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Abstract: Titanium-nickel alloy is an attractive material due to its unique properties of shape memory
effect, superior elasticity, and biocompatibility. Generally, Ti-Ni alloy powders are prepared from
pure elemental powders of Ti and Ni as starting materials, but it is an energy-intensive process
to obtain pure titanium. In this study, intermetallic compound TiNi powder passivated by TiOx

shell was prepared by directly reducing a commercial NiTiO3 using CaH2 reducing agent in a
molten LiCl at 650 ◦C. Analyses by X-ray diffraction, scanning electron microscopy/transmission
electron microscopy with energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy
revealed that the powder had a core–shell structure, with the core of TiNi and the shell of TiOx-rich
composition with scarce metallic Ni nicely catalyzing hydrogenation reactions with good recyclability
and stability.

Keywords: intermetallic compound; TiNi; molten salt synthesis; 4-Nitrophenol hydrogenation

1. Introduction

Titanium-nickel alloy is an attractive material because of its unique properties of
shape memory effect, superior elasticity, and biocompatibility, as well as corrosion resis-
tance, allowing for various industrial applications in biomedical and structural engineering
fields [1–4]. Ti-Ni alloy powders are typically prepared from pure elemental powders
of Ti and Ni as starting materials [5–10], where they are melted at a high temperature of
~2000 ◦C under an inert atmosphere/vacuum for well-mixing. Some advanced methods for
preparing finer ones, such as self-propagating high-temperature synthesis (SHS) [11–17],
combustion method [18,19], plasma/laser techniques [20–23], and so on, have been re-
ported. It is a relatively energy-intensive process to produce pure titanium, which is used
as one of the raw materials to prepare titanium alloys from oxide ores, such as TiO2 and
FeTiO3. Therefore, it would be innovative to prepare titanium alloys directly from titanium
oxides. We previously succeeded in preparing intermetallic compound TiFe powders from
the oxide precursors, including TiO2 [24] and FeTiO3 [25] by directly reducing them and
then alloying them simultaneously in highly reductive conditions of molten LiCl-CaH2 at
600 ◦C. Under these conditions, hydride ions (H−) or calcium metals that are produced
from CaH2 could as strong reducing agents to readily reduce the titanium oxide precursors
at such a low temperature.

In this study, intermetallic compound TiNi powder was prepared by directly reducing
a commercial NiTiO3 in molten LiCl-CaH2 at 650 ◦C. Molten salt synthesis is a good
technique to obtain intermetallic compounds available for catalyst application [26]. The
NiTiO3 precursor had a high crystallinity, indicating that Ni and Ti had previously mixed
well on an atomic level, resulting in the formation of homogeneous TiNi powder by
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deoxidization. Nickel metals, titanium metals and their alloys are well-known active
catalysts for hydrogenations [27–30]. Efficient water purification techniques are highly
aspired [31,32]. In this study, the prepared TiNi was used to catalytically hydrogenate p-
nitrophenol (4-NP) to confirm its potential application as a catalyst available in liquid phase.

2. Materials and Methods

Commercial NiTiO3 (99.9%, Kojundo Chemical Laboratory Co., Ltd., Tokyo, Japan)
was used as a precursor to prepare the intermetallic compound TiNi. First, it was mixed in
the air with CaH2 (94.0%, JUNSEI Chem. Co., Ltd., Tokyo, Japan) and LiCl (99.0%, Wako
Pure Chem. Corp., Osaka, Japan) in a mortar with a weight ratio of NiTiO3/CaH2/molten
salt source = 2/6/3 [33]. The mixed powder was then loaded into a stainless-steel reactor
and heated in argon for 2 h at 650 ◦C. The reduction temperatures of 650 ◦C were chosen
because the intermetallic TiNi phase is stable above 630 ◦C [34]. Finally, the reduced
precursors were crushed in a mortar and rinsed with a 0.1 M NH4Cl aqueous solution
made with NH4Cl (99.5%, Wako Pure Chem. Corp.) and distilled water to obtain the final
product powder (TiNi).

The crystal structure of the prepared samples was examined using X-ray diffraction
(XRD, MiniFlex 600, Rigaku, Tokyo, Japan) with CuKα radiation at 40 kV and 15 mA. The
measurements were ranged from 20◦ to 130◦ with a step interval of 0.01◦ and a scan speed
of 10◦/min. The porosity was examined using N2 adsorption at −196 ◦C (BELLSORP
mini-II, MicrotracBEL Corp., Osaka, Japan). The samples were pretreated at 200 ◦C for
30 min under a vacuum in order to remove the water contained in the samples before the
measurement. Scanning electron microscopy (SEM, JSM-7400F, JEOL Ltd., Tokyo, Japan)
and transmission electron microscopy (TEM, a Tecnai Osiris, FEI system) were used to
examine the morphology, and elemental analysis was performed using energy dispersive X-
ray spectrometry (EDX). Cupper-based micro grids (NP-C15 (Lacy Carbon film), Okenshoji
Co., Ltd., Tokyo, Japan) were used to fix the sample powder and therefore non-identified
signals in the images are mainly due to the cupper. The chemical states and composition of
the prepared samples’ surface were determined using X-ray photoelectron spectroscopy
(XPS) (PHI X-tool, ULVAC-PHI, Inc., Kanagawa, Japan) operated with AlKα radiation. The
chemical shifts were calibrated by fixing C1s peak of the surface carbonaceous contaminants
at 284.8 eV.

The catalytic reactions were conducted in 20 mL glass bottles following the previously
reported procedures [35]. In the catalytic tests, 1 mL of 4-NP solution (14 mM) was added
to a bottle containing 10 mg of catalyst powder, 1 mL of NaBH4 solution (0.42 M), and
7 mL of distilled water as the solvent. To satisfy first-order reaction kinetics, the initial
concentration of NaBH4 (0.047 M) was 30 times higher than that of 4-NP (1.6 mM). The
reactions were stirred at 50 ◦C until the concentrations reached zero. An aluminum heat
sink mounted on a hotplate was used to maintain a constant solution temperature. A small
aliquot (100 µL) solution was taken to determine the concentration changes at reaction
times of 0.5–50 min. The conversion of 4-NP to p-aminophenol was monitored using an
ultraviolet-visible spectrometer using the respective absorbance changes at 401 and 315 nm.
NiTiO3 and TiO2 (JRC-TIO-4 (2) (Degussa P25), supplied by Japan Reference Catalyst
Society, 50 m2/g [36]) were also tested for references.

3. Results and Discussion
3.1. Synthesis of TiNi Nanopowder from NiTiO3

Figure 1 shows the XRD patterns of commercial NiTiO3 and prepared TiNi. The
observed peaks were perfectly identified as NiTiO3 and intermetallic compound TiNi with
a cubic CsCl-type crystal structure, respectively. The crystallite sizes were calculated using
the Sherrer equation with the main peak observed around 42◦–43◦ for the intermetallic TiNi
was 72.9 nm. The measured BET surface area using N2 adsorption was 6.0 m2/g. These
values are summarized in Table 1. A larger crystallite size TiNi with a smaller BET surface
area was obtained in this study compared with our previous results of TiFe (46.2–65.2 nm,
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13.9–20.0 m2/g) [24,25]. Because nickel oxides are more easily reduced than iron oxide
because of the more thermodynamic stability of FeO than NiO [37], the rate of crystal
growth for TiNi crystal particles in the reduction/alloying processes at 650 ◦C could be
accelerated to form the final larger particles.
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Table 1. Crystalline sizes, BET surface areas (S.A.), and elemental molar ratios measured by XPS,
SEM-EDX, and TEM-EDX.

Sample Crystalline
Size [nm]

BET S.A.
[m2/g]

Elemental Molar Ratio [mol%]
Method Ti Ni O

TiNi 72.9 6.0

XPS
23.6 1.1 75.2
24.3 1.0 74.7
24.7 2.0 73.3

SEM-EDX 40.4 42.8 16.8

TEM-EDX
49.9 47.2 2.9
49.9 44.4 5.7

Figures 2 and S1 show the SEM images for NiTiO3 and the prepared TiNi, respectively.
For NiTiO3, rocky pieces with high crystallinity were observed. Smooth surfaces with
microscale morphologies were observed in magnified views. Microscale TiNi pieces were
similarly observed, but when examined under high magnification, their porosity was
very high in the nanoscale range. In the deoxidization process where oxygen atoms
were removed from NiTiO3 to form TiNi, the aggregation of previously oxygen-occupied
spaces in the final TiNi could attribute to the formation of the porous structure. Similar
nanosized morphologies were also observed in the TiNi powder prepared similarly but
at 800 ◦C (Figure S2), indicating that the fine morphologies in the prepared TiNi may be
thermally stable. Elemental analysis by SEM-EDX was also performed on the prepared
TiNi (Figure 2). Impurity elements were detected in small amounts except for Ti, Ni, and
O. The molar ratio of Ti/Ni/O was 40.4/42.8/16.8 (Table 1). The result confirmed the
formation of the intermetallic compound TiNi with a stoichiometric molar ratio of 1 to
1. Note that the oxygen ratio was a little bit high, indicating surface oxidation (which is
discussed later). TEM-EDX was used on the prepared TiNi to examine finer morphology
with elemental analysis. EDX was used to perform the elemental analyses at two different
positions (Figures 3 and S3). The observed elemental molar ratios are summarized in Table 1.
Nanoscale particles nearly corresponding to the crystalline size (72.9 nm) as determined by
XRD, were observed in the TEM images. The elemental mappings of Ti and Ni overlapped
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well, and the molar ratios of the intermetallic compound TiNi were almost stoichiometric.
These results also demonstrate the successful preparation of the intermetallic compound
TiNi by the direct reduction of NiTiO3.
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To examine the surface chemical states, XPS measurements were performed on NiTiO3
and the prepared TiNi. The analyses were performed at three different positions for each
sample to guarantee the measurement errors. The obtained spectra for C 1s, O 1s, Ti 2p3,
and Ni 2p3 orbitals and the molar ratios of Ti/Ni/O are described in Figure 4 and Table 1,
respectively. The XPS spectra measured in a wide-scanned mode are shown in Figure S4,
where the other elements except Ti, Ni, and O were barely detected. For the O 1s orbital,
large signals in a similar degree with NiTiO3 were observed for TiNi. The oxygen ratios
determined by XPS were much higher than those determined by SEM-/TEM-EDX (Table 1).
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These results indicated that the surface of the prepared TiNi powder was in the form of
oxides. For the Ti 2p3 orbital, clear signals assigned to Ti (+4) [38] were observed for both
NiTiO3 and TiNi, indicating the formation of TiOx species on the prepared TiNi surface.
For the Ni 2p3 orbital, very small signals assigned to Ni (0) [39] were observed for TiNi,
whereas distinct signals to Ni (+2) [39] were observed for NiTiO3. Ti-rich/Ni-deficient
surface compositions by XPS for TiNi (Table 1), were extremely different from those by SEM-
/TEM-EDX. It was speculated that the prepared TiNi powder has too thin TiOx surface
layers to observe via the employed TEM. Taking the results of XRD, SEM-/TEM-EDX, and
XPS together into account, the obtained TiNi possessed a core–shelled structure, such as
the core of the intermetallic compound TiNi and the shell of TiOx-rich composition with a
trace of metallic Ni.
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3.2. Catalytic Hydrogenation of 4-Nitrophenol

The morphology of the catalyst plays an important role for the catalytic activity. Cur-
rently, some core–shelled and hollow structures are extensively used in catalysis, showing
unique and superior catalytic performance [40–42]. In this study, we evaluated the catalytic
performance of the core–shelled TiNi in hydrogenation of 4-NP to 4-aminophnol (4-AP).
NaBH4 was used to catalyze the hydrogenation of 4-NP at 40–50 ◦C using the prepared
TiNi, NiTiO3, and TiO2. The absorbance change in the reaction solution during the TiNi
reaction is shown in Figure 5a. The absorbance at 315 nm to the production concentration of
p-aminophenol increased, as the absorbance at 401 nm corresponding to the concentration
of 4-NP decreased with reaction time, indicating the progress of the hydrogenation reaction.
The concentration change in 4-NP during the reactions with catalysts TiNi, NiTiO3, and
TiO2 is shown in Figure 5b. For NiTiO3 and TiO2 at 40 ◦C, little changes were observed in
the concentrations, indicating that they had no catalytic abilities in the reaction system. For
TiNi at 50 ◦C, the catalytic tests were conducted there times repeatedly with the identical
catalyst powder in order to confirm the recyclability of the prepared TiNi powder. The
concentration decreased rapidly with the reaction time and 100% conversion was obtained
in 15–40 min. These results showed that the active species were not TiOx and Ni (+4) but
metallic Ni (0). The activities of 2nd and 3rd runs were higher than 1st one. This could be
because the TiNi catalyst was more activated in the 2nd and 3rd runs due to the removal
of surface TiOx passivation during the hydrogenation reaction. The reaction rate constant
of 0.14–0.31 min−1 was obtained from a plot of ln(C/C0) versus time (Figure 5c), where C
and C0 represent the concentration of 4-NP at distinct and initial times, respectively. The
rate constants of this study and previous studies with nickel-based catalysts are summa-
rized in Table 2. Because the reaction conditions differed, a quantitative comparison was
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difficult. Our result was reasonably comparable with those obtained using the previously
reported nickel-based catalysts. Particularly, the prepared TiNi exhibited a higher constant
than the multicomponent alloy catalysts of AlCoCrFeNiV and CrMnFeCoNi under similar
reaction conditions. Despite a limited amount of metallic Ni (0) exposed on the surface,
as confirmed by XPS, the prepared TiNi exhibited promising catalytic performance. As
the results of the previous works [43,44], heterogeneous hydrogenation of 4-NP to 4-AP
by NaBH4 proceeds in accordance with the Langmuir–Hinshelwood (LH) model. In the
first step, the NaBH4 is decomposed by hydrolysis, then the B(OH)4

− and active hydrogen
(or, hydride) are formed. The active hydrogen diffuses to adsorb on the surface of active
metals, such as gold and silver nanoparticles. 4-NP also diffuses to adsorb on the surface.
Finally, the adsorbed active hydrogen reacts with 4-NP to yield the product 4-AP. The
rate-determining step is given by the surface reaction of the adsorbed species. In our study,
therefore, the surface-exposed Ni (0) was well-dispersed across the surface in the form of
small nanoparticles, resulting in numerous active sites. The active sites could effectively
work to promote the surface reaction to obtain the fast reaction rates. The XRD patterns of
the used TiNi catalyst powder is shown in Figure 6. The identical XRD peaks with the fresh
TiNi powder were observed and the result indicated that the prepared TiNi powder was
stable without decomposition during the hydrogenation reactions.
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changes in 4-NP concentration (C) versus time for the TiNi at 50 °C, NiTiO3 and TiO2 at 40 °C, and 
(c) a plot of ln(C/C0) versus time to acquire rate constants (k). For the prepared TiNi, the catalytic 
tests were repeated three times to examine the recyclability. 

 
Figure 6. XRD patterns of the used TiNi catalyst powder.
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Table 2. Comparison of rate constants (k) for 4-NP reduction.

Sample Temp. [◦C] Reaction Conditions k [min−1] Ref.

TiNi 50
4-NP (1.6 mM)

NaBH4 (47 mM)
10 mg-cat/9 mL

0.14–0.31 This study

Ni film
25

4-NP (0.1 mM)
NaBH4 (10 mM)

15 cm2-cat/16 mL

0.09
[45]Co50Ni50 film 0.15

Co25Ni75 film 0.14

p(MAc)-Ni 30

4-NP (10 mM)
NaBH4 (400 mM)

5 mg-cat(Ni)/50 mL
0.75 [46]

Ni-RGO
R.T.

4-NP (0.1 mM)
NaBH4 (30 mM)

10 mg-cat/104 mL

0.07
[47]

Ni NP 0.02

SiO2@C/Ni R.T.
4-NP (0.2 mM)

NaBH4 (65 mM)
3 mg-cat/3.1 mL

2.19–3.06 [48]

AlCoCrFeNiV 53
4-NP (1.6 mM)

NaBH4 (47 mM)
10 mg-cat/9 mL

0.05 [49]

CrMnFeCoNi 50
4-NP (0.16 mM)
NaBH4 (60 mM)
10 mg-cat/9 mL

0.11 [35]

4. Conclusions

Intermetallic compound TiNi powder passivated by TiOx shell was successfully pre-
pared from NiTiO3 by reducing it at 650 ◦C in a molten LiCl-CaH2 system. XRD, SEM-
/TEM-EDX, and XPS analyses demonstrated that the obtained TiNi possessed a core–shelled
structure, such as the core of intermetallic compound TiNi and the shell of TiOx-rich compo-
sition with a scarce amount of metallic Ni. The scarce metallic Ni demonstrated promising
high catalytic performance in the hydrogenation of 4-NP because of the good dispersion of
active Ni species on the surface.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15238536/s1, Figure S1. SEM images of commercial NiTiO3.
Figure S2. SEM images of TiNi prepared by reducing NiTiO3 via CaH2 in molten LiCl at 800 ◦C.
Figure S3. TEM images and the EDX result of the prepared TiNi. Figure S4. XPS spectra measured in
a wide-scan mode of NiTiO3 and the prepared TiNi.
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