doping effect and phase diagram of Ni-doped BaFe2−xNixAs2. Phys. C Supercond. Appl. 2010, 470, S447–S448. [Google Scholar] [CrossRef]
- Analytis, J.G.; Kuo, H.H.; McDonald, R.D.; Wartenb, M.; Hussey, N.E.; Fisher, I.R. Transport near a quantum critical point in BaFe2(As1−xPx)2. Nat. Phys. 2014, 10, 194–197. [Google Scholar] [CrossRef]
- Eom, M.J.; Na, S.W.; Hoch, C.; Kremer, R.K.; Kim, J.S. Evolution of transport properties of BaFe2−xRuxAs2 in a wide range of isovalent Ru substitution. Phys. Rev. B 2012, 85, 024536. [Google Scholar] [CrossRef] [Green Version]
- Vlasenko, V.A.; Pervakov, K.S.; Eltsev, Y.F.; Berbentsev, V.D.; Tsapleva, A.S.; Lukyanov, P.A.; Abdyukhanov, I.M.; Pudalov, V.M. Critical current and microstructure of FeSe wires and tapes prepared by PIT method. IEEE Trans. Appl. Supercond. 2019, 29, 6900505. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y. Progress in the development of the 122-type IBS wires. Superconductivity 2022, 2, 100010. [Google Scholar] [CrossRef]
- Zhang, X.; Oguro, H.; Yao, C.; Dong, C.; Xu, Z.; Wang, D.; Awaji, S.; Watanabe, K.; Ma, Y. Superconducting properties of 100-m class Sr0.6K0.4Fe2As2 tape and pancake coils. IEEE Trans. Appl. Supercond. 2017, 27, 7300705. [Google Scholar] [CrossRef] [Green Version]
- Qian, X.; Jiang, S.; Ding, H.; Huang, P.; Pang, Y.; Jiang, D.; Zhang, X.; Ma, Y.; Chen, W. Development of the iron-based superconducting coils for high magnetic field application. Phys. C Supercond. Appl. 2021, 584, 1353855. [Google Scholar] [CrossRef]
- Qian, X.; Jiang, S.; Ding, H.; Huang, P.; Zou, G.; Jiang, D.; Zhang, X.; Ma, Y.; Chen, W. Performance testing of the iron-based superconductor inserted coils under high magnetic field. Phys. C Supercond. Appl. 2021, 580, 1353787. [Google Scholar] [CrossRef]
- Richter, S.; Kurth, F.; Iida, K.; Pervakov, K.; Pukenas, A.; Tarantini, C.; Jaroszynski, J.; Hänisch, J.; Grinenko, V.; Skrotzki, W.; et al. Superconducting properties of Ba (Fe1–xNix)2As2 thin films in high magnetic fields. Appl. Phys. Lett. 2017, 110, 022601. [Google Scholar] [CrossRef] [Green Version]
- Grünewald, L.; Langer, M.; Meyer, S.; Nerz, D.; Hänisch, J.; Holzapfel, B.; Gerthsen, D. Structural and chemical properties of superconducting Co-doped BaFe2As2 thin films grown on CaF2. Supercond. Sci. Technol. 2021, 34, 035005. [Google Scholar] [CrossRef]
- Sato, H.; Hiramatsu, H.; Kamiya, T.; Hosono, H. Enhanced critical-current in P-doped BaFe2As2 thin films on metal substrates arising from poorly aligned grain boundaries. Sci. Rep. 2016, 6, 36828. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Iida, K.; Hatano, T.; Saito, H.; Ma, Y.; Wang, C.; Hata, S.; Naito, M.; Yamamoto, A. Realization of epitaxial thin films of the superconductor K-doped BaFe2As2. Phys. Rev. Mater. 2021, 5, 014801. [Google Scholar] [CrossRef]
- Hanzawa, K.; Matsumoto, J.; Iimura, S.; Kohama, Y.; Hiramatsu, H.; Hosono, H. High upper critical field (120 T) with small anisotropy of highly hydrogen-substituted SmFeAsO epitaxial film. Phys. Rev. Mater. 2022, 6, L111801. [Google Scholar] [CrossRef]
- Weiss, J.D.; Jiang, J.; Polyanskii, A.A.; Hellstrom, E.E. Mechanochemical synthesis of pnictide compounds and superconducting Ba0.6K0.4Fe2As2 bulks with high critical current density. Supercond. Sci. Technol. 2013, 26, 074003. [Google Scholar] [CrossRef] [Green Version]
- Shi, S.L.; Fang, A.H.; Xie, X.M.; Huang, F.Q.; Jiang, M.H. MgF2 Doping of SmFeAsO Superconductors Prepared by Mechanical Alloying and Rapid Annealing. Chem. Mater. 2011, 23, 3039–3044. [Google Scholar] [CrossRef]
- Yang, C.; Xia, L.; Sun, X.; Zheng, P.; Yu, Z.; Chen, Y.; Zhang, Y.; Pan, X.; Chen, C.; Yan, G.; et al. Effects of Ti doping on properties of Nb3Al superconductor fabricated by high-energy ball milling. Ceram. Int. 2019, 45, 15681–15688. [Google Scholar] [CrossRef]
- Kurama, H.; Erkuş, Ş.; Gaşan, H. The effect of process control agent usage on the structural properties of MgB2 synthesized by high energy ball mill. Ceram. Int. 2017, 43, S391–S396. [Google Scholar] [CrossRef]
- Tessier, P.; Trudeau, M.L.; Ström-Olsen, J.O.; Schulz, R. Structural transformations and metastable phases produced by mechanical deformations in the Bi–Sr–Ca–Cu–O superconducting system. J. Mater. Res. 1993, 8, 1258–1267. [Google Scholar] [CrossRef]
- Estemirova, S.K.; Mitrofanov, V.Y. The double superconducting transition in DyBa2Cu3O6+ δ. Ceram. Int. 2016, 42, 16127–16131. [Google Scholar] [CrossRef]
- Ammar, H.R.; Sivasankaran, S.; Alaboodi, A.S. Investigation of the microstructure and compressibility of biodegradable Fe-Mn-Cu/W/Co nanostructured alloy powders synthesized by mechanical alloying. Materials 2021, 14, 3088. [Google Scholar] [CrossRef]
- Lesz, S.; Hrapkowicz, B.; Karolus, M.; Gołombek, K. Characteristics of the Mg-Zn-Ca-Gd alloy after mechanical alloying. Materials 2021, 14, 226. [Google Scholar] [CrossRef]
- Ulbrich, K.F.; Campos, C.E.M. Nanosized tetragonal β-FeSe phase obtained by mechanical alloying: Structural, microstructural, magnetic and electrical characterization. RSC Adv. 2018, 8, 8190–8198. [Google Scholar] [CrossRef]
- Suryanarayana, C. Mechanical alloying: A novel technique to synthesize advanced materials. Research 2019, 2019, 4219812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oanh, N.T.H.; Binh, D.N.; Dang Duc, D.; Hoang Thi Ngoc, Q.; Viet, N.H. Effect of Transition Elements on the Thermal Stability of Glassy Alloys 82Al–16Fe–2TM (TM: Ti, Ni, Cu) Prepared by Mechanical Alloying. Materials 2021, 14, 3978. [Google Scholar] [CrossRef] [PubMed]
- Pervakov, K.S.; Vlasenko, V.A. Synthesis of electron-and hole-doped bulk BaFe2As2 superconductors by mechanical alloying. Ceram. Int. 2020, 46, 8625–8630. [Google Scholar] [CrossRef] [Green Version]
- Pervakov, K.S.; Kulikova, L.F.; Tsvetkov, A.Y.; Vlasenko, V.A. Novel Iron-Based Superconductor Ca0.5Sm0.5FeAsF. Bull. Lebedev Phys. Inst. 2022, 49, 242–246. [Google Scholar] [CrossRef]
- Petříček, V.; Dušek, M.; Palatinus, L. Crystallographic computing system JANA2006: General features. Z. Krist.-Cryst. Mater. 2022, 229, 345–352. [Google Scholar] [CrossRef]
- Maltsev, E.I.; Pervakov, K.S.; Vlasenko, V.A. Synthesis of iron-based superconductor Ba0.6K0.4Fe2As2 by mechanical alloying. Bull. Lebedev Phys. Inst. 2019, 46, 248–250. [Google Scholar] [CrossRef]
- Häßler, W.; Hermann, H.; Herrmann, M.; Rodig, C.; Aubele, A.; Schmolinga, L.; Holzapfel, B. Influence of the milling energy transferred to the precursor powder on the microstructure and the superconducting properties of MgB2 wires. Supercond. Sci. Technol. 2012, 26, 025005. [Google Scholar] [CrossRef]
- Tokuta, S.; Shimada, Y.; Yamamoto, A. Evolution of intergranular microstructure and critical current properties of polycrystalline Co-doped BaFe2As2 through high-energy milling. Supercond. Sci. Technol. 2020, 33, 094010. [Google Scholar] [CrossRef]
- Tokuta, S.; Yamamoto, A. Enhanced upper critical field in Co-doped Ba122 superconductors by lattice defect tuning. APL Mater. 2019, 7, 111107. [Google Scholar] [CrossRef]
- Cortes Gil, R.; Parker, D.R.; Pitcher, M.J.; Hadermann, J.; Clarke, S.J. Indifference of superconductivity and magnetism to size-mismatched cations in the layered iron arsenides Ba1−xNaxFe2As2. Chem. Mater. 2010, 22, 4304. [Google Scholar] [CrossRef]
- Taddei, K.M.; Allred, J.M.; Bugaris, D.E.; Lapidus, S.; Krogstad, M.J.; Stadel, R.; Claus, H.; Chung, D.Y.; Kanatzidis, M.G.; Rosenkranz, S.; et al. Detailed magnetic and structural analysis mapping a robust magnetic C4 dome in Sr1–xNaxFe2As2. Phys. Rev. B Condens. Matter. Mater. Phys. 2016, 93, 134510. [Google Scholar] [CrossRef]
Chemical Formula | Composition by EDS | Tc, K | Unit Cell Parameter | ||
---|---|---|---|---|---|
R(T) | χ’(T) | a, Å | c, Å | ||
BaFe1.9Ni0.1As2 [43] | Ba1.022Fe1.907Ni0.093As2.003 | 21 K | 18.5 K | 3.9586(2) | 12.9820(7) |
BaFe1.92 Ni0.08As2 [43] Ba0.6K0.4Fe2As2 [43] Ba0.7K0.3Fe2As2 [43] Ba0.6Na0.4Fe2As2 * Sr0.5Na0.5Fe2As2 * Ca0.5Sm0.5FeAsF [44] | Ba1.106Fe1.921Ni0.079As1.776 Ba0.729K0.271Fe1.92As1.92 Ba0.734K0.266Fe2.15As1.99 Ba0.73Na0.27Fe2.14As1.87 -- Ca0.56Sm0.44Fe0.9As0.97F1.25 | - 37.5 K - 33.5 K 34 K 54 K | 15 K 36 K 25 K 33 K 33 K 53 K | - 3.9405(7) - 3.9476(6) 3.8806(2) - | - 13.195(3) - 13.057(2) 12.5491(8) - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasenko, V.A.; Degtyarenko, A.Y.; Shilov, A.I.; Tsvetkov, A.Y.; Kulikova, L.F.; Medvedev, A.S.; Pervakov, K.S. Phase Formation of Iron-Based Superconductors during Mechanical Alloying. Materials 2022, 15, 8438. https://doi.org/10.3390/ma15238438
Vlasenko VA, Degtyarenko AY, Shilov AI, Tsvetkov AY, Kulikova LF, Medvedev AS, Pervakov KS. Phase Formation of Iron-Based Superconductors during Mechanical Alloying. Materials. 2022; 15(23):8438. https://doi.org/10.3390/ma15238438
Chicago/Turabian StyleVlasenko, Vladimir A., Alena Yu. Degtyarenko, Andrei I. Shilov, Alexey Yu. Tsvetkov, Lyudmila F. Kulikova, Alexey S. Medvedev, and Kirill S. Pervakov. 2022. "Phase Formation of Iron-Based Superconductors during Mechanical Alloying" Materials 15, no. 23: 8438. https://doi.org/10.3390/ma15238438
APA StyleVlasenko, V. A., Degtyarenko, A. Y., Shilov, A. I., Tsvetkov, A. Y., Kulikova, L. F., Medvedev, A. S., & Pervakov, K. S. (2022). Phase Formation of Iron-Based Superconductors during Mechanical Alloying. Materials, 15(23), 8438. https://doi.org/10.3390/ma15238438