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Abstract: Stabilization/solidification of contaminated soil is a process that allows simultaneous
strengthening of the soil structure, disposal of contamination and recycling of industrial waste,
implemented as substitutes for Portland cement or additives to improve the properties of the fi-
nal product obtained. Extremely intensive development of studies pertaining to the S/S process
prompted the authors to systematize the binders used and the corresponding methods of binding the
contamination, and to perform an analysis of the effectiveness expressed in geomechanical properties
and leachability. The study pays close attention to the types of additives and binders of waste origin,
as well as the ecological and economic benefits of their use. The methods of preparing and caring
for the specimens were reviewed, in addition to the methods of testing the effectiveness of the S/S
process, including the influence of aging factors on long-term properties. The results of the analyses
carried out are presented in the form of diagrams and charts, facilitating individual evaluation of the
various solutions for the stabilization/solidification of soils contaminated with heavy metals.

Keywords: binder; amendments; additives; sample preparation; unconfined compressive strength—
UCS; leachability tests

1. Introduction

In-situ stabilization/solidification of soils contaminated with heavy metals is the
subject of worldwide research in the fields of chemistry, geotechnics and environmental
engineering. It was originally a process used under the name of stabilization, only as an
economical alternative to soil replacement, in case of insufficient strength and deformation
properties of the subsoil [1–10]. However, due to its effective binding of contaminants at
relatively low cost [11–13] and competitive time-consumption [14,15], it has become known
as a leading method of soil remediation [16–19]. It is understood both as a natural subsoil,
subjected to incidental contamination, and is still used for engineering tasks (including
the foundation of cubic and linear structures), as well as subsoil, which is a substructure
or another layer of a landfill, in which the presence of contaminants is long-lasting and
intensified. There is a number of binders available for use in the stabilization/solidification
process, the choice of which govern the method of minimizing heavy metal activity in the
soil [20]. The neutralization of contaminants can take place only mechanically (due to the
binding of pozzolanic materials), chemically (due to the reaction of contaminants with
suitable compounds, resulting in the precipitation of metals in a less harmful form), by
oxidation, chemical reduction or as a combination of the above [21–23]. Systematization
of the variety and multiplicity of binders that are able to implement the S/S process is
required. There have been attempts to create such a database [23–26]; however, due to
the intensive development of research, there are deficiencies in the reported data. Waste
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materials with pozzolanic properties should have a special place in this type of statement.
Their importance is highlighted due to the fact that they are perfectly in line with the
sustainable construction trends being promoted. Nevertheless, it is also important to define
the main types of tests that allow verification of the quality of the stabilization/solidification,
expressed in the mechanical properties of the subsoil and the effectiveness in immobilization
of contaminants. It is also necessary to gather information on the procedures of preparing
samples for testing, as well as basic parameters and methods of curing. The aforementioned
elements were analyzed on the basis of the studies available worldwide, mainly in the
English-language literature. The research results are intended to serve as a basis for the
verification of the initial assumptions made in the authors’ planned research work, while
their compendium is presented in this review article.

The aim of this paper is to characterize the most popular binders used in the stabiliza-
tion/solidification of heavy metal-contaminated soils and to identify the most effective and
environmentally friendly solutions currently in use. The above was achieved by analyzing
the results of UCS compressive strength tests and information on the leachability of con-
taminants from S/S products presented in the literature. It should be noted that, due to the
large amount of data reported and the volume of this article, the analysis of contaminant
leaching was kept to a minimum and the focus was on the mechanical properties of the
treated soil. At the same time, it is pointed out that a more detailed consideration of the
binding mechanism of individual metals in soil–cement mixtures and the presentation
of leaching test results achieved with the analyzed binders, as an extremely important
issue, should be the subject of a separate paper. In addition, this article summarizes the
research methods that can be used to assess the effectiveness and sustainability of the pro-
cesses for strengthening contaminated soils while reducing the mobility of contaminants in
the subsoil.

2. Samples Preparation and Curing Conditions

Essential criteria for conducting optimization studies of the S/S process are the repeata-
bility and homogeneity of the samples. The standards describing the testing of cement–soil
samples [27], as well as the literature data from published scientific results, can be used in
this regard. The vast majority of the articles outlining sample preparation contain a scheme
of the procedure, as shown in Figure 1.
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The soil is initially dried to a solid mass, ground and sieved through a 2.0 mm
sieve, and the selected additives dried to a solid mass are blended in appropriate weight
proportions until a homogeneous mixture is obtained. A specified amount of water contains
the assumed concentration of the contaminant, i.e., the selected heavy metal is added.
Finally, mixtures with strictly controlled moisture content, composition and degree of
pollution are obtained. The prescribed procedure is modified by various researchers. In
Li and Poon’s study [28], contaminants in the form of lead nitrate were added directly to
the dry mixture, before deionized water was fed. Goodarzi and Movahedrad introduced
suspensions of the contaminant in distilled water into a dry soil sample, followed by
blending the wet contaminated soil with binders [29]. However, a more correct approach
appears to be to prepare the contaminated soil in advance, allowing for a thorough mixing
of heavy metal ions and soil, as used in the study by Li et al. [30]. Soil with contaminants
at a determined moisture content was stored under standard cure conditions for 30 days
before being combined with binders at the assumed proportions. In the study by Wang
et al. [31], contaminated soil taken from military sites was used; thus, an additional dosage
of the contaminant was not required. In the case of the stabilization/solidification of wastes
from the carbonation and hardening of steel, remediation was preceded by the initial
inactivation of barium and cyanide by the addition of suitable chemicals, followed by
blending with binders [32]. During the studies of Feng et al. [33], the binder was ground in
order to increase its specific surface area, resulting in increased hydration. This step was
carried out, despite the time-consuming nature of this method, up to a presumed degree
of grinding and mixing of the ingredients, both dry parts and those with the addition of
water, usually taking place mechanically at a preset time. The use of a planetary robot
mixer is very common [31]. Alternatively, bench-top mixers are also used, where the mixer
is inserted into a tall container filled with the mixture ingredients [34]. However, it is also
common to mix the ingredients manually [32].

Filling the molds (cylindrical or cubic) with the mixture is usually performed in lay-
ers. For liquid consistency of mixtures, it is popular to use a vibrating table [35], which
guarantees effective elimination of air bubbles. Alternatively, for mixtures with a plastic
consistency, layers are applied with a constant compaction energy (manually [29], with
the use of the Proctor apparatus [36] or other equipment with known compaction en-
ergy [37]). Few studies indicate the compaction of mixtures to the design’s volumetric
density (e.g., 95% ρmax [33] or to the maximum density of the soil skeleton [29]). The
methodology mentioned above was found in all research papers analyzed. It should be
mentioned that very few studies were carried out on a macro-scale, i.e., the S/S process is
carried out in-situ and samples for testing are retrieved from the ground at an appropriate
treatment time [38–40]. This obviously entails a lesser stability of conditions and homo-
geneity of samples, but allows actual environmental factors affecting the quality of the S/S
process products obtained to be reflected.

The molded samples are subjected to a constant and very rarely modified method of
curing. Immediately after preparation, they are wrapped in plastic film and stored for a
suitable number of days at a stably maintained temperature of 20–25 ◦C (±2 ◦C) and a
humidity level of 95% (±1%). The samples are unmolded either immediately or after 24 h
(eventually 48 h), that is, after the initial setting of the mixture, depending on its consistency
and sensitivity. Film protection and the maintenance of constant curing conditions are
emphasized in all the studies analyzed.

The required period of curing corresponds to the assumed age of the samples at the
time of testing. Usually, a series of samples is prepared for testing after 28 days. Often,
7-day-old samples are additionally tested, and sometimes (especially for the mixtures
containing fly ash) 90-days old samples. Less frequently, however, 1-day or 3-day-old
samples are tested. For the assessment of the extended setting time, part of the samples
needs to be subjected to curing for several weeks.

By analyzing the data of the moisture content of the mixtures prepared for testing
purposes, it was shown that the minimum amount of water applied to the dry weight
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of the soil, including the binder and any additives, is 7.5%, while the maximum is 60%.
It is important to emphasize the significant influence of the initial moisture content of
the mixture on the final results of the S/S tests [41]. However, very few sources in the
literature present studies on the optimization of moisture content to obtain the maximum
compressive strength of the S/S product with the different types of binders used. Some data
can be found in the study by Kogbara et al. [36,42], which shows that contaminated sandy
gravel subjected to the S/S process with Pulverized Fly Ash (PFA) and Ordinary Portland
Cement (OPC) at a ratio of 4:1 achieves higher compressive strength as the moisture content
of the mixture increases from OMC − 2% to OMC + 5%, where OMC denotes the optimum
moisture content. In contrast, the opposite trend was shown in soil without contamination
(sand stabilized with PFA and OPC in a ratio of 5:1) [43], where the maximum strength
was reached on the dry side of OMC. Some information can also be found in the study by
Boutouil and Levacher [44]. This very important aspect was analyzed by Kogbara in his
paper [45], concluding, as a general rule, that the best mechanical and binding properties
for contaminants were shown by the stabilized soils at a moisture content close to the
optimum value, regardless of the binder system used. Due to the scope of this study, this
important issue is considered to be an element suitable for a separate case study.

Wider variability is manifested in the amount of binder incorporated into the soil. In
addition to the basic comparative (zero) samples, which consist of 100% dry matter soil and
100% dry matter binder (cement or as a mixture with another binder), soil/binder mixtures
are being established. Soil accounts for 10% to 95% of the dry matter. In line with ecological
and economic considerations, the aim is to minimize the amount of binder used in the S/S
process, while maintaining the high efficiency of this method in binding contaminants and
obtaining sufficient strength characteristics. Such a compromise is achieved through the use
of various activating additives, water reducers or waste materials with unique properties,
presented later in this article. It is also sought to replace as much Portland cement as
possible with alternative pozzolanic materials, mainly waste materials (along with possible
additives). A binder-to-soil ratio of 20–35% is considered to result in the achievement
of immobilization of contaminants in the soil at a level acceptable to legislation [46]. In
terms of varying the amount of Portland cement in relation to other binders, the amount of
alternative materials in the studies analyzed varies from 10 to as much as 100%.

3. Characteristic of Binders, Amendments and Additives

From a geotechnical point of view, the addition of the binder is expected to result
in improved parameters of the subsoil for future engineering usage. However, the pres-
ence of contaminants (e.g., heavy metals) results in the need to select a binder that will
additionally have an environmentally positive effect on mobility and bioavailability of
contaminants [47,48]. In addition to the most commonly used binder, i.e., ordinary Portland
cement, waste materials such as ground granulated blast furnace slag [34], incinerated
sewage sludge ash [49], fly ash of different classes [33], phosphogypsum [38], and red
mud [50] were proposed. This approach has a positive environmental impact due to the
increased recovery of waste, which is in line with the trend of a closed-loop economy. Ad-
ditionally, natural materials in their raw or modified state were utilized, e.g., bentonite [51],
phosphate rock [52], lime [47], quicklime [38], metakaolin [53], magnesia [54] and hydrated
lime [55]. Among the materials mentioned, fly ash and metakaolin can be classified as
pozzolans, silicates or aluminosilicates, which, in the presence of water, take part in a
reaction with lime giving the end product in the form of insoluble components [56]. The
content ranges of individual phases and a graphical representation showing the grouping of
materials by chemical composition are shown in Table 1 and Figures 2 and 3, respectively.
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Table 1. Chemical composition of binders and additives tested (wt%).

Binder/Additive SiO2 Al2O3 SO3 CaO TiO2 Fe2O3 MgO K2O P2O5 Na2O CO2 MnO F LOI Ref.

OPC 18.99–27.4 4.41–11.5 2.25–4.52 46.6–65.72 0.17–0.51 2.31–4.03 1.02–3.71 0.24–1.31 – 0.08–0.23 0.17–0.48 – 0.05–0.06 – 0–6.19 [31,37,57–65]

GGBS 32.7–36.77 7.77–29.43 1.46–2.37 31.49–40 0.36–1.63 0.31–5.54 5.5–13.91 0.43–0.85 – −0.01–0.04 0–0.36 – 0.28–1.02 – −1.49–2.67 [29,31,57,60–
63,66]

ISSA 27.24–31.7 13.72–17.2 2.07–3.45 6.34–10.96 0.7–5.04 17.8–27.35 2.9–3.52 2.0–2.77 – 9.23–12.28 4.4–6.52 – – – nt–0.99 [28,31,67]

Class F FA 53.97 31.15 0.727 4.01 – 4.16 1.01 2.04 – 0.89 – – – – [59]

Class C FA 34.2 19.3 2.2 25.8 – 5.64 5.07 0.52 – 2.4 – – – 0.11 [68]

PR 1.15–6.14 0.27–1.23 – 45.93–48.4 – nt–0.16 nt–6.96 – – 21.9 *–25.10 – nt–13 – 2.23–2.41 nt–13.12 [66,69]

PG 1.26–8.8 nt–0.72 39.64–55.3 37.5–47.05 – – nt–0.32 nt–0.32 – nt–0.03 nt–10.03 – – – – [31,50]

RM 9.11–21.43 4.57–26.1 nt-0.67 nt–45.15 nt–3.98 9.98–59.37 nt–0.33 nt–1.56 – nt–0.37 nt–11.51 – 0.2–6 – nt–13.41 [12,50,59,61]

CAC 7.38 52.9 0.31 34.1 2.23 1.83 0.37 0.45 – 0.19 – – – – – [70]

QL 1.2 – 0.012 95.4 – – 0.85 – – – – – – 0.55 [68]

MgO 0.9–1.1 0.12–0.41 0.05–0.28 0.5–1.39 – 0.03–0.7 95.8–89.5 0.01–3.57 – – – – nt–0.02 – 0–2.76 [29,37,54,55,
57]

MK 49.55–
50.30 35.22–47 0.05–0.59 0.18–0.2 – 0.52–1.05 0–0.36 0.19–0.28 – nt–0.28 0–0.01 – – – nt–4.23 [61,65]

Zeolite 69.96 13.61 – 3.61 0.02 1.38 0.51 1.79 – 1.61 – 0.03 – 7.47 [71]

CaO – – – 98.9 – – 0.2 – – nt – – – – – [72]

* available 2.53; nt: not tested; LOI: loss on ignitation; OPC: ordinary Portland cement; GGBS: ground granulated blast furnace slag; ISSA: incinerated sewage sludge ash; FA: fly ash; PR:
phosphate rock; PG: phosphogypsum; RM: red mud; CAC: calcium aluminate cement; QL: quicklime; MK: metakaolin.
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The presence of individual phases affects not only the bonding process of the binder,
but also the nature of the processes involved in the immobilization of contaminants. For
example, the presence of phosphorus in ISSA can potentially affect the transformation of
metals to insoluble forms of phosphates [67], and the presence of iron oxides (e.g., in red
mud) can result in the transformation of metals to reducible forms [48]. Additionally, in
order to ensure the proper course of the stabilization/solidification processes, the use of
various types of activators was suggested (such as reactive MgO [29,55,57], cement [29]
or hydrated lime [55] as an additive to GGBS), or mixtures of binders, additives and/or
activators (such as fly ash and slag with the activator solution [58] or magnesium potas-
sium phosphate cements mixed with FA or GGBS [73]). Zhang et al. [66] proposed a new
binder produced on the basis of oxalic acid-activated phosphate rock and Du et al. [69]
additionally enriched this material with monopotassium phosphate and reactive magne-
sia, which can be applied to Zn and Pb contaminated soils with elevated concentrations.
The use of an activator (e.g., oxalic acid) allows controlling one of the most important
determinants of the reaction, namely the relatively low pH that reduces the solubility of
phosphate and metal compounds (e.g., Pb) [74]. Moreover, Li et al. [67] applied a similar
activation method (using oxalic acid) of incinerated sewage sludge ash to immobilize
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high concentrations of Pb (5000 mg/kg). Considering the wide variety of approaches
proposed in the literature, detailed characteristics of the most commonly selected materials
for stabilization/solidification of contaminated soils, mainly in view of soil reinforcement,
are presented in the following section of the paper. The materials potentially suitable for
stabilization/solidification of contaminated soils, which have not found wider interest in
practice, are not included in the paper. Examples of such materials include paper ash [75],
high belite sulfoaluminate cement [59], municipal solid waste incineration fly ash [70], sil-
ica fumes [49,76,77], calcium carbide residue [78] and calcium sulfoaluminate cement [79].
However, this paper includes a short section dedicated to SPC binder, which, despite its
lack of presence in the literature, is an environmentally friendly composite material that
achieves very good strength and leachability results, and, thus, represents an interesting
solution that can be analyzed in the future [72].

3.1. Ordinary Portland Cement (OPC)

The main binder used in soil stabilization/solidification is Portland cement OPC [45,80–90].
It is known to be highly effective in binding contaminants, as determined by numerous
leachability tests and geochemical modelling [13]. It has been claimed [91–93] that heavy
metal ions precipitate to form hydroxides and are captured by hydration products due to
the alkaline environment. However, studies have provided neither direct evidence for its
validity, nor sufficient reasons to refute it [94–98]. Instead, based on the results of the study,
the probable adsorption of heavy metal ions on the surface of the C-S-H complex was
indicated [99]. In addition, through XANES and Raman spectroscopy, it was found that
the S/S process resulted in the incorporation and/or adsorption of lead onto silicate and
calcium hydrates and onto ettringite [100]. Although Portland cement is still the primary
binder for the stabilization/solidification of contaminated soils [101,102], the disadvantages
associated with its use are well known. Some inorganic impurities, including heavy metals,
interfere with the hydration of this binder, so that the engineering characteristics of S/S
products are reduced [103–107]. To counteract this, an increased amount of OPC is used
in relation to the soil, but this entails a significant consumption of energy to produce it
and, thus, also creates a high carbon footprint [108–111]. In addition, the use of cement
is fraught with uncertainty regarding the long-term effectiveness of soil binding due to
its low chemical compatibility with the soil [46,112–114], its susceptibility to erosion by
sulfate [56], acid rain [115], freeze-thaw cycles [116], and the predicted reduction in material
characteristics over time [117]. These are the main reasons for seeking alternatives to cement
among waste materials that have good pozzolanic properties. Due to the significant effect
of the pH of mixtures undergoing the S/S process on the leachability of heavy metals [82],
wastes that cause a slight reduction in the pH of the strongly alkaline environment created
during cement hydration are particularly desirable.

3.2. Ground Granulated Blast-Furnace Slag (GGBS)

A widely used substitute for parts of Portland cement is ground granulated blast
furnace slag GGBS, which is an industrial by-product of steel production [53,118]. An
efficient reaction with calcium hydroxide during cement hydration forming an insoluble
gel (C-S-H) is proven [119]. In addition, due to the higher specific surface area of its
particles, GGBS leads to the formation of more hydration product nuclei [120]. This waste
binder reduces the excessive increase in pH, thus affecting the solubility of heavy metals
(most metals show the lowest solubility in solutions with pH~10), while having a positive
effect on the final strength of the S/S product [31,121–123]. To mitigate the effects of heavy
metals (e.g., lead) on cement hydration, phosphate- and sulfate-rich materials are often
incorporated into mixtures along with GGBS for further stabilization of the pH value
of the soil–cement mixture at the required level [32,124–126]. The materials of this type
include the incineration sewage sludge ash ISSA or phosphogypsum. It is also known
that GGBS activated with sodium compounds (NaOH, Na2SiO3, Na2CO3) with strongly
alkaline properties causes an excellent increase in the compressive strength of soils [127,128],
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proving the beneficial effect of high pH during hydration on the final mechanical properties
of the substrate, but without the presence of contaminant. The study also established that
the supply of additives in the form of sulfates (e.g., salt—sodium sulfate) should be strictly
controlled. Research results are available that show very good immobilization of barium
and improved mechanical properties with Na2SO4, but also a decrease in compressive
strength of the S/S product with excessive dosage of this compound [129]. GGBS is also
combined with activators in the form of magnesium [130] or calcium oxides, which result
in the formation of more hydrotalcite-like phases [131], which, in turn, have a beneficial
effect on product strength. Magnesium and calcium oxides have many other advantages,
described in a separate section of this paper. An important feature of GGBS is also its
favorable grain size for the S/S process. As a fine-grained material, it fills the pores,
thickening the structure and, thus, seals the subsoil, further immobilizing heavy metal
pollutions [118,132]. It also decreases the porosity of cement pastes [63] and increases
the density of the S/S product [133]. This type of binder is proving to be more effective
than cement in Pb [46], as well as Cr immobilization, but only if the impurity is present
in concentrations of no more than 2000 mg/L [62]. GBBS compounded with cement at
a ratio of 1:4 also shows similar or better effects on geogenic As-containing soils than
cement without any amendments [134]. Furthermore, GGBS is used in the production of
geopolymer-based cement and recycled aggregate (GRAC) [135], where, with fly ash, it is a
substitute for part of the cement. Nevertheless, GGBS is very frequently combined with
cement, or, alternatively, lime. However, studies have indicated low compressive strengths
achieved by S/S products using GGBS and lime [136].

3.3. Incinerated Sewage Sludge Ash (ISSA)

Studies of soil stabilization/solidification using ISSA and cement mixtures have in-
dicated the high effectiveness of fly ash of this type in the adsorption, precipitation and
physical immobilization of contaminants [28]. Due to the ability of the S/S product struc-
ture to buffer acids, there is an incorporation of metals into the soil structure in hydrated
form, which manifests itself in a lower concentration of the harmful form of metals (lead,
zinc, copper) [137]. When ISSA was used as an additive to a binder composed of OPC and
GGBS, very good strength results and values competitive with other additives were ob-
tained in leachability tests, but only at a certain molar ratio of additive to contaminant [31].
At molar ratios of 1:4 and 1:8, an excessive increase in the amount of ISSA was necessary
and this resulted in an unacceptable decrease in the compressive strength of the S/S prod-
ucts. Stabilization/solidification studies using ISSA have also been carried out with the
incorporation of an activator in the form of oxalic acid (OA), which has been successfully
used in the activation of phosphate rock [67]. The aim of the addition of phosphoric acid is,
in this case, for the activation of ISSA to release phosphates that react with lead to form
lead phosphate hydroxides. This activator increases the effectiveness in stabilizing Pb, but
its overuse can lead to the leaching of phosphate and zinc from the ISSA into the subsoil,
so mixtures with these two components should be designed very responsibly.

3.4. Fly Ash (FA) and Pulverized Fly Ash (PFA)

Fly ash, as an industrial by-product, is readily used as a binder for the S/S process.
For many years, it has been used as a replacement for parts of Portland cement in soil
stabilization/solidification [39,42,88,117,129,138–140], especially in lead stabilization, due
to its greater efficiency compared to the use of cement alone [141]. Both Class C fly ash [88]
and Class F fly ash [142] are used for soil stabilization/solidification. According to ASTM
C618 [143], the two classes differ primarily in the sum of SiO2, Al2O3 and Fe2O3 contents,
and calcium content. There is a lack of studies in the literature optimizing the most efficient
PFA:OPC ratio, most likely due to the disproportionate amount of research effort relative
to the potential benefit [46]. A ratio in the range of 1:1 to 4:1, which is usually adopted,
allows satisfactory results to be obtained from the studies, verifying the effectiveness of
the S/S process [144]. It should be emphasized that most PFA cannot be used as a separate
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binder due to their too limited free CaO content for self-hardening purposes [145]; hence,
the addition of OPC is necessary, usually in an amount not less than 20% of the ash quantity.
Attempts have also been made to combine PFA with lime instead of cement [146], achieving
very high unconfined compressive strengths of the S/S product. [68]. In addition, it is
known that high-calcium fly ash (CFA) performs very well in silicate–aluminate–phosphate
geopolymerization with magnesium phosphate cement (MPC) [73]. Information concerning
MPC is included in a separate section of the study. The effect of the addition of 300 g (per kg
of waste) of Na2SO4 to the mixtures in which the waste was stabilized with fly ash with
cement (25:75 ratio) and slag cement was also studied. The introduction of salt resulted in
a noticeable increase in 28-day unconfined compressive strength [32]. The referenced study
also showed an increased the binding efficiency of cyanide and barium contained in the
stabilized waste.

3.5. Magnesium Potassium Phosphate Cement (MPC)/(MKPC)

Magnesium potassium phosphate cement is a clinker-free acid-base cement [147],
which is characterized by its high strength, resulting from the reaction of MgO (dead-
burnt magnesia DBM) with potassium dihydrogen phosphate, during which amorphous or
crystalline k-struvite and crystallized bobierrite are formed [148,149]. In addition, chemical
stabilization of lead occurs due to the reaction with residual phosphates, during which lead
phosphate and pyromorphite precipitate [103]. MPC exhibits greater chemical stability
than OPC, which manifests itself, among other aspects, by minimizing the adverse effects
of lead on the unconfined compressive strength [150]. MPC is further used to stabilize low-
activity nuclear waste (containing plutonium, neptunium, caesium, strontium, actinium,
technetium and selenium) as well as cadmium, chromium, copper, nickel, lead and zinc
from electro-waste [151–153]. On the basis of an analysis of the test results available in the
literature, it was also found that zinc ions reduce the degree of MPC cement mineralization,
although they do not affect the hydration phases of the cement [154].

3.6. Red Gypsum (RG)

Another binder used as an amendment of OPC in the S/S process is red gypsum, a
by-product of the production of titanium dioxide (a white pigment widely used in the food
and cosmetics industries). In combination with OPC, PFA and GGBS, and a small addition
of lime, mixtures with satisfactory compressive strengths were obtained. The values turned
out to be lower than those of the soil combined with cement, but higher than the assumed
minimum values (0.350 MPa) [155]. In light of the test results, the gypsum-GGBS binder
was considered as an environmentally friendly alternative to OPC, guaranteeing sufficient
mechanical properties of the S/S product.

3.7. Phosphate Rock PR and Phosphoric Acid (PA)

Phosphate rock and phosphoric acid have the potential to convert the lead present
in soil into stable forms, such as pyromorphite. For this reason, they are widely studied
and even recommended for use in the stabilization/solidification of soils contaminated
with this heavy metal [19,47,70,156,157]. The effectiveness of phosphorite as an additive in
binding zinc is also confirmed [158,159]. When using phosphates in the S/S process, the
acidic environment required for their effectiveness must be taken into consideration [69]. In
addition, it is pointed out that the grade of phosphate in the ore is not consistent [66] which,
for obvious reasons, affects the effectiveness of this material in the S/S process. For these
reasons, researchers designing soil mixtures with stabilizing/solidifying additives often opt
for the implementation of a phosphate rock activator in the form of phosphoric acid. Other
additives are also used in conjunction with this raw material, including monopotassium
phosphate and reactive magnesia, forming a binder indicated by the KMP symbol. Studies
have confirmed the rather high early strength of KMP-stabilized products due to the
hydration rate of reactive magnesia [69], as well as the possibility of increasing strength
and decreasing leachability when KMP is used together with an accelerated carbonation
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process [160]. The aforementioned process, also investigated for reactive magnesia (in a
separate part of the paper), is introduced as a factor corresponding to an accelerated version
of natural weathering [161].

3.8. Phosphogypsum (PG) and Potassium Dihydrogen Phosphate (KDP)

Phosphogypsum is a by-product of phosphoric acid production, containing calcium
sulfate and phosphate residues. As a phosphate-rich material, it exhibits similar properties
to potassium dihydrogen phosphate KDP and ISSA, i.e., it reduces the excessive increase of
pH of the soil–cement mixture. Thus, during hydration of the cement or another binder,
conditions are unfavorable for the dissolution of metals [28,124,162]. Both PG and KDP are
used in the S/S process mainly as additives to reduce the reactivity of contaminants. PG
has been combined, among others, with Basic Oxygen Furnace Slag (BOFS) and Calcium
Carbide Residue (CCR), the total composition of which is rich in dicalcium and tricalcium
silicate, CaO, CaSO4·2H2O, and CaCl2, as well as phosphates, fluorides, and sulfates, to
ensure that binder hydration can develop in contaminated soil [33].

3.9. Red Mud (RM)

Red mud is an alkaline by-product of the Bayer process, taking place during the
production of aluminium (bauxite refining) [163]. It forms a toxic and corrosive sludge
with a high pH and very high iron oxide content. It has been applied to the S/S process to
stabilize heavy metals (lead, zinc and cadmium) as an additive to phosphogypsum and
Portland cement [50]. A binder of this composition shows sufficient strength and binding
characteristics for metals in the stabilization/solidification process at landfill sites, while
also contributing to the recycling of red sludge. It has also been used successfully to reduce
the bioavailability of Cd, Pb and Zn [163].

3.10. Calcium Aluminate Cement (CAC)

Calcium aluminate cement is a relatively rarely studied binder in the stabilization/
solidification of soils contaminated with heavy metals. It is more often included in the
remediation of soil contaminated by organic pollutants with possible accompanying inor-
ganic pollutants. On the basis of a study by Contessi et al., it was found that CAC exhibits
a completely different mechanism in the immobilization of lead than is the case with the
use of OPC [99]. Due to its high sulfate content, the reactivity is strongly shifted towards
the formation of ettringite, in which case, Pb2+ ions are incorporated into its structure,
in place of some calcium ions. The results obtained by Bougharraf et al. [164] led to the
conclusion that CAC was more effective in binding organic contaminants compared to
inorganic contaminants. At the same time, the binding of heavy metals was determined to
be satisfactory, especially with an achieved compressive strength higher than 1 MPa. In
other studies, the retention of metals (lead, copper, zinc) using CAC was determined at
a level of 99.9% [165], and chromium in the form of Cr6+ at a level exceeding 90% [166],
which was a better result compared to using OPC. However, in addition to the leachability
results, the strength tests for the S/S products using calcium aluminate cement are above
average. Depending on the amount of binder addition, the strength is higher than when
using sulfate-resistant Portland cement from about 0.5 to even 4.0 MPa [167]. Despite the
excellent strength results and the leachability of contamination, the use of CAC is very
limited, due to the high cost of this raw material.

3.11. Bentonite

Bentonite is an additive to various types of binders in S/S processes. It has been found
to affect the decrease in strength of the S/S product, but is excellent at improving the degree
of immobilization of contaminants, both organic and inorganic [164].
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3.12. Lime (CaO), Quicklime (QL), Lime Production Waste (LPW)

Lime is a material mainly used for soil stabilization. When added to soils with a
high content of clay particles in the presence of water, it undergoes cation exchange and
further reactions. As a result of the modification of the electrical charge density, the
forces of intermolecular attraction increase, which directly results in a strengthening of
the soil structure [3] and a favorable change in the Atterberg limits [168]. The long-term
effectiveness of lime stabilization of loess has also been proven [169], which is extremely
important for the design of permanent structures on this type of subsoil. Furthermore,
hydrated lime is an activator for GGBS-type binders [170]. CaO proves to be very effective
as an additive to GGBS at a ratio of 1:9, as demonstrated in the studies of contaminated
soils subjected to S/S, performed after 18 months of treatment [170]. It has also been
successfully used as an activator at a ratio of 15% to 85% GGBS [54] in the S/S process of
soils contaminated with lead and zinc. It is also used as an additive to red gypsum (RG),
GGBS and PFA to increase the alkaline pH of the mixture, resulting in better hydration
and, consequently, higher strength [155]. In a study by Moon and Dermatas, it was also
proven to effectively bind lead to acceptable levels using Quicklime and FA [171]. Lime
production waste (LPW), obtained if the raw calcite or carbonate materials undergo burning
at temperatures lower than 960 ◦C, is a by-product containing lime, Al2O3, MgO, Fe2O3
and other components, which is also of interests in soil stabilization, especially in mixtures
with blast furnace slag and red mud [12].

3.13. Reactive Magnesia (MgO)

Magnesium oxide is usually not used as a separate binder, but as an additive to
improve the properties of binder materials other than cement [172,173]. Its main advantage
is to increase the effectiveness of binders in immobilizing contaminants, both inorganic
and organic [16]. MgO facilitates the transport of the strongly alkaline binder to the work
site, and counteracts excessive settlement of the substrate during the S/S process, thus
increasing the cost-effectiveness of its application [29,55,131]. In addition, it increases
the neutralizing properties for an acidic environment, and this is an extremely valuable
feature when the S/S process substrate is exposed to acid rain [34]. In addition to the
widespread use of MgO as a binder additive, experimental processes to stabilize/solidify
contaminated soil using only reactive magnesia have also been carried out; however, the
unconfined compressive strengths of the product S/S obtained were 80–90% lower than
those obtained using OPC [16,70]. For this reason, an additional factor, i.e., carbonation,
was incorporated into the blends under development [174,175]. Carbonation was carried
out after the mixture was placed in the molds. To test the effectiveness of this solution for
lead- and zinc-contaminated soils, comparative UCS and leachability tests, were conducted
for the mixtures stabilized with MgO and CO2 injection, and for the mixtures stabilized
with OPC. In each case, only 5% binder dry weight and 95% soil dry weight were used.
The samples containing OPC were tested after 28 days of treatment, while samples treated
with MgO and saturated with carbon dioxide were tested after 72 h (lead-contaminated)
and 120 h (zinc-contaminated). CO2 was found to cause relatively high variability in the
unconfined compressive strengths achieved by S/S [175,176], but at the same time, at Pb
and Zn concentrations > 4000 mg/kg dry weight of soil, the strengths were significantly
higher than those achieved with OPC.

3.14. Geopolymers and Geopolymeric Binder Made of NaOH-Activated Metakaolin (MK)

Great hopes were entertained in geopolymers for an environmentally friendly cement
substitute, also for use in the S/S process. In addition to its high unconfined compressive
strength, this innovative binder provides high resistance to acidic and high temperature
environments, low permeability and extended durability [177–181]. However, despite
intensive research and continuous development, this material has failed to revolutionize the
binder segment. While the strength and leachability results of S/S products are competitive
with those using traditional binders [182,183], the costly activators that enable the synthesis
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of the geopolymers (sodium or potassium hydroxides, liquid water glass) block their
widespread use. The situation is partly alleviated by the fact that geopolymers based on
slag [184] and fly ash [58,185] are currently being produced and studied in addition to
metakaolin-based geopolymers [99,186]. These raw materials, as waste materials, increase
the ecological value of the solution, which, in addition to very good characteristics, opens
the possibility of its dissemination. However, the implementation of geopolymers has been
quite limited so far.

3.15. Natural and Synthetic Zeolite

Both natural and synthesized zeolites from fly ash are known for their very good
sorption properties, thus gaining reputation as additives that enhance the immobilization
of contaminants in the S/S process. These properties are used towards the binding of
petroleum substances [187] and inorganic substances in the form of heavy metals [188].
Due to the specific structure of zeolites rich in voluminous free spaces, it is possible to encap-
sulate large cations, such as sodium, potassium, barium, and calcium, and even molecules
and catalytic groups of water, ammonia, carbonate and nitrate ions [189]. Furthermore,
during the study, it was found that, due to the large reaction surface area of zeolite, resulting
from its significant porosity, the S/S process using this amendment combined with OPC
achieves higher unconfined compressive strength values and greater durability [190]. It
was also proven that the high cation exchange capacity and high content of clinoptilolite, as
well as the low concentration of potential toxic elements, cause a high potential for treating
industrially contaminated soil with use of thermally treated natural zeolite [71].

3.16. SPC Binder

The reaction of single superphosphate (SSP) and calcium oxide (CaO), used simultane-
ously in the S/S process, leads to the formation of hydroxyapatite (HA) in the soil structure.
The combination of SSP and CaO, defined as the SPC binder, thus provides benefits in
the form of a densification of the structure and an increase in the unconfined compressive
strength of the treated soil. In parallel, it offers an alternative to a synthetic hydroxyapatite,
which, despite its many advantages, is a material that is too expensive for widespread
implementation in the S/S process. Meanwhile, the environmentally friendly SPC binder,
at a relatively low cost, causes the formation of calcium-phosphate crystals (including
HA), which form strong cementation bonds between soil particles, and the various reaction
products fill the pores (especially inter-aggregate pores) [72]. In addition, studies were
performed on in situ stabilized/solidified soil with use of the SPC binder, which confirmed
the good results shown during laboratory testing [40].

3.17. EnvirOceMTM

For solutions to local contamination problems, targeted mixtures are being developed
for a given soil type and type of contamination, as in the case of the remediation of the
former Astra military explosives Fireworks site in SE England [191]. A subsoil contaminated
with high concentrations of zinc, lead and copper was subjected to an S/S process using
superfine sulfate-resisting Portland cement, functioning under the name EnvirOceMTM.
Satisfactory leachability results were obtained, both after 28 days and after 4 years of the
S/S process. Unfortunately, the compressive strength of the S/S product was not verified.

4. Effectiveness of Mixtures and Optimization Testing Methods

The effectiveness of the S/S process is defined by the geomechanical parameters and
the leachability of its products. The applicability of the solution is also strongly influenced
by its durability. These properties are verified by analyzing the results of specific tests, the
main types of which are summarized in this paper. Preliminary tests, which were used by
the authors of the cited publications to describe the components of the designed mixtures,
such as mineralogical composition, specific density, grain size, etc., were not systematized.
At this point, it should be emphasized that research results indicate that no single binder
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can perfectly remediate all types of heavy metal-contaminated soils, and binder selection
is a site-specific problem [192]. With the above in mind, a specific soil contaminated with
a particular heavy metal should be tested to determine the best binder combination for
stabilization/solidification purposes using data and experience described in the literature
for similar cases. In contrast, valuable studies have been reported in the literature, with
design charts directly indicating the proportions of water and binders in regard to the
performance criterion of the S/S process of similar soils contaminated with the same heavy
metals [42].

4.1. Unconfined Compression Strength

The geomechanical properties of a S/S product are mainly represented by unconfined
compressive strength, and the test used and performed on mixture samples is the uniaxial
compression strength test (UCS), which can be conducted according to ASTM [193]. It is
conducted as a standard for both soil stabilization [194] and the S/S process. In almost
all sources analyzed, the strength is tested after 28 days of treatment, often also after
7 and/or 90 days; the testing of 1-, 3- or 160-day samples is rare. The age of the test
specimens is mainly determined by the mixture formulations, especially with regard to the
fly ash content, which generally reaches full strength later. The results of the UCS tests are
summarized for comparison purposes in Table 2.

4.2. Leaching Behavior

The Toxicity Characteristic Leaching Procedure (TCLP) is the most widely used test
by which researchers determine the binding efficiency of contaminants in S/S products.
Performed according to the procedures described in US EPA standards [196], it allows
the comparison of effectiveness between different types of mixtures, including studies
performed by different authors. Nonetheless, the TCLP test is not considered adequate
by all authorities in the field of S/S testing. TCLP is mainly dedicated to the analyses of
the leachability of contaminants from landfill waste, and does not reflect the conditions
of the natural subsoil [167,197]. For this reason, some researchers use the Simulated
Precipitation Leaching Procedure Test (SPLP) [198] instead, which allows determination of
the leachability of contaminants from the ground into groundwater [28]. However, they are
in a distinct minority, so the results from the more popular TCLP-type test were adopted for
comparison. The data given in Table 2 were compiled from an analysis of the leachability
test results presented in the papers studied. The leachability potential of contaminants
from an S/S product can be estimated in two different scenarios: in the diffusion process,
the most likely way corresponding to reality (semi-dynamic tank leaching [199,200]); or
after grinding the product immediately before testing, which obviously maximizes the
leachability of contaminants and corresponds to the worst possible scenario (Batch Leaching
test [201]). In addition, contaminant leachability tests at varying pH, as well as the Acid and
Base Neutralization Capacity (ANC/BNC), are used, depending on the scope of testing and
the planned use of S/S products. The hydraulic conductivity test, which captures a picture
of the water filtration capacity of the treated subsoil, should also be considered. In the case
of many binders, the binding of contaminants also takes place by physical immobilization,
so that an open filtration channel would allow the leaching of contaminants into the
deeper layers of the subsoil and, consequently, into the groundwater. For this reason,
hydraulic conductivity is closely related to leachability and is often tested as an indicator
of process efficiency [46]. Another test that gives a picture of the leaching of contaminants
with solutions of increasing aggressiveness is the BCR SEP (The Community Bureau of
Reference Sequential Extraction Procedure). It allows the quantification of exchangeable
fractions, reducible fractions, oxidizing fractions, and heavy metal residues in the soil.
The test procedure described by Davidson et al. [202] has also been adopted in tests by
other researchers. A quantitative description of the chemical stability of heavy metals in
soil is possible by adopting a selected variable with an appropriate formula, such as the
relative binding intensity (IR) index. S/S products are also studied in terms of pH, which is
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one of the factors shaping the leachability of heavy metals [203]. There are known results
indicating that the lowest leachability of lead and zinc occurs when the pH of the product
approximates 9.5 [204,205]. Individual countries regulate the maximum contaminant level
(MCL), which corresponds to the concentration allowed in drinking water, by means of
internal regulations. Due to the differences between the laws and the different ranges for
individual metals, this study indicates the maximum allowed value for lead after Toxicity
limitation (US EPA) standard (5 mg/L) and for zinc after Toxicity limitation (GB5085.3-2007)
(100 mg/L). As mentioned in Section 4.1, a comparison of the results of individual reported
studies of both UCS and leachability is not representative, and, furthermore, due to the
large number of variables, impossible to present in a single chart. For this reason, Figure 4
includes data from only a few selected literature entries using different binders to show the
degree of variation in the results obtained.
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4.3. Microstruture Investigation

Determining the changes that have occurred in the microstructure of the soil as a
result of the binder introduced requires specialized procedures and very sophisticated
equipment. It is also necessary to have detailed knowledge in order to be able to analyze
the results in terms of the resulting chemical products, such as phase hydration products
or precipitated heavy metal compounds. A common microstructure test to determine
mineralogical composition is X-ray diffraction [7] and thermogravimetric analyses [126].
Hydration heat evolution testing [103] is also implemented. In addition, scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) are used as confirmatory
and refinement imaging tests for XRD-type studies. The TEM technique is particularly
useful for detecting the presence of the cemented phase and the pozzolanic phase, i.e., by
determining the C-S-A-H (calcium silicate aluminate hydrate) bonds present [3]. It is also
important to determine the microporosity of the S/S-treated subsoil [33], which is made
feasible by the mercury intrusion porosimetry (MIP) test [69]. Analysis of the MIP test
results allows prediction of the mechanical behavior of the solidified soil and the extent to
which its pores are filled by stabilization products.
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Table 2. Abbreviated research results.

No Symbol * S/W Binder/Additive WC Heavy Metal UCS Leaching
Ref.[%] [%] [%] Type [mg/kg] [MPa] mg/L

1

PC GGBS ISSA

20 Pb 1941

TCLP

[31]
S/PC 50 50 – – 35 6.26
S/BC 50 25 25 – 49 0.168

Pb/ISSA = 1:2 50 18.10 18.10 13.8 45 0.055

2
SC OPC ISSA

24–50% Ba 168,000
Leachate pH

[32]C1 80 20 – – 7.9 2.2
H3 50 – 37.5 12.5 8.6 4.3

3

CAC/OPC/GGBS TWEEN 80 BENTONIT

22 Pb 96.7

AFNOR NF
X31-211

[164]

M1 73 5/–/– 0.025 – 0.65 0.101
M2 68 10/–/– 0.05 – 2.0 0.05
M3 68 5/–/– 0.05 5 0.45 0.197
M4 63 10/–/– 0.075 5 0.95 0.143
M5 63 5/–/– 0.075 10 0.15 0.290
M6 58 10/–/– 0.1 10 1.1 0.022
M7 73 –/3/2 0.025 – 0.4 0.290
M8 68 –/6/4 0.05 – 1 0.068
M9 68 –/3/2 0.05 5 0.22 0.300
M10 63 –/6/4 0.075 5 0.95 0.105
M11 63 –/3/2 0.075 10 0.25 0.190
M12 58 –/6/4 0.1 10 1 0.068

4

PC MgO CO2

7.5 Pb

Leached Pb
[mg/kg]

[37]
Pb + PC 95 5 – – 4000 2.0 100
Pb + PC 95 5 – – 16,000 0.9 1100

Pb + MgO + CO2 95 – 5 used 4000 1.9 8
Pb + MgO + CO2 95 – 5 used 16,000 1.95 9.8
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Table 2. Cont.

No Symbol * S/W Binder/Additive WC Heavy Metal UCS Leaching
Ref.[%] [%] [%] Type [mg/kg] [MPa] mg/L

5

Ca(OH)2 MgO GGBS

40

Zn/Pb TCLP

[54]

CGZn0.25 75 3.75 – 21.25 0.25 4.1 0.264
CGZn0.5 75 3.75 – 21.25 0.5 1.9 0.220
CGZn1 75 3.75 – 21.25 1 0.45 0.178

CGPb0.25 75 3.75 – 21.25 0.25 5.9 ND
CGPb0.5 75 3.75 – 21.25 0.5 7.9 0.072
CGPb1 75 3.75 – 21.25 1 7.9 0.18

MGZn0.25 75 – 3.75 21.25 0.25 4.9 0.091
MGZn0.5 75 – 3.75 21.25 0.5 5.0 0.082
MGZn1 75 – 3.75 21.25 1 3.2 0.076

MGPb0.25 75 – 3.75 21.25 0.25 5.0 0.066
MGPb0.5 75 – 3.75 21.25 0.5 5.9 0.062
MGPb1 75 – 3.75 21.25 1 7.1 0.166

6

OPC ISSA

20 Pb 5000

SBET
[mg/kg]

[28]H0 90 10 – 10 36
H0.2 90 8 2 4.6 35
H0.5 90 5 5 2.6 31.5

7

8 soil OPC GGBS

20 As 170.4

TCLP

[41]

O5 96 4 – 3.2 0.011
O4G1 96 3 1 3.7 0.015

O2.5G2.5 96 2 2 6.0 0.021
O10 92 8 – 7.5 0.06

O8G2 92 6 2 7.8 0.065
O5G5 92 4 4 9.5 0.012

8

RM PG OPC

nt Zn/Pb/Cd 5000

TCLP

[50]
RPPC7.5 92.5 4.3 1.1 2.1 0.726 4.2/0.8/8
RPPC10 90 5.7 1.4 2.9 1.1 0.8/0.3/0.9
RPPC15 85 8.6 2.2 4.2 2.013 0.3/0.11/0.7

PC10 90 – – 10 3.3 0.4/0.9/0.8
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Table 2. Cont.

No Symbol * S/W Binder/Additive WC Heavy Metal UCS Leaching
Ref.[%] [%] [%] Type [mg/kg] [MPa] mg/L

9
CCR PG

16.5–17.6 Ni/Zn 6352/5352

China HJ/T
299

[33]10% bin/dos 90 6 3 1 0.46 0.01/0.12
<10%bin-dos >90 <6 <3 <1 <0.3 >0.06/>0.7

10

KSil FA KOH

Zn 15,900

TCLP

[183]
KSil0.46KOH 21 16.8 58.8 3.4 18.8 0.75 8.67

OPC FA lime
22.2 2.0 <0.001OPC lime 35.8 7.1 50 7.1

11

NCA

13 Pb 10,000

*** 7d *** 7d

[30]
NCA ** 10% 90 10 – – 4.1 1.21
NCA ** 20% 80 20 – – 6.32 0.318
NCA ** 30% 70 30 – – 10.12 0.075
NCA ** 40% 60 40 – – 11.16 0.027

12
SPC – –

Pb 9710
TCLP

[72]92 8 – – 22 0.352 1.8
90 10 – – 22 0.432 0.9

13
OPC GGBS – –

As 1985
TCLP

[134]O4G1 95 4 1 – – 1.1 4
O2.5G2.5 95 2.5 2.5 – – 1.05 5.3

14

OPC CaO MgO

7.5 Pb 16,000

SBLT

[192]
Pb + OPC 95 5 – – 1.0 1000
Pb + CaO 95 – 5 – 0.18 8000
Pb + MgO 95 – – 5 0.05 2

S/W: Soil or Waste; WC: water content; TCLP: Toxicity Characteristic Leaching Procedure; SBLT: single batch leaching test; * Symbol of the sample after ref.; ** NCA: New curing
agent, the composition of the binder is not specified; *** 7d: test conducted on the seventh day of treatment; GGBS: ground granulated blast furnace slag; ISSA: incinerated sewage
sludge ash; PG: phosphorus gypsum; KDP: potassium dihydrogen phosphate; MKPC: magnesium potassium phosphate cement; MPP: mono-potassium phosphate; DBM: dead burnt
magnesia; MPP + DBM = MPC; KMP: oxalic acid-activated phosphate rock + KH2PO4 + MgO [1:1:2]; SC: slag cement; CH: Ca(OCl)2; SS: Na2SO4; OF: OPC + FA (75:25); FA: fly ash;
Tween 80: additive increasing the hydrophilicity of organic parts in the soil.Careful attention should be paid to the high imperfection of the above comparison. This is because the
various tests used different amounts of binders in relation to the dry weight of the soil and different moisture contents of the mixtures, and different types of subsoil were treated.
Furthermore, the contaminants contained in the soils were present in different concentrations. In addition to the aforementioned factors, the UCS is also affected by the shape and size of
the samples, making the comparison subject to additional distortion. Nevertheless, in the present study, the authors have quoted the values obtained, due to the often quite different
order of magnitude of the compressive strength achieved. The minimum value for the compressive strength of an S/S product is commonly considered as 0.350 MPa, which is the value
specified by the US EPA for S/S waste in landfills [195]. For engineering purposes, it is necessary to know the design loads and stresses arising in the soil in order to estimate the
minimum compressive strength of the S/S product constituting the subsoil for the proposed development.
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4.4. Electrical Resistivity

Electrical resistivity EC is a criterion that has been used over the years both in assessing
the hydration process of cement pastes [206], and the mechanical and deformation proper-
ties of soils [207,208]. Its immense advantages for use in geotechnics and geoengineering
are its relatively low cost and time-efficient testing and, above all, its lack of interference
with the natural soil structure [209]. The work of Liu et al. showed that the electrical
resistivity of soil–cement mixtures can be correlated with the strength (qu) of UCS with
a good fit [210] in an exponential function [211]. On the other hand, the study of Chen
et al. gave rise to the conclusion that as the concentration of lead contamination in the soil
increases, a lower magnitude of electrical resistivity is obtained, while it increases with the
time of the treatment process and the binder content of the mixture [101].

4.5. Durability

Durability is understood as the degree to which the mechanical and bonding properties
are retained after an adverse ageing factor, e.g., drying–wetting cycles, freeze–thaw cycles,
sulfate attack or acid attack, as well as exposure of the S/S product to an environment with
average erosion properties over a period of several years [212]. Due to the potential impact
of acid rain, freeze–thaw, drying–wetting and other environmental factors, it is necessary to
know the long-term effectiveness of the solution used in the S/S process. The types of tests
listed below reflect adverse natural phenomena that can reduce the originally achieved S/S
product characteristics.

4.5.1. Drying–Wetting Cycle

One of the ageing factors to which the products of the S/S process are subjected is the
drying–wetting cycle. During this process, soil–cement specimens are alternately heated in
an oven for 48 h and at a preset temperature (30–40 ◦C), followed by soaking in distilled
water at a stably maintained temperature over 24h [35,131]. During testing, the weight
loss after each 72-h cycle and the compressive strength are usually checked. The strength
is compared with that of a control test, in which the specimens are cured under stable
conditions, as described in point 2. of the paper. Data can also be found on the compressive
strength and leachability of specimens subjected to this ageing factor. Depending on the
type and purpose of the test, it is possible to modify any of the test conditions, e.g., soaking
in water with a reduced pH, corresponding to acid rain, or being subjected to drying at
a higher temperature than actually prevailing in summer (60 ◦C for 24 h) [50]. Basic test
guidelines can be found in the ASTM Standard [213].

4.5.2. Sulfate and Acid Attack

The ageing effect of cements, and consequently of cement–soil mixtures, is also influ-
enced by the chemical composition of the environment in which it occurs. Both sulfate
and the acidic pH of liquids negatively affect the strength of cement, mainly due to the
degradation of C-S-H bonds [214]. The cements based on waste materials activated with
MgO show a slightly lower sensitivity [173]. In order to determine the magnitude of this
effect, samples are placed in suitable solutions, e.g., 5% Na2SO4 or, alternatively, acid, for
a period of several tens of weeks [53,179]. The impact of acid rain can also be mapped in
TCLP studies using an extraction liquid with pH = 2.0 to 7.0 [34,115]. There are no general
methodological guidelines for testing the effects of sulfates and acids on the strength of
concrete or S/S products, and both the scarcity of research in this direction and the need
for its development is emphasized by all authors addressing this challenge [215].

4.5.3. Freeze—Thaw Impact

The effect of varying temperatures is important in the near-surface layers of the subsoil,
where its fluctuations have a real impact on product S/S. This is reflected in freeze-thaw
cycles, during which a cement–soil sample is placed in an apparatus dedicated to this
test [116]. Alternatively, the soil sample is transferred from the freeze–thaw cabinet to
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a water container at a stably maintained positive temperature [50]. Regardless of the
equipment used, the sample is subjected to alternating temperatures of −20 ◦C and +25 ◦C,
with a change in ambient temperature every 24 h [116]. Basic guidelines for the test can be
found in the ASTM Standard [216]. In a long-term study by Al-Tabbaa et al., 5-year old soil–
cement samples with different binder types were subjected to 12 freeze–thaw cycles, during
which the freezing temperature was set at −10 ◦C [39]. Similar to the drying–wetting
cycles, the weight loss after each freeze–thaw cycle, as well as leachability and compressive
strength, are checked in this type of study.

5. Conclusions

A subsoil that requires remediation must meet certain standards, due to minimum
strength parameters and a maximum allowed leachability of contaminants. The analysis of
research results presented in the literature enabled the determination of effective binder
and additive mixtures in the stabilization/solidification of soils contaminated with heavy
metals. Based on the analysis carried out, the following conclusions were drawn:

1. The variety of proposed binders, additives and their mixtures and methods of activat-
ing the materials is very extensive in the literature, providing engineers with a wide
range of options depending on the geochemical conditions of the treated site.

2. Despite its many disadvantages, the most popular binder in the S/S process is Ordi-
nary Portland Cement.

3. Implementation of waste materials such as GGBS, FA, ISSA as amendments for part
of the OPC for the stabilization/solidification process is becoming common practice,
with many environmental and economic advantages.

4. Replacing part of the cement with PFA or ISSA fly ash results in a significant de-
crease in the strength of the S/S product, but does not increase the leachability of
the contaminants.

5. The implementation of GGBS in place of part of the OPC results in an increase in
strength, but significantly increases the leaching of contaminants when used in too
large a quantity. The addition of an activator (e.g., MgO) significantly improves the
ability of GGBS solidification.

6. Considering the frequency of undertaking S/S process studies using red gypsum, red
mud, calcium aluminate cement, bentonite, zeolites and superfine sulfate-resisting
Portland cement, these materials should be considered niche products, effective for
use only under specific conditions.

7. In optimizing the mixture of binders and additives for the S/S process of heavy
metal-contaminated soils, one of the main factors considered should remain the
ecological aspect.

8. The key studies assessing the effectiveness of S/S processes of contaminated soils are
UCS and leachability studies. However, the scope of the latter varies widely and often
does not take into account the actual conditions in the soil medium.

9. The often-overlooked ageing tests, which take into account the effects of external
factors on the mechanical and chemical stability of the resulting bonds when assessing
durability, should be important in the evaluation of the S/S method.
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