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Abstract: The corrosion behavior and integrity of steam generator (SG) tube materials have frequently
been tested in solutions containing sodium hydroxide (NaOH), assuming that NaOH is a typical
contaminant concentrated in the crevices of SGs in a pressurized water reactor. The purpose of
this study was to investigate the adequacy of using concentrated NaOH solutions to simulate the
crevice environments of SGs. The dissolution behavior of magnetite deposit flakes formed in an
operating SG was tested in a 0.4 wt.% NaOH solution at 300 ◦C, and the thermodynamic stability
of magnetite was investigated using the potential-pH diagram for an iron–water system. The
magnetite deposits were rapidly dissolved in the test solution, which was supported by the fact that
magnetite is thermodynamically unstable under the test condition to dissolve to dihypoferrite ions
(HFeO2

−). These results indicate that research data obtained from concentrated NaOH solutions are
not appropriate to apply to the crevice environments of SGs.

Keywords: sodium hydroxide; crevice environment; impurity concentration; magnetite deposit;
steam generator; potential-pH diagram

1. Introduction

In a pressurized water reactor, high-pressure steam to drive a turbine is generated
by a classic shell-and-tube type steam generator (SG). Both end sides of a heat-transfer
tube in the SG are leak-tight expanded in a thick tubesheet. Tube bundles are supported
with horizontal and vertical plates to prevent flow-induced vibration and fretting wear of
the tubing. Therefore, these manufacturing processes inevitably create numerous crevices
around tubes expanded in the tubesheet and tubes supported by the tube support plates
(TSPs). Typical crevice geometries around SG tubing are shown in Figure 1.

It is well known that aggressive impurity chemicals in the SG feedwater are concen-
trated into the narrow-heated crevices, thereby inducing corrosion damage of the SG tubing
including intergranular attack, pitting, denting, and stress corrosion cracking. On the
other hand, corrosion products released due to the flow-accelerated corrosion of iron-based
piping materials are transported into the SGs and deposited on the surfaces of the SG
materials including tubes, TSPs, and tubesheets. The SG deposits are mainly composed of
magnetite (Fe3O4) that contains numerous pores [1–7]. As a result, chemical impurities are
easily concentrated within the deposits. Therefore, impurity concentration and the resultant
corrosion damage are accelerated in the crevices covered with the porous deposits [8–10].

SG water chemistry is controlled on the all-volatile treatment basis using a pH control
agent (ammonia, ethanolamine, morpholine, etc.) and an oxygen scavenger (hydrazine) [11].
The pH of the SG feedwater is normally adjusted in the range of 9.2 to 10.0 at 25 ◦C to
minimize flow-accelerated corrosion and the resultant transport of corrosion products
to the SGs [12]. Bulk water impurities in the operation of SGs are strictly limited as
follows: sodium < 5 ppb, chloride < 10 ppb, and sulfate < 10 ppb [11]. Nevertheless,
the bulk water can transiently be contaminated by some sources: seawater influx due to
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condenser leakage, unwanted discharge from ion exchange resins, and impurity ingress
during maintenance processes.

Materials 2022, 15, x FOR PEER REVIEW 2 of 8 
 

 

products to the SGs [12]. Bulk water impurities in the operation of SGs are strictly limited 
as follows: sodium < 5 ppb, chloride < 10 ppb, and sulfate < 10 ppb [11]. Nevertheless, the 
bulk water can transiently be contaminated by some sources: seawater influx due to con-
denser leakage, unwanted discharge from ion exchange resins, and impurity ingress dur-
ing maintenance processes. 

 
Figure 1. Typical crevice geometries around SG tubing at: (a) top of tubesheet, (b) broached quatre-
foil-type TSP and (c) egg crate-type TSP. Crevices between tubing and TSP were denoted by the 
dotted red circles. 

Against this background, corrosion tests for SG materials have been performed in 
aqueous solutions containing various contaminants to simulate corrosive crevice environ-
ments. The typical contaminants are as follows: sodium, chloride, sulfur, lead, silica, etc. 
[9,10,13–16]. Accordingly, the following solutions have been widely used: solutions con-
taining sodium hydroxide (NaOH) [17–22], sodium chloride (NaCl) [23–25], sulfate 
(SO42−), sulfite (SO32−), tetrathionate (S4O62−) and thiosulfate (S2O32−) [26–29], lead oxide 
(PbO) [30–32], and silicone compounds (SiO2, Na2SiO3) [33–35]. Among them, NaOH so-
lution has been frequently used to investigate the performance of SG tubing under impu-
rity-concentrated crevice conditions. As of now, more than 180 papers have been pub-
lished in journals listed in the Science Citation Index, since the 1970s. The concentration 
of NaOH in the test solutions was up to 50 wt.%. It should be emphasized that accelerated 
corrosion experiments should be relevant to the application [36]. In other words, if the 
water chemistry used in a corrosion test is not suitable, the test results are useless for ap-
plication to SG crevice conditions. In this context, the purpose of this study was to inves-
tigate the adequacy of using concentrated NaOH solutions to simulate the crevice envi-
ronments of SGs. To this end, this study examined the immersion corrosion behavior of 
deposit flakes taken from an operating SG in 0.4 wt.% NaOH solution at 300 °C. The ther-
modynamic stability of magnetite was also investigated at various NaOH concentrations. 

2. Materials and Methods 
The corrosion test of SG deposits was performed using deposit flakes taken from an 

operating nuclear SG. The deposit flakes were pulled out from the outer surfaces of SG 
tubes during sludge lancing after operation of fuel cycle 27 in a pressurized water reactor. 
The SGs of the plant are equipped with nickel-based Alloy 600 tubes (15Cr-9Fe-76Ni in 
wt.%) as the heat-transfer tubing and have operated under a reducing all-volatile treat-
ment condition with a pH range of 9.0 to 9.6 since the first commercial operation. The 
deposits were mostly composed of magnetite and contained small amounts of trevorite 
(NiFe2O4), jacobsite (MnFe2O4), and metallic copper. The porosity of the deposits was 
measured to be approximately 9.8%. The detailed characteristics of the deposits are given 
elsewhere [1]. 

The dissolution behavior of the deposit flakes was investigated under two different 
water chemistry conditions listed in Table 1. The reference condition simulates a normal 
bulk water chemistry with a pH25°C of 9.5. The reference solution was prepared by adding 

Figure 1. Typical crevice geometries around SG tubing at: (a) top of tubesheet, (b) broached quatrefoil-
type TSP and (c) egg crate-type TSP. Crevices between tubing and TSP were denoted by the dotted
red circles.

Against this background, corrosion tests for SG materials have been performed in
aqueous solutions containing various contaminants to simulate corrosive crevice envi-
ronments. The typical contaminants are as follows: sodium, chloride, sulfur, lead, silica,
etc. [9,10,13–16]. Accordingly, the following solutions have been widely used: solutions
containing sodium hydroxide (NaOH) [17–22], sodium chloride (NaCl) [23–25], sulfate
(SO4

2−), sulfite (SO3
2−), tetrathionate (S4O6

2−) and thiosulfate (S2O3
2−) [26–29], lead oxide

(PbO) [30–32], and silicone compounds (SiO2, Na2SiO3) [33–35]. Among them, NaOH
solution has been frequently used to investigate the performance of SG tubing under
impurity-concentrated crevice conditions. As of now, more than 180 papers have been
published in journals listed in the Science Citation Index, since the 1970s. The concentration
of NaOH in the test solutions was up to 50 wt.%. It should be emphasized that accelerated
corrosion experiments should be relevant to the application [36]. In other words, if the
water chemistry used in a corrosion test is not suitable, the test results are useless for appli-
cation to SG crevice conditions. In this context, the purpose of this study was to investigate
the adequacy of using concentrated NaOH solutions to simulate the crevice environments
of SGs. To this end, this study examined the immersion corrosion behavior of deposit flakes
taken from an operating SG in 0.4 wt.% NaOH solution at 300 ◦C. The thermodynamic
stability of magnetite was also investigated at various NaOH concentrations.

2. Materials and Methods

The corrosion test of SG deposits was performed using deposit flakes taken from an
operating nuclear SG. The deposit flakes were pulled out from the outer surfaces of SG
tubes during sludge lancing after operation of fuel cycle 27 in a pressurized water reactor.
The SGs of the plant are equipped with nickel-based Alloy 600 tubes (15Cr-9Fe-76Ni in
wt.%) as the heat-transfer tubing and have operated under a reducing all-volatile treatment
condition with a pH range of 9.0 to 9.6 since the first commercial operation. The deposits
were mostly composed of magnetite and contained small amounts of trevorite (NiFe2O4),
jacobsite (MnFe2O4), and metallic copper. The porosity of the deposits was measured to be
approximately 9.8%. The detailed characteristics of the deposits are given elsewhere [1].

The dissolution behavior of the deposit flakes was investigated under two different water
chemistry conditions listed in Table 1. The reference condition simulates a normal bulk water
chemistry with a pH25◦C of 9.5. The reference solution was prepared by adding a dilute NaOH
solution to deionized water, resulting in a NaOH concentration of 1.075 × 10−4 wt.% and a
pH of 9.5 at 25 ◦C. The caustic condition represents a simulated crevice environment of an SG,
which contains 0.4 wt.% NaOH. As shown in Figure 2, an SG deposit flake was placed in an
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Alloy 600 container, of which the top end was open and the bottom sheet was pierced, thereby
facilitating the interaction of the flake with the solution. The tests were conducted with the
respective chemistry conditions using two separate static nickel autoclaves with a 2 L capacity.
One liter of the test solution was loaded into the autoclave, de-aerated by bubbling argon gas (a
purity of 99.999%) into the solution after the closure of the autoclave at a rate of 300 mL/min
at room temperature (~23 ◦C) for 3 h and then heated to 300 ◦C. It was confirmed through
a separate experiment before the immersion test that dissolved oxygen was removed below
10 ppb by the de-aeration process. The tests were interrupted to examine the morphology
change of the flake samples after 20 and 30 days. An optical microscope (Keyence, Osaka, Japan,
model VHX-5000) and a scanning electron microscope (SEM, TESCAN, Brno, Czech Republic,
model LYRA3) were used to observe the morphology of the samples. SEM micrographs were
taken at an accelerating voltage of 5 kV. The test solution was refreshed after each examination.

Table 1. Experimental conditions for the magnetite dissolution tests.

Test Condition NaOH Concentration (wt.%) pH at 25 ◦C Temperature (◦C) Test Duration (Day)

Reference condition 1.075 × 10−4 9.5
300 20, 30

Caustic condition 0.400 13.1
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Figure 2. A schematic of an apparatus used for the dissolution test of SG deposit flakes.

3. Results and Discussion
3.1. Dissolution Behavior of the SG Deposit Flakes

Figure 3 shows the optical images of the SG deposit flake samples exposed to the
two different water chemistry conditions at 300 ◦C. In the reference solution, there was no
change in the surface morphology of the sample up to 30 days. However, it was difficult
to recognize the original shape of the deposit sample immersed in the caustic solution. In
other words, the sample was rapidly dissolved and only a certain amount of the flake was
left after the 30-day immersion.
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Figure 3. Optical micrographs showing the change in the morphology of the SG deposit flake samples
exposed to the two different water chemistry conditions at 300 ◦C.

The surface morphologies of the samples exposed to the solutions were further ex-
amined using SEM. The as-received deposit flakes were hard and brittle in nature. As
shown in Figure 4a, the deposit flakes were typically composed of numerous magnetite
particles ranging from tens of nanometers to several micrometers in size. The particles were
polyhedral or roundish in shape. More detailed morphology, microstructure, and chemical
composition of the deposits are given elsewhere [1]. As shown in Figure 4a,b, the size and
shape of the particles of the deposit flakes did not change after exposure in the reference
solution for 30 days. However, comparing Figure 4c with Figure 4a, the size of the particles
was significantly decreased, and the shape tended to have more rounded edges, indicating
that the deposit particles were dissolved in the caustic solution.
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3.2. Thermodynamics for the Dissolution of the SG Deposit Flakes

The dissolution of the SG deposits indicates that the deposits are thermodynamically
unstable in 0.4 wt.% NaOH solution. The deposits can be assumed to be magnetite because
they are mostly composed of magnetite [1]. Therefore, the stability of the magnetite
deposits can be inferred using a potential-pH diagram. Figure 5 shows the potential-pH
equilibrium diagram for an iron–water system at 300 ◦C [37]. pH values at 300 ◦C in various
environments were calculated using the MULTEQ code (Version 4.2.0) and presented in
the diagram. Typical operating pH values of 9.2 to 10.0 at 25 ◦C were in the pH range
of 6.0 to 6.5 at 300 ◦C, which are denoted by the green rectangle. pH300◦C values with
NaOH concentration were calculated to be 9.5 at 0.1 wt.% NaOH solution, 9.8 at 0.4 wt.%
NaOH solution, and 10.4 at 10 wt.% NaOH solution, which are presented by the dotted
vertical lines. It can be deduced that the SG magnetite deposits used in this study were
formed within the stable domain of magnetite, which is shown in the red box. Similarly,
the lack of dissolution of the deposit flakes immersed in the reference solution indicates
that the deposits are still located in the stable area of magnetite during the immersion tests.
Therefore, based on the immersion test result and the diagram, the equilibrium potentials
of magnetite are thought to be situated close to the hydrogen line in the typical operating
pH25◦C ranges of 9.2 to 10.0.

Let us consider the following electrochemical reaction:

3HFeO2
− + H+ = Fe3O4 + 2H2O + 2e− (1)

The equilibrium of this reaction is expressed by line 1© in Figure 5. The standard
equilibrium potential (Eo) of Reaction (1) at 25 ◦C is described as follows:

Eo =
µo

Fe3O4
+ 2µo

H2O − 3µo
HFeO−

2

2F
(2)

where µo
i is the standard chemical potential of the i substance, and F is the Faraday con-

stant (96,485 Cmol−1). Based on the following values of the standard chemical potentials
(µo

Fe3O4
= −242,400 cal, µo

H2O = −56,690 cal, and µo
HFeO−

2
= −90,627 cal) [38], Eo is calculated

to be −1.819 VSHE from Equation (2). Now, the equilibrium potential (E) of Reaction (1) at
300 ◦C can be calculated using the following Nernst equation:

E = Eo + 2.3
RT
2F

log
(aFe3O4)

(
aH2O

)2(
aHFeO−

2

)3
(aH+)

(3)

E = −1.819 + 0.0568pH − 0.1706 log aHFeO−
2

(4)

where R is the gas constant (1.987 calmol−1K−1), T is the absolute temperature (K), and ai is
the activity of the i substance. For the 0.4 wt.% NaOH solution, since magnetite is dissolved,
the potentials at which the HFeO2

− species (dihypoferrite ion) is stable are in the range of
−1.239 to −1.395 VSHE, shown in Figure 5. From Equation (4), these values correspond to
an aHFeO−

2
of 0.73 to 6.0. Consequently, these calculations provide evidence that magnetite is

thermodynamically unstable in 0.4 wt.% NaOH solution, leading to a dissolution to HFeO2
−

ions. This is consistent with the immersion test result showing a rapid dissolution of magnetite
in 0.4 wt.% NaOH solution. In a similar manner, we can predict that magnetite is no more stable
in a caustic solution containing NaOH over 0.1 wt.% under the reducing environments of SGs.

Based on this work, if caustic environments are formed in heated crevices covered
with magnetite deposits and within porous deposits on the tubes, the deposits would be
dissolved. In contrast, the deposit inventory of SGs increases during plant operation and is
thus removed by sludge lancing and chemical cleaning [39–41]. The deposit flakes used in
the dissolution test were also formed in an operating SG. Therefore, the results obtained in
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this work indicate that concentrated NaOH solutions are not relevant to the real crevice
environments of SGs.

Corio showed for the first time in the world that intergranular corrosion and stress
corrosion cracking of the Alloy 600 SG tube material can occur in deoxygenated pure
water [42], while Copson failed to reproduce such attack [43,44]. The essential reason is that
Copson used boiling MgCl2 solutions as accelerated test conditions, which are not relevant
to nuclear environments. Similarly, test results in concentrated NaOH solutions may be
misleading and not suitable for evaluating the corrosion behavior of SG tubing materials.
Consequently, the test parameters should be chosen to closely simulate the conditions
encountered in the SG crevices during operation.
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Figure 5. Potential-pH diagram for the iron–water system at 300 ◦C [37]. pH values at 300 ◦C in
various environments were calculated using the MULTEQ code (Version 4.2.0) and superimposed in
the diagram. Lines a© and b© represent respectively the reduction equilibrium of water according
to the reaction H2 = 2H+ + 2e− and the oxidation equilibrium of water according to the reaction
2H2O = O2 + 4H+ + 4e− at a hydrogen or oxygen pressure of 1 atm. Line 1© expresses the equilibrium
of Reaction (1), 3HFeO2

− + H+ = Fe3O4 + 2H2O + 2e−.

4. Conclusions

This study investigated the stability of magnetite deposits through immersion experi-
ments in normal and caustic solutions and thermodynamic consideration for an iron–water
system at 300 ◦C. The magnetite deposits formed in a real SG were rapidly dissolved in
0.4 wt.% NaOH solution. This result is consistent with the thermodynamic calculation that
magnetite is not stable in a solution containing NaOH over 0.1 wt.% dissolving magnetite
to dihypoferrite ions. These results indicate that concentrated NaOH conditions are not
applicable in simulating the real crevice environments of SGs. Therefore, the research
results from tests conducted in concentrated NaOH solutions may be misleading and not
suitable for evaluating the corrosion behavior of SG tubing materials.
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