Microstructures and Fatigue Properties of High-Strength Low-Alloy Steel Prepared through Submerged-Arc Additive Manufacturing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Compositions and Process Parameters
2.2. Microstructures in Deposits of SAAM Workpieces
2.3. Tensile Tests on Deposits of SAAM Workpieces
2.4. Low-Cycle Fatigue Tests on Deposits of SAAM Workpieces
2.5. Tests on the Fatigue Crack Propagation Rate of Deposits of SAAM Workpieces
3. Test Results and Analysis
3.1. Microstructures in Deposits of SAAM High-Strength Low-Alloy Steel Workpieces
3.2. Tensile Properties of Deposits of SAAM High-Strength Low-Alloy Steel Workpieces
3.3. Low-Cycle Fatigue Properties of Deposits of SAAM High-Strength Low-Alloy Steel Workpieces
3.4. The Fatigue Crack Propagation Rate in Deposits of Saam High-Strength Low-Alloy Steel Workpieces
4. Conclusions
- (1)
- The deposits of SAAM high-strength low-alloy steel workpieces are mainly composed of polygonal ferrites, which have regular and smooth grain boundaries and sizes of 6~15 μm.
- (2)
- The horizontal and vertical tensile strengths of the deposits of SAAM high-strength low-alloy steel workpieces are 705 and 695 MPa, respectively. The plasticity of the deposits in the vertical direction is weaker than that in the horizontal direction.
- (3)
- The strain fatigue limit of the deposits of SAAM high-strength low-alloy steel workpieces is 0.24%, and the deposits show cyclic softening characteristics in the fatigue tests.
- (4)
- Observation of the morphologies of fatigue fractures in deposits of SAAM high-strength low-alloy steel workpieces reveals that each region of the joints shows multi-source crack initiation characteristics. Fatigue cracks are found in all propagation regions of fatigue cracks. Lots of dimples are observed in the final tensile fracture region, indicative of ductile fracture characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, H.-L.; Zhang, X.-Y.; Feng, Y.-R.; Huo, C.-Y.; Ji, L.-K.; Li, W.-W. Development and Current Situation of Pipeline Steels. Mater. Mech. Eng. 2009, 33, 1. [Google Scholar]
- Tantawy, A.H.; Soliman, K.A.; Abd El-Lateef, H.M. Novel synthesized cationic surfactants based on natural piper nigrum as sustainable-green inhibitors for steel pipeline corrosion in CO2-3.5% NaCl: DFT, Monte Carlo simulations and experimental approaches. J. Clean. Prod. 2020, 250, 119510. [Google Scholar] [CrossRef]
- Kong, J.; Guo, B.; Liu, C.; Zheng, L.; Xie, C. Research and Development of High Strength Pipeline Steel X80. Mater. Rev. 2004, 18, 23–26. [Google Scholar]
- Feng, Y.; Ji, L.; Chen, H.; Jiang, J.; Wang, X.; Ren, Y.; Zhang, D.; Niu, H.; Bai, M.; Li, S. Research progress and prospect of key technologies for high-strain pipeline steel and steel pipes. Nat. Gas Ind. 2020, 40, 105–113. [Google Scholar]
- Deng, W.; Gao, X.H.; Qin, X.M.; Zhao, D.W.; Du, L.X. Microstructure and Properties of an X80 Pipeline Steel Manufactured by Untraditional TMCP. Adv. Sci. Lett. 2011, 4, 1088–1092. [Google Scholar] [CrossRef]
- Chu, Q.L.; Xu, S.; Tong, X.W.; Li, J.; Zhang, M.; Yan, F.X.; Zhang, W.; Bi, Z.; Yan, C. Comparative Study of Microstructure and Mechanical Properties of X80 SAW Welds Prepared Using Different Wires and Heat Inputs. J. Mater. Eng. Perform. 2020, 29, 4322–4338. [Google Scholar] [CrossRef]
- Mohd, N.A.; Mohamad, R.I.; Mastura, M.T.; Faizal, M.; Zulkiflle, L. Rheological Properties of Natural Fiber Reinforced Thermoplastic Composite for Fused Deposition Modeling (FDM): A Short Review. J. Adv. Res. Fluid Mech. Therm. Sci. 2022, 98, 157–164. [Google Scholar] [CrossRef]
- Williams, S.W.; Martina, F.; Addison, A.C.; Ding, J.; Pardal, G.; Colegrove, P. Wire plus Arc Additive Manufacturing. Mater. Sci. Technol. 2016, 32, 641–647. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Bhavsar, H.; Mahesh, P.V.S.; Srivastava, A.K.; Bora, B.J.; Saxena, A.; Dixit, A.R. Wire Arc Additive Manufacturing—A revolutionary method in additive manufacturing. Mater. Chem. Phys. 2022, 285, 126144. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Duarte, V.; Avila, J.A.; Santos, T.G.; Miranda, R.M.; Oliveira, J.P. Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical properties. Addit. Manuf. 2019, 27, 440–450. [Google Scholar] [CrossRef]
- Oleg, P.; Ivan, K.; Dmitry, K.; Leonid, Z.; Evgenii, R.; Maxim, Z. Effect of thermal history on microstructure evolution and mechanical properties in wire arc additive manufacturing of HSLA steel functionally graded components. Mater. Sci. Eng. A 2022, 851, 143569. [Google Scholar]
- Sasikumar, R.; Kannan, A.R.; Kumar, S.M.; Pramod, R.; Kumar, N.P.; Shanmugam, N.S.; Palguna, Y.; Sivankalai, S. Wire arc additive manufacturing of functionally graded material with SS 316L and IN625: Microstructural and mechanical perspectives. CIRP J. Manuf. Sci. Technol. 2022, 38, 230–242. [Google Scholar] [CrossRef]
- Zhang, J.; Li, C.; Yang, X.; Wang, D.; Hu, W.; Di, X.; Zhang, J. In-situ heat treatment (IHT) wire arc additive manufacturing of Inconel625-HSLA steel functionally graded material. Mater. Lett. 2023, 330, 133326. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Li, H.; Dong, Y.; Cheng, F. Submerged arc additive manufacturing (SAAM) of low-carbon steel: Effect of in-situ intrinsic heat treatment (IHT) on microstructure and mechanical properties. Addit. Manuf. 2021, 46, 102124. [Google Scholar] [CrossRef]
- Li, Y.; Wu, S.; Wang, J.; Wang, H.; Kong, W.; Cheng, F. Microstructure homogeneity and strength-toughness balance in submerged arc additive manufactured Mn-Ni-Mo high-strength steel by unique intrinsic heat treatment. J. Mater. Process. Technol. 2022, 307, 117682. [Google Scholar] [CrossRef]
- Zhao, X.H.; Wang, H.; Liu, G.; Liu, Y.; Xu, D.S. Research on the hydrogen assisted fatigue damage in X80 pipeline steel welded joint. Mater. Today Commun. 2022, 31, 103524. [Google Scholar] [CrossRef]
- An, T.; Peng, H.T.; Bai, P.P.; Zheng, S.Q.; Wen, X.L.; Zhang, L. Influence of hydrogen pressure on fatigue properties of X80 pipeline steel. Int. J. Hydrog. Energy 2017, 42, 15669–15678. [Google Scholar] [CrossRef]
- Yi, H.-L.; Du, L.-X.; Wang, G.-D.; Liu, X.-H. Microstructure and mechanical properties of pipeline steel X80. J. Northeast. Univ. Nat. Sci. 2008, 29, 213–216. [Google Scholar]
- Zhang, Q.; Zhang, J.; Zhao, P.; Huang, Y.; Yu, Z.; Fang, X. Low-cycle fatigue behaviors of a new type of 10% Cr martensitic steel and welded joint with Ni-based weld metal. Int. J. Fatigue 2016, 88, 78–87. [Google Scholar] [CrossRef]
- Long, J.; Zhang, L.-J.; Zhang, Q.-B.; Wang, W.-K.; Zhong, J.; Zhang, J.-X. Microstructural characteristics and low cycle fatigue properties at 230 °C of different weld zone materials from a 100 mm thick dissimilar weld of ultra-supercritical rotor steel. Int. J. Fatigue 2020, 130, 105248. [Google Scholar] [CrossRef]
- Long, J.; Zhang, L.J.; Zhang, L.L.; Ning, J.; Zhuang, M.X.; Zhang, J.X.; Na, S.J. Analysis of heterogeneity of fatigue properties of double-sided electron beam welded 140-mm thick TC4 titanium alloy joints. Int. J. Fatigue 2021, 142, 105942. [Google Scholar] [CrossRef]
- Long, J.; Zhang, L.J.; Ning, J.; Ma, Z.X.; Zang, S.L. Zoning study on the fatigue crack propagation behaviors of a double-sided electron beam welded joint of TC4 titanium alloy with the thickness of 140 mm. Int. J. Fatigue 2021, 146, 106145. [Google Scholar] [CrossRef]
- Ma, X.F.; Zhai, H.L.; Zuo, L.; Zhang, W.J.; Rui, S.S.; Han, Q.N.; Jiang, J.S.; Li, C.P.; Chen, G.F.; Qian, G.A.; et al. Fatigue short crack propagation behavior of selective laser melted Inconel 718 alloy by in-situ SEM study: Influence of orientation and temperature. Int. J. Fatigue 2020, 139, 105739. [Google Scholar] [CrossRef]
- James, M.A.; Newman, J.C. The effect of crack tunneling on crack growth: Experiments and CTOA analyses. Eng. Fract. Mech. 2003, 70, 457–468. [Google Scholar] [CrossRef]
Elements | C | Si | Mn | P | S | Cr | Mo | Ni | Fe |
---|---|---|---|---|---|---|---|---|---|
Content | 0.081 | 0.33 | 1.50 | 0.0052 | 0.0031 | 0.003 | 0.57 | 1.36 | Balance |
Voltage /V | Current /A | Velocity /(mm s−1) | Wire Feed Rate /(m min−1) | Interlayer Temperature /°C |
---|---|---|---|---|
28–35 | 500–700 | 6 | 1.35 | 140–200 |
Strain Amplitude | 0.8% | 0.6% | 0.5% | 0.4% | 0.3% | 0.25% |
---|---|---|---|---|---|---|
/ | 80 | 428 | 425 | 712 | 3462 | 10,251 |
/ | / | 211 | 477 | 1837 | / | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.-J.; Ji, L.-K.; Chi, Q.; Ma, Q.-R. Microstructures and Fatigue Properties of High-Strength Low-Alloy Steel Prepared through Submerged-Arc Additive Manufacturing. Materials 2022, 15, 8610. https://doi.org/10.3390/ma15238610
Hu M-J, Ji L-K, Chi Q, Ma Q-R. Microstructures and Fatigue Properties of High-Strength Low-Alloy Steel Prepared through Submerged-Arc Additive Manufacturing. Materials. 2022; 15(23):8610. https://doi.org/10.3390/ma15238610
Chicago/Turabian StyleHu, Mei-Juan, Ling-Kang Ji, Qiang Chi, and Qiu-Rong Ma. 2022. "Microstructures and Fatigue Properties of High-Strength Low-Alloy Steel Prepared through Submerged-Arc Additive Manufacturing" Materials 15, no. 23: 8610. https://doi.org/10.3390/ma15238610
APA StyleHu, M. -J., Ji, L. -K., Chi, Q., & Ma, Q. -R. (2022). Microstructures and Fatigue Properties of High-Strength Low-Alloy Steel Prepared through Submerged-Arc Additive Manufacturing. Materials, 15(23), 8610. https://doi.org/10.3390/ma15238610