N+-Implantation on Nb Coating as Protective Layer for Metal Bipolar Plate in PEMFCs and Their Electrochemical Characteristics
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Range and Distribution of Implanted Ions
3.2. Phase Characterization
3.3. Microstructure
3.4. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, A.; Crisci, L.; Bonville, L.; Jankovic, J. An overview of bipolar plates in proton exchange membrane fuel cells. J. Renew. Sustain. Energy 2021, 13, 022701. [Google Scholar] [CrossRef]
- Pourrahmani, H.; Siavashi, M.; Yavarinasab, A.; Matian, M.; Chitgar, N.; Wang, L.; Herle, J.V. A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants. Energies 2022, 15, 5081. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Lettenmeier, P.; Wang, R.; Abouatallah, R.; Saruhan, B.; Freitag, O.; Gazdzicki, P.; Morawietz, T.; Hiesgen, R.; Gago, A.S.; Friedrich, K.A. Low-cost and durable bipolar plates for proton exchange membrane electrolyzers. Sci. Rep. 2017, 7, 44035. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Zhang, J.; Hu, M.; Li, X. Investigation of high potential corrosion protection with titanium carbonitride coating on 316L stainless steel bipolar plates. Corros. Sci. 2021, 191, 109757. [Google Scholar] [CrossRef]
- Rojas, N.; Sanchez-Molina, M.; Sevilla, G.; Amores, E.; Almandoz, E.; Esparza, J.; Vivas, M.R.C.; Colominas, C. Coated stainless steels evaluation for bipolar plates in PEM water electrolysis conditions. Int. J. Hydrog. Energy 2021, 46, 25929–25943. [Google Scholar] [CrossRef]
- Novalin, T.; Eriksson, B.; Proch, S.; Bexell, U.; Moffatt, C.; Westlinder, J.; Lagergren, C.; Lindbergh, G.; Lindström, R.W. Concepts for preventing metal dissolution from stainless-steel bipolar plates in PEM fuel cells. Energy Convers. Manag. 2022, 253, 115153. [Google Scholar] [CrossRef]
- Shen, H.; Wang, L.; Sun, J. Characteristics and properties of CrN compound layer produced by plasma nitriding of Cr-electroplated of AISI 304 stainless steel. Surf. Coat. Technol. 2020, 385, 125450. [Google Scholar] [CrossRef]
- Yi, P.; Dong, C.; Zhang, T.; Xiao, K.; Ji, Y.; Wu, J.; Li, X. Effect of plasma electrolytic nitriding on the corrosion behavior and interfacial contact resistance of titanium in the cathode environment of proton-exchange membrane fuel cells. J. Power Sources 2019, 418, 42–49. [Google Scholar] [CrossRef]
- Avram, D.N.; Davidescu, C.M.; Dan, M.L.; Mirza-Rosca, J.C.; Hulka, I.; Stanciu, E.M.; Pascu, A. Corrosion resistance of NiCr (Ti) coatings for metallic bipolar plates. Mater. Today Proc. 2022, in press. [Google Scholar] [CrossRef]
- Mani, S.P.; Agilan, P.; Kalaiarasan, M.; Ravichandran, K.; Rajendran, N.; Meng, Y. Effect of multilayer CrN/CrAlN coating on the corrosion and contact resistance behavior of 316L SS bipolar plate for high temperature proton exchange membrane fuel cell. J. Mater. Sci. Technol. 2022, 97, 134–146. [Google Scholar] [CrossRef]
- Atapour, M.; Rajaei, V.; Trasatti, S.; Casaletto, M.P.; Chiarello, G.L. Thin niobium and niobium nitride PVD coatings on AISI 304 stainless steel as bipolar plates for PEMFCs. Coatings 2020, 10, 889. [Google Scholar] [CrossRef]
- Alexeeva, O.K.; Fateev, V.N. Application of the magnetron sputtering for nanostructured electrocatalysts synthesis. Int. J. Hydrog. Energy 2016, 41, 3373–3386. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, I.S.; Choi, J.Y.; Jun, S.; Kim, D.; Cha, B.C.; Kim, D.W. Corrosion behavior of niobium-coated 316L stainless steels as metal bipolar plates for polymer electrolyte membrane fuel cells. Materials 2021, 14, 4972. [Google Scholar] [CrossRef]
- Gupta, D. Plasma immersion ion implantation (PIII) process physics and technology. Int. J. Adv. Technol. 2011, 2, 471–490. [Google Scholar]
- Mändl, S.; Manova, D. Modification of metals by plasma immersion ion implantation. Surf. Coat. Technol. 2019, 365, 83–93. [Google Scholar] [CrossRef]
- Ramezani, A.H.; Hoseinzadeh, S.; Ebrahiminejad, Z.; Hantehzadeh, M.R.; Shafiee, M. The study of mechanical and statistical properties of nitrogen ion-implanted Tantalum bulk. Optik 2021, 225, 165628. [Google Scholar] [CrossRef]
- Huang, H.H.; Shiau, D.K.; Chen, C.S.; Chang, J.H.; Wang, S.; Pan, H.; Wu, M.F. Nitrogen plasma immersion ion implantation treatment to enhance corrosion resistance, bone cell growth, and antibacterial adhesion of Ti-6Al-4V alloy in dental applications. Surf. Coat. Technol. 2019, 365, 179–188. [Google Scholar] [CrossRef]
- Sharma, P.; Dhawan, A.; Sharma, S.K. Influence of nitrogen ion implantation on corrosion behavior of Zr55Cu30Ni5Al10 amorphous alloy. J. Non. Cryst. Solids 2019, 511, 186–193. [Google Scholar] [CrossRef]
- Hapsari, S.; Sujitno, T.; Ahmadi, H.; Aziz, R.A. Analysis of nitrogen ion implantation on the corrosion resistance and mechanical properties of aluminum alloy 7075. J. Phys. Conf. Ser. 2020, 1436, 012075. [Google Scholar] [CrossRef]
- Vlcak, P.; Fojt, J.; Weiss, Z.; Kopeček, J.; Perina, V. The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation. Surf. Coat. Technol. 2019, 358, 144–152. [Google Scholar] [CrossRef]
- Okuda, S.; Kimura, T.; Akimune, H. Depth profiles of implanted H and He in metal Mo determined with backscattered protons. Jpn. J. Appl. Phys. 1979, 18, 465. [Google Scholar] [CrossRef]
- Winterbon, K.B. Ion implantation distributions in inhomogeneous materials. Appl. Phys. Lett. 1977, 31, 649–651. [Google Scholar] [CrossRef]
- Fewell, M.P.; Mitchell, D.R.G.; Priest, J.M.; Short, K.T.; Collins, G.A. The nature of expanded austenite. Surf. Coat. Technol. 2000, 131, 300–306. [Google Scholar] [CrossRef]
- Camerlingo, C.; Scardi, P.; Tosello, C.; Vaglio, R. Disorder effects in ion-implanted niobium thin films. Phys. Rev. B 1985, 31, 3121–3123. [Google Scholar] [CrossRef]
- Torche, M.; Schmerber, G.; Guemmaz, M.; Mosser, A.; Parlebas, J.C. Non-stoichiometric niobium nitrides: Structure and properties. Thin Solid Films 2003, 436, 208–212. [Google Scholar] [CrossRef]
- Gamo, K.; Goshi, H.; Takai, M.; Iwaki, M.; Masuda, K.; Namba, S. Control of Tc for niobium by N ion implantation. Jpn. J. Appl. Phys. 1977, 16, 1853. [Google Scholar] [CrossRef]
- Xie, C.; Milošev, I.; Renner, F.U.; Kokalj, A.; Bruna, P.; Crespo, D. Corrosion resistance of crystalline and amorphous CuZr alloys in NaCl aqueous environment and effect of corrosion inhibitors. J. Alloys Compd. 2021, 879, 160464. [Google Scholar] [CrossRef]
- Zander, D.; Köster, U. Corrosion of amorphous and nanocrystalline Zr-based alloys. Mater. Sci. Eng. A 2004, 375, 53–59. [Google Scholar] [CrossRef]
- Masumoto, T.; Hashimoto, K. Chemical properties of amorphous metals. Annu. Rev. Mater. Sci. 1978, 8, 215–233. [Google Scholar] [CrossRef]
- Gebert, A.; Buchholz, K.; Leonhard, A.; Mummert, K.; Eckert, J.; Schultz, L. Investigations on the electrochemical behavior of Zr-based bulk metallic glasses. Mater. Sci. Eng. A 1999, 267, 294–300. [Google Scholar] [CrossRef]
- Jin, W.; Wu, G.; Li, P.; Chu, P.K. Improved corrosion resistance of Mg-Y-RE alloy coated with niobium nitride. Thin Solid Films 2014, 572, 85–90. [Google Scholar] [CrossRef]
- Olaya, J.J.; Rodil, S.E.; Muhl, S. Comparative study of niobium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid Films 2008, 516, 8319–8326. [Google Scholar] [CrossRef]
- Chen, M.; Ding, J.C.; Kwon, S.H.; Wang, Q.; Zhang, S. Corrosion resistance and conductivity of NbN-coated 316L stainless steel bipolar plates for proton exchange membrane fuel cells. Corros. Sci. 2022, 196, 110042. [Google Scholar] [CrossRef]
- Fonseca, R.M.; Soares, R.B.; Carvalho, R.G.; Tentardini, E.K.; Lins, V.F.C.; Castro, M.M.R. Corrosion behavior of magnetron sputtered NbN and Nb1-xAlxN coatings on AISI 316L stainless steel. Surf. Coat. Technol. 2019, 378, 124987. [Google Scholar] [CrossRef]
- Uchida, H.; Yamashita, M. Effect of preparation conditions on pinhole defect of TiN films by ion mixing and vapor deposition. Vacuum 2022, 65, 555–561. [Google Scholar] [CrossRef]
- Feng, K.; Shen, Y.; Liu, D.; Chu, P.K.; Cai, X. Ni–Cr Co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2010, 35, 690–700. [Google Scholar] [CrossRef]
- Li, W.; Li, D.Y. Variations of work function and corrosion behaviors of deformed copper surfaces. Appl. Surf. Sci. 2005, 240, 388–395. [Google Scholar] [CrossRef]
- Xue, M.; Xie, J.; Li, W.; Wang, F.; Ou, J.; Yang, C.; Li, C.; Zhong, Z.; Jiang, Z. Changes in surface morphology and work function caused by corrosion in aluminum alloys. J. Phys. Chem. Solids 2012, 73, 781–787. [Google Scholar] [CrossRef]
- Li, W.; Li, D.Y. Influence of surface morphology on corrosion and electronic behavior. Acta Mater. 2006, 54, 445–452. [Google Scholar] [CrossRef]
Elements | Cr | Ni | Mn | Si | C | Mo | S | N | Ti | B | Cu | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wt% | 16.62 | 10.1 | 1.35 | 0.43 | 0.018 | 2.06 | 0.028 | 0.046 | 0.01 | 0.01 | 0.34 | balance |
Nb sputtering | Pressure (Pa) | 0.666 |
Gas flow (sccm) | 10 (Ar) | |
Target power (W) | 600 | |
Bias voltage (V) | 700 | |
N+ implantation | Pressure (Pa) | 0.14 |
Gas flow (sccm) | 5 (N2) | |
Pulse width (μs) | 3 | |
Bias voltage (kV) | 5, 10 |
Bias (kV) | Ion Range (Å) | Implantation Dose (Ions/cm2) | Peak Nitrogen Concentration (Atoms/cm3) | |
---|---|---|---|---|
TRIM | SIMS | |||
5 | 95 | 57 | 2.78 × 1016 | 1.61 × 1022 |
10 | 158 | 140 | 6.40 × 1017 | 2.37 × 1023 |
Bias (kV) | 2θ (Degree) | d-Spacing (Å) | FWHM (Radian) | Crystallite Size (nm) |
---|---|---|---|---|
As-deposited Nb | 38.40 | 2.342 | 0.020 | 17.00 |
5 kV | 38.12 | 2.358 | 0.024 | 12.28 |
10 kV | 38.16 | 2.356 | 0.025 | 11.76 |
Sample | Ecorr (V) | icorr, Tafel (A/cm2) | icorr, Rp (A/cm2) | i0.6V vs. SCE (A/cm2) | i−0.1V vs. SCE (A/cm2) | ipass (A/cm2) | Rp (Ω cm2) |
---|---|---|---|---|---|---|---|
316L bare | −0.3374 | 1.33 × 10−4 | 1.67 × 10−4 | 4.95 × 10−5 | 1.31 × 10−4 | 3.64 × 10−5 | 61 |
As-deposited | −0.3278 | 1.26 × 10−6 | 2.08 × 10−6 | 4.78 × 10−5 | 7.88 × 10−6 | 7.69 × 10−6 | 5010 |
5 kV | −0.3688 | 1.19 × 10−6 | 1.43 × 10−6 | 1.31 × 10−5 | 5.67 × 10−6 | 5.08 × 10−6 | 6688 |
10 kV | −0.3746 | 1.08 × 10−6 | 1.23 × 10−6 | 2.52 × 10−6 | 4.66 × 10−6 | 1.99 × 10−6 | 11,457 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-S.; Choi, J.-Y.; Kim, C.-H.; Lee, I.-S.; Jun, S.; Kim, D.; Cha, B.-C.; Kim, D.-W. N+-Implantation on Nb Coating as Protective Layer for Metal Bipolar Plate in PEMFCs and Their Electrochemical Characteristics. Materials 2022, 15, 8612. https://doi.org/10.3390/ma15238612
Kim Y-S, Choi J-Y, Kim C-H, Lee I-S, Jun S, Kim D, Cha B-C, Kim D-W. N+-Implantation on Nb Coating as Protective Layer for Metal Bipolar Plate in PEMFCs and Their Electrochemical Characteristics. Materials. 2022; 15(23):8612. https://doi.org/10.3390/ma15238612
Chicago/Turabian StyleKim, Yu-Sung, Jin-Young Choi, Cheong-Ha Kim, In-Sik Lee, Shinhee Jun, Daeil Kim, Byung-Chul Cha, and Dae-Wook Kim. 2022. "N+-Implantation on Nb Coating as Protective Layer for Metal Bipolar Plate in PEMFCs and Their Electrochemical Characteristics" Materials 15, no. 23: 8612. https://doi.org/10.3390/ma15238612
APA StyleKim, Y. -S., Choi, J. -Y., Kim, C. -H., Lee, I. -S., Jun, S., Kim, D., Cha, B. -C., & Kim, D. -W. (2022). N+-Implantation on Nb Coating as Protective Layer for Metal Bipolar Plate in PEMFCs and Their Electrochemical Characteristics. Materials, 15(23), 8612. https://doi.org/10.3390/ma15238612