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Abstract: As an asphalt modifier, waste polypropylene (RPP) can not only optimize the performance
of asphalt but also greatly alleviate the problem of waste plastic treatment, effectively reducing
environmental pollution and resource waste. In order to evaluate the influence of RPP and styrene
butadiene styrene (SBS) on asphalt performance, the application of RPP in modified asphalt pavement
has been expanded. In this study, a dynamic shear rheometer (DSR), bending beam rheometer (BBR)
and other instruments were used to evaluate the rheological properties of composite-modified
asphalt. Fourier infrared spectroscopy (FTIR) and fluorescence microscopy (FM) was employed to
conduct a microscopic analysis of the modified asphalt, and the layer analysis method was adopted to
determine the optimal RPP content. The test results show that the rheological properties of asphalt are
significantly improved by the composite modification of RPP and SBS. In addition, the cross-linking
between polymer and asphalt is further enhanced by the composite addition of RPP and SBS. The
comprehensive performance of modified asphalt is optimized at the RPP content of 2%, which is
suitable for applications in the cold temperate zone. The RPP/SBS composite-modified asphalt
is able to improve the utilization rate of RPP and has good environmental and economic benefits,
thus exhibiting excellent comprehensive performance. However, the optimal asphalt content in the
mixture was not investigated, and the economic benefits brought by the utilization of RPP were not
evaluated and require further study.

Keywords: RPP; rheological properties; micro analysis; analytic hierarchy process; optimum dosage

1. Introduction

Asphalt is a viscoelastic material that has gradually become one of the most widely
used road pavement materials in China [1,2] due to advantages including low noise and
surface evenness. However, in recent years, with the increase of heavy vehicles and the
complexity of paved environments, ordinary matrix asphalt is sensitive to the subsequent
changes in external temperature. Irreversible elastic deformation and viscous deformation
will consequently occur under the action of external forces. In particular, at high tempera-
tures, the elastic deformation of the pavement reduces and viscous deformation increases,
which will cause serious rutting problems under repeated traffic loads [1]. In addition,
asphalt pavement can easily crack when it is used at low temperatures and is thus unable
to meet the requirements of the majority of environments. The construction, maintenance,
repair, restoration and reconstruction of new roads and the maintenance of aging pave-
ments require a large number of materials and unproductive energy consumption, which
has a huge cost demand for the economy [3]. In order to improve the road performance of
asphalt and save costs, scholars have focused more attention on the research on modified
asphalt in recent years. Recycling waste plastics to change asphalt not only optimizes the
road performance of asphalt but also saves costs and protects the environment [4,5].
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Due to their low cost and high durability, plastics are widely used in various fields
of life [6]. Most plastic wastes are divided into four categories: polyester; polyolefin;
polyvinyl chloride (PVC); and polystyrene (PS). Polyolefins, such as polyethylene (PE)
and polypropylene (PP), have an annual output of approximately 218 million tons, ac-
counting for 57% of the plastic content of municipal solid waste [7]. Among them, the
low cost, excellent high-temperature performance, and chemical corrosion resistance of
PP plastic have made it a widely popular material. At the same time, RPP plastic requires
extensive land resources due to its non-degradability and causes serious environmental
pollution [8]. Therefore, the recycling and management of RPP plastic are urgent issues that
need addressing [9]. At present, the most common recovery methods are mechanical and
chemical recovery [10]. Recently, researchers have further expanded the application scope
of recycled RPP, and a more economical and practical usage is in infrastructure construction
(including modified asphalt) [8,11,12]. Moreover, many scholars have studied this field for
decades [13]. PP, a high molecular polymer, is a thermoplastic plastic with stable physical
and chemical properties that can be used to modify base asphalt. RPP-modified asphalt can
effectively change the structure of raw asphalt collage and form new collage structures, thus
improving the high-temperature resistance, moisture susceptibility, and other properties of
the asphalt mixture. This consequently improves the pavement quality, saves maintenance
costs, and extends the service life of the asphalt pavement [14,15].

Rubber modification can improve the low-temperature toughness of PP. In the past
two decades, researchers have attempted to add elastomer or rubber to RPP, with materials
including ethylene-propylene copolymer, ethylene propylene diene rubber, styrene butane
styrene, etc., achieving some improvements [16]. Zhao et al. evaluated the performance
of polypropylene (PP, 80–85%) and polyethylene (PE, 15–20%) copolymers as modifiers.
The authors found that 6% of RPP/PE copolymers enhanced the rutting resistance in the
use range of 50–80 ◦C, improved the fatigue performance, and had the least impact on low-
temperature performance [17]. However, the low-temperature performance of modified
asphalt decreased slightly. Moatafa et al. compared the fatigue resistance of RPP/butadiene
styrene rubber (SBR) composite-modified asphalt mixture with that of the SBS-modified
asphalt mixture and determined that at the 5% content of the (0.3 PP + 0.7 SBR) blend, the
fatigue resistance of the composite modified asphalt mixture is more than 50% higher than
that of the 5% SBS modified asphalt mixture [18]. Cheng et al. mixed two types of waste
(PP and SBR) into the base asphalt, respectively. The authors tested and compared the per-
formance of asphalt and the mixtures to conclude that the high-temperature performance of
PP/SBR composite-modified asphalt was improved, and the low-temperature performance
was also slightly improved [4]. However, the previous testing showed that the addition
of SBR did not significantly improve the low-temperature performance of PP-modified
asphalt, with a significant gap compared with the SBS-modified asphalt. The addition of
SBR has also been observed to slightly affect the high-temperature performance of modified
asphalt [4,18]. Therefore, it is necessary to determine a material that can significantly
improve the low-temperature crack resistance of PP-modified asphalt without affecting
the other properties. SBS-modified asphalt is widely used in high-grade asphalt pavement
surface courses and has excellent high and low-temperature performances, as well as strong
fatigue resistance [19]. SBS is a rubber plastic material [20], and the polystyrene inside
allows for good high-temperature performance, while the polybutadiene facilitates high
flexibility at low temperatures [21]. In addition, since SBS does not contain C = C, the
SBS-modified asphalt mixture also exhibits a good low-temperature cracking resistance [22].
Therefore, SBS is often combined with other modifiers and can be employed as a material
to improve the low-temperature performance of PP-modified asphalt.

Previous explorations of asphalt or modifier dosages include the application of multi-
ple expression programming (MEP) to develop empirical prediction models for Marshall
parameters in order to obtain the optimal asphalt content and asphalt pavement-related
parameters (Awan et al.) [23]. The results reveal that the developed models surpass their
predecessors in terms of the prediction and generalization of re-output parameters. How-
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ever, such models are prediction models. Based on the existing experimental research, this
study must determine a method to optimize the optimal amount of RPP in modified asphalt
with quantitative indicators. Analytic Hierarchy Process (AHP) is widely used in system
engineering. It essentially establishes a judgment matrix by comparing two factors and
takes the ranking weight value based on the judgment matrix. It has obvious systematic
and comprehensive characteristics [24] and is a suitable evaluation method for this study

The purpose of this paper is to make use of the advantages of RPP that can significantly
enhance the high-temperature rutting resistance and temperature sensitivity of asphalt,
and SBS that can enhance the low-temperature toughness of asphalt to produce RPP/SBS
composite modified asphalt with better high- and low-temperature performances. Three
index tests, the dynamic shear rheology test and the bending beam, creep stiffness test, were
performed to analyze the improvement of RPP and SBS at the high and low temperatures
of base asphalt under different scenarios. In particular, the modification and compatibility
mechanisms were analyzed at the micro level through infrared spectrum scanning and
fluorescence microscope tests. The comprehensive performance index of modified asphalt
with different RPP contents under typical traffic environment conditions in Northeast
China was calculated by combining various properties of modified asphalt with an analytic
hierarchy process, and the modifier content was optimized to determine the optimal RPP
content with quantitative indicators. This study promotes the application of waste plastics
in road engineering and environmental protection and can help to reduce waste and save
costs. The specific research method of this study is listed in Figure 1.
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Figure 1. The design process of this study.

2. Materials and Methods
2.1. Test Materials
2.1.1. SBS Modified Asphalt

SBS-modified asphalt is prepared by mixing SBSYH-792E modifier (produced by
Sinopec, see Table 1 for basic performance parameter) and SK-90 base asphalt (Hohhot,
Inner Mongolia, China) in the laboratory (Table 2), with an SBS modifier content of 4%.
According to previous experimental studies, when SBS and polyolefin modifiers are com-
bined, the comprehensive road performance of modified asphalt is optimized at the SBS
content of 4% [25]. Figure 2 depicts the proposed modifier.
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Table 1. Basic Performance Parameters of SBS.

Project Appearance Molecular Structure S/B (Mass Ratio) Shore
Hardness (A)

Tensile Strength
(MPa)

Technical indicators Linetype White loose column 40/60 86 24.6

Table 2. Performance parameters of SK-90 base asphalt.

Technical Index Test Results Technical Requirements

Penetration (25 ◦C)/(0.1 mm) 84.7 80–100
Softening point (ring and ball method)/◦C 47.7 ≥45

Ductility (5 ◦C)/cm 11.4 -
Dynamic viscosity (60 ◦C)/Pa s 178.3 ≥160

Solubility (%) 102.8 ≥99.9
Brookfield Viscosity (135 ◦C/Pa·s) 0.349 -

Density (25 ◦C)/(g/m3) 1.04 -
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2.1.2. Waste Polypropylene (RPP)

A recycled polypropylene woven bag (polypropylene used as raw material) was
selected as the modifier, and its basic physical properties are shown in Table 3. The bag was
washed with clean water, placed into an oven to dry the surface moisture, and subsequently
cut into 1 cm (side length) pieces to be used as an asphalt modifier [3]. Figure 3 presents
the waste PP modifier.
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Table 3. Basic Physical Properties of RPP.

Project Melting Point (◦C) Melting Rate (g*10 min−1)

Test result 115–139 4.5–6.0

2.2. RPP/SBS Modified Asphalt Preparation

In order to fully mix the modifier with the base asphalt, the modified asphalt was
prepared by melting and mechanical blending. Based on the optimal preparation process
of RPP-modified asphalt described in previous research [26], this study heated the base
asphalt at 135 ◦C to a molten state and placed it on a 165 ◦C hot plate for the addition of
the SBSYH-792E modifier. The mixture was then stirred at a speed of 400 r/min for 30 min
until there were no obvious particles on the surface of the blend. Following this, 1%, 2%,
3%, 4% and 5% RPP were added, respectively, and the mixture was placed on a heating
plate, heated to 170 ◦C, stirred at 500 r/min for 30 min, and blended at a rotor speed of
5000 r/min. This was followed by shearing at 175 ◦C for 90 min and swelling at 160 ◦C for
45 min to obtain the RPP/SBS composite modified asphalt. Figure 4 presents the specific
preparation process.
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2.3. Test Methods
2.3.1. Routine Performance Test of Asphalt

The softening point (R&B), penetration (25 ◦C), and ductility (5 ◦C) of the RPP/SBS
modified asphalt were tested in accordance with the test standards in the Standard Test
Methods of Bitumen and Bituminous Mixtures for Highway Engineering (JTGE20-2011) [27].

2.3.2. Dynamic Shear Rheometer Test

The dynamic shear rheometer (Anton Paar MCR 302 DSR instrument) (Figure 5) was
used for the temperature scanning experiment to characterize the rheological properties
of the RPP/SBS modified asphalt. During the experiments, a continuous sinusoidal alter-
nating load was applied, and the strain control mode was adopted [28]. The test metal
plate diameter was 25 mm, and the asphalt sample thickness was 1.0 mm. Moreover,
the test temperature, strain level and rotation frequency were set as 30–85 ◦C, 1%, and
10 rad/s, respectively.
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2.3.3. Bending Beam Creep Test at Low Temperatures

The TE-BBR-F bending beam rheometer (CANNON, Melville, NY, USA) (Figure 6)
was employed for the bending creep tests of RPP/SBS modified asphalt at −12 ◦C, −18 ◦C
and −24 ◦C under the loading process of 240 s. The low-temperature crack resistance of
the modified asphalt was evaluated according to the stiffness modulus, creep rate and k
index recorded at the 60th s [29].
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2.3.4. Infrared Spectrum Test

The modified asphalt samples were dissolved in dichloromethane to produce a 10%
solution. The effects of the different RPP modifier dosages on the chemical composition and
functional groups of SBS-modified asphalt were evaluated by Fourier transform infrared
spectroscopy (FTIR) (Figure 7) at a 4 cm−1 resolution, the number of scans was 32, and the
wavenumber test range was 4000 to 400 cm−1 [30].
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2.3.5. Fluorescence Microscope

The dispersion of the polymer modifier in the asphalt was observed using an upright
high-resolution fluorescence microscope (FM) (Figure 8). In particular, a Nikon two-photon
laser confocal superresolution microscope was employed at a magnification of 10 × 10.
The observed asphalt samples were prepared by dropping hot asphalt into glass slides and
pressing them into thin layers with cover glass [31]. Under fluorescence irradiation, the
polymer was generally observed as green and the base asphalt as black.
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3. Results
3.1. Analysis of Basic Physical Properties of RPP/SBS Modified Asphalt

The penetration (25 ◦C), softening point and ductility (5 ◦C) of modified asphalt was
tested according to the relevant requirements and test methods of the Standard Test Methods
of Bitumen and Bituminous Mixtures for Highway Engineering (JTGE20-2011). Figure 9 depicts
the influence of RPP content on the three indicators of modified asphalt.

The penetration value of RPP/SBS composite-modified asphalt is lower than that
of base asphalt and SBS-modified asphalt, while the softening point value is higher than
that of SBS-modified asphalt. After adding RPP, the 5 ◦C ductility value of composite-
modified asphalt decreases compared with that of SBS-modified asphalt, yet the reduction
is small. Moreover, at the RPP content of 2%, the softening point value of the composite-
modified asphalt increases by 20% compared with the SBS-modified asphalt, and the
ductility value decreases by 5.01%. This indicates that the high-temperature performance
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of PP/SBS composite-modified asphalt prepared with an appropriate amount of RPP is
significantly improved compared with SBS-modified asphalt, and the low-temperature
drop is very small.
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3.2. Rheological Properties of RPP/SBS Composite Modified Asphalt
3.2.1. Temperature Scanning Test and Analysis

DSR testing was performed to determine the complex shear modulus G*, phase angle
sin δ, and rutting factor G*/sin δ. The complex shear modulus G* is a measure of the total
resistance of materials during repeated shear deformation. The larger the values of G*, the
greater the stiffness of asphalt, the better its high-temperature stability and the stronger its
ability to resist flow deformation. The larger the value of G*/sin δ, the better the rutting
resistance of RPP/SBS composite-modified asphalt at high temperatures [32]. Based on the
statistics of the temperature scanning results of modified asphalt at 64–82 ◦C (Table 4), the
high-temperature performance of asphalt is analyzed by plotting Figures 10 and 11 and
Tables 4 and 5 with temperature and RPP content as the independent variables.
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Table 4. Influence of temperature and RPP content on G* (kPa) of modified asphalt.

RPP Content 64 ◦C 70 ◦C 76 ◦C 82 ◦C

0 2.260 1.310 0.744 0.470
1 3.072 1.616 1.011 0.732
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Table 5. Influence of temperature and RPP content on the G*/sin δ (kPa) of modified asphalt.

RPP Content 64 ◦C 70 ◦C 76 ◦C 82 ◦C

0 2.413 1.413 0.867 0.493
1 3.345 1.785 1.076 0.546
2 4.423 2.373 1.418 0.735
3 4.735 2.546 1.493 0.866
4 5.012 2.622 1.582 0.791
5 5.243 2.852 1.635 0.971

The composite shear modulus G* represents the ability of the sample to resist deforma-
tion during repeated shearing. It is the ratio of the maximum shear stress to the maximum
shear strain. Figure 10 reveals that, within the test range of 64–82 ◦C, the G* values of
the matrix asphalt, SBS modified asphalt and RPP/SBS composite modified asphalt all
decrease with the increasing temperature. This is attributed to the reduction in the force
and the cross-linking relationship between asphalt molecules as the temperature increases,
as well as the lower asphalt elasticity. Thus, the viscosity component increases while the
anti-deformation ability of asphalt and the G* value decreases. At 76–82 ◦C, the change
in the asphalt G* value is generally minimal, which indicates that asphalt at high temper-
atures lower than 76 ◦C is more sensitive to temperature. Within the range of 64–76 ◦C,
temperature factors play a decisive role in the composite shear modulus of asphalt.

By comparing the data in the chart under the same temperature, the G* values of
the modified asphalt types are in the order of RPP/SBS modified asphalt > SBS modified
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asphalt > base asphalt. With the addition of RPP, the G* value of modified asphalt gradually
increases at 64 ◦C. At the RPP content of 5%, the G* value of composite-modified asphalt
increases by 118% compared with SBS-modified asphalt, indicating that the addition of
RPP changes the viscoelastic composition of asphalt. In particular, RPP/SBS modified
asphalt exhibits a greater number of elastic components at the same temperature, increases
the cohesion of the asphalt binder, and thus enhances the resistance of the modified asphalt
to deformation at high temperatures.

According to Superpave regulations, when G*/sin δ = 1, the corresponding tempera-
ture is the failure temperature of the asphalt. Figure 11 demonstrates that after adding the
RPP, the rutting factor of RPP/SBS composite-modified asphalt exhibits a significant in-
crease, and the failure temperature of SBS-modified asphalt has been raised to above 76 ◦C.
This indicates that asphalt has a greater resistance to permanent deformation under high-
temperature conditions, and as the temperature increases, G*/sin δ declines sharply and
subsequently stabilizes. Under the same temperature, the G*/sin of composite-modified
asphalt δ gradually increases with the RPP content, and the maximum value is approxi-
mately twice that of the SBS-modified asphalt. Under different dosages and temperatures,
the change slope of the rutting factor is similar to that of the composite shear modulus.
This highlights the strong influence of G* on the changing trend of the rutting factor, and
the addition of RPP can effectively improve the high-temperature rutting resistance of
asphalt. In particular, the higher the dosage, the better the high-temperature performance
of modified asphalt.

3.2.2. Multi-Stress Creep Test Analysis and Results

In order to better evaluate the high-temperature performance of RPP/SBS composite-
modified asphalt, MSCR tests were conducted based on the DSR. The high-temperature
performance of asphalt was evaluated by recording the delayed elastic recovery deforma-
tion and irrecoverable deformation of road asphalt under the action of force. Applying
stress to the asphalt sample will cause deformation. After removing the stress, part of
the deformation can be observed in the form of delayed recovery, and the irrecoverable
deformation will be accumulated to the next cycle load. Under the periodic action of
unloading, the driving load of the pavement can be precisely simulated, and the high-
temperature anti-rutting performance can be analyzed more accurately with temperature
scanning [33]. The average strain recovery rate (R) and irrecoverable creep compliance (Jnr)
are commonly used to evaluate the test results. The average strain recovery rate reflects the
recovery ability of asphalt samples after elastic deformation. The larger the value of R, the
higher the elasticity of the asphalt binder and the better the high-temperature deformation
resistance. The irrecoverable creep compliance (Jnr) reflects the ability of asphalt mastic
to resist permanent deformation. The greater its value, the weaker its rutting resistance at
high temperatures. R and Jnr are calculated following Formulas (1) and (2):

R = 0.1 ∑10
i=1

σip − σinr

σip − σio
, (1)

Jnr = 0.1 ∑10
i=1

σinr − σio
τ

, (2)

where σp (%) is the peak strain of each cycle; σo (%) is the contingency for each cycle; σnr
(%) is the residual strain of each cycle, and τ (kPa) is the loading stress.

Figures 12 and 13 present the values of R and Jnr calculated under two stress states
(0.1 kPa and 3.2 kPa), respectively. Under the two stress conditions, as the temperature
increases, the R and Jnr values of the seven asphalt types are observed to decrease con-
tinuously. In addition, the R and Jnr values under the stress condition of 3.2 kPa change
more than those under the 0.1 kPa stress condition. This indicates that high temperature
and stress will reduce the elastic recovery ability and deformation resistance of asphalt. In
general, the values of R and Jnr are observed to increase, revealing that the sensitivity of
asphalt to temperature increases with temperature. This is due to the stronger fluidity of as-
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phalt at higher temperatures, which makes it difficult for it to recover in the creep recovery
stage, thus reducing the average strain recovery rate with the increasing temperature.
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Figure 12 reveals that under the two stress conditions, the R-value of the modified
asphalt increases with the RPP content while the Jnr value decreases. This indicates that
the addition of RPP changes the viscoelastic properties of the asphalt, enhancing the
elastic recovery performance of the modified asphalt and reducing the viscous deformation.
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Moreover, at the RPP content of 1% and 2%, the viscoelastic properties are observed to
improve significantly, while at the RPP content of 3–5%, the viscoelastic properties slightly
improve. The test results are consistent with the temperature scanning observations.
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3.3. Low-Temperature Cracking Performance of RPP/SBS Composite Modified Asphalt

BBR tests can characterize the influence of RPP content on the low-temperature creep
performance of asphalt. The creep properties of modified asphalt with different RPP
contents of −12 ◦C, −18 ◦C and −24 ◦C were tested by the BBR, with a stiffness modulus S
and creep rate m 60 s. Stiffness modulus S refers to the low-temperature cracking resistance
of asphalt. The smaller the value of S, the better the low-temperature performance of



Materials 2022, 15, 8616 13 of 24

asphalt. Creep rate m represents the stress relaxation ability and sensitivity of asphalt
binder stiffness with time. The larger the creep rate m, the stronger the cracking resistance
of asphalt at low temperatures. Figures 14 and 15 present the change trends of S and m for
RPP/SBS composite-modified asphalt with RPP content, respectively.
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Figure 15. Effect of RPP content on the creep rate of modified asphalt.

Figures 14 and 15 reveal that the stiffness modulus of the matrix asphalt, SBS-modified
asphalt and RPP/SBS composite-modified asphalt increases as the temperature decreases.
However, the opposite is observed for the creep rate; namely, when the temperature de-
creases, the asphalt brittleness increases, while the temperature tensile stress and resistance
to the low-temperature cracking of materials both decrease.
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At the three temperatures, the stiffness modulus S increases slowly with the addition
of RPP, while the creep rate m decreases slowly. Compared with the SBS-modified asphalt,
when the content of RPP is less than 5%, the S (m) value of the RPP/SBS composite-
modified asphalt increases (decreases) slightly. In contrast, compared with the base asphalt,
the S and m of RPP/SBS composite-modified asphalt exhibit obvious changes.

According to the Superpave regulations, S < 300 MPa and m ≥ 0.3 at the test time of
60 s. At −24 ◦C, the S value of the matrix asphalt exceeds 300 MPa, while m is less than 0.3
(Figure 13), which does not meet the standard. However, at −18 ◦C, the S value meets the
standard while the m value does not, although it is close to the standard. Therefore, the
low-temperature performance of the base asphalt at −18 ◦C cannot be clearly evaluated.

The test results demonstrate that the low-temperature performance of the matrix
asphalt is more sensitive to temperature, and the addition of RPP may affect the interaction
between asphalt molecules, thus reducing the toughness of modified asphalt. However,
the decrease is small. Following the addition of SBS, the low-temperature crack resis-
tance of RPP/SBS composite-modified asphalt is obviously improved compared with the
matrix asphalt.

As the low-temperature performance of modified asphalt is affected by factors such as
cracking resistance and the stress relaxation ability at low temperatures, considering only
the value of S or m is a limiting factor of the analysis. Therefore, in order to simultaneously
consider the low-temperature cracking resistance and stress relaxation ability of modified
asphalt, the k index is determined. In particular, the k index is strongly correlated with
the mixture; its calculation is quick and convenient, it has a high test accuracy, and it can
accurately distinguish the low-temperature performance difference between matrix and
modified asphalt [34]. The k value is determined as:

k =
S × 10−3

m
, (3)

where S and m are the stiffness modulus and creep rate of modified asphalt, respectively.
At the same temperature, the lower the stiffness modulus of modified asphalt, the

higher the creep rate, indicating the better low-temperature performance of asphalt. Thus,
the lower the k value, the better the low-temperature cracking resistance and relaxation
ability of asphalt. Taking −18 ◦C as an example, we calculate the k values of matrix
asphalt, SBS-modified asphalt and RPP/SBS composite-modified asphalt under different
RPP contents (Figure 16).
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As the Superpave requires S < 300 MPa and m ≥ 0.3, the upper limit of the k value is 1.
As shown in Figure 16, the k value of the base asphalt does not meet the standard at −18 ◦C
and −24 ◦C, while the SBS modified asphalt meets the requirements at RPP/SBS composite
modified asphalt at all temperatures. The k index also accounts for the anti-cracking
performance and stress relaxation capacity of the asphalt binder at low temperatures and
hence can more accurately detect changes in the low-temperature performance of asphalt
under different RPP contents.

3.4. Study on the Modification Mechanism of RPP
3.4.1. Fourier Infrared Spectrum

Figure 17 presents the FTIR spectra of modified asphalt, allowing us to compare the
spectral band strength of RPP/SBS composite modified asphalt and SBS-modified asphalt.
Due to the different RPP contents, the specific vibrations produced after the molecules
are excited vary with the atomic groups of the modified asphalt, and characteristic ab-
sorption peaks appear in the infrared spectrum. By observing each absorption peak, we
quantitatively analyzed the mechanism of the asphalt modification.

Materials 2022, 15, x FOR PEER REVIEW 16 of 25 
 

 

As the Superpave requires S < 300 MPa and m ≥ 0.3, the upper limit of the k value is 
1. As shown in Figure 16, the k value of the base asphalt does not meet the standard at −18 
°C and −24 °C, while the SBS modified asphalt meets the requirements at RPP/SBS com-
posite modified asphalt at all temperatures. The k index also accounts for the anti-cracking 
performance and stress relaxation capacity of the asphalt binder at low temperatures and 
hence can more accurately detect changes in the low-temperature performance of asphalt 
under different RPP contents. 

3.4. Study on the Modification Mechanism of RPP 
3.4.1. Fourier Infrared Spectrum 

Figure 17 presents the FTIR spectra of modified asphalt, allowing us to compare the 
spectral band strength of RPP/SBS composite modified asphalt and SBS-modified asphalt. 
Due to the different RPP contents, the specific vibrations produced after the molecules are 
excited vary with the atomic groups of the modified asphalt, and characteristic absorption 
peaks appear in the infrared spectrum. By observing each absorption peak, we quantita-
tively analyzed the mechanism of the asphalt modification.  

 
Figure 17. Infrared spectra of modified asphalt. 

The FTIR spectra of RPP/SBS modified asphalt exhibit strong absorption peaks at 
2925 cm−1 and 2850 cm−1, where the symmetric and antisymmetric tensile vibrations of -
CH- and -CH2- saturated hydrocarbons and their derivatives indicate that the modified 
asphalt contains saturated hydrocarbons and their derivatives. As the RPP content in-
creases, the two absorption peaks are obviously enhanced, indicating that RPP content 
will increase the content of saturated hydrocarbons in asphalt. 

A weak absorption peak appears in the wavenumber range of 2200–2400 cm−1, re-
vealing that the asphalt exhibits C≡C expansion vibration in this band. The absorption 
peak at 2305 cm−1 demonstrates that the RPP addition will increase the content of C≡C in 
asphalt. 

The vibration of asphalt within the 1600 cm−1 band denotes the absorption spectrum 
band of aromatic C = C and multi-conjugated hydrogen bound C = O stretching vibration. 

4000 3000 2000 1000 0

0

50

100

Tr
a
ns

mi
t
ta

nc
e
 (

%)

Wavenumber (cm-1)

 1%RPP-4%SBS
 2%RPP-4%SBS
 3%RPP-4%SBS
 4%RPP-4%SBS
 5%RPP-4%SBS
 4%SBS

2925

2850

2305

1600

1450

1265 700

900

Figure 17. Infrared spectra of modified asphalt.

The FTIR spectra of RPP/SBS modified asphalt exhibit strong absorption peaks at
2925 cm−1 and 2850 cm−1, where the symmetric and antisymmetric tensile vibrations of
-CH- and -CH2- saturated hydrocarbons and their derivatives indicate that the modified as-
phalt contains saturated hydrocarbons and their derivatives. As the RPP content increases,
the two absorption peaks are obviously enhanced, indicating that RPP content will increase
the content of saturated hydrocarbons in asphalt.

A weak absorption peak appears in the wavenumber range of 2200–2400 cm−1, reveal-
ing that the asphalt exhibits C≡C expansion vibration in this band. The absorption peak at
2305 cm−1 demonstrates that the RPP addition will increase the content of C≡C in asphalt.

The vibration of asphalt within the 1600 cm−1 band denotes the absorption spectrum
band of aromatic C = C and multi-conjugated hydrogen bound C = O stretching vibration.
No obvious changes are observed in the absorption peak at the 1600 cm−1 band as the RPP
content increases, yet it is significantly stronger than that of the SBS-modified asphalt. This
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indicates that RPP content will affect the change of C = C and C = O bonds but has no
obvious relationship with RPP content.

The absorption peak vibrations of asphalt at 1450 cm−1 and 1265 cm−1 represent the
variable angle vibration of -CH3, -CH2- and the umbrella vibration of -CH3, respectively.
The variation trend is the same as that at 2925 cm−1, verifying that the addition of RPP will
increase the content of saturated hydrocarbons in asphalt.

The absorption peaks in the 700–900 cm−1 band represent the out-of-plane bending
of C-H bonds and the bending vibration of rings in aromatic compounds. The absorption
peaks in this section indicate that the asphalt contains benzene substituents or adjacent
hydrogen atomic groups. Figure 17 reveals that the absorption peak is slightly enhanced
with the incorporation of RPP, demonstrating that the incorporation of RPP can slightly
increase the C-H bond content in the aromatic group.

No new absorption peaks are observed in the entire functional group area of RPP/SBS
composite-modified asphalt. Therefore, without the addition of other modifiers, the modifi-
cation of asphalt by RPP is attributed to the physical modification, namely, the improvement
in the stability of the modified asphalt system by adding morphological changes in asphalt
after the review of RPP and SBS. This enhances the high-temperature performance of
asphalt without the occurrence of chemical reactions.

3.4.2. Fluorescence Microscope Images and Compatibility Analysis

The FM image of polymer-modified asphalt can generally be divided into two different
phases: the asphalt phase and the polymer phase. However, the dominant fluorescent
phase in asphalt is the aromatic phase. When the modifier absorbs aromatic hydrocarbons,
the polymeric additive will brighten under fluorescence [35]. When the modifier absorbs
aromatic hydrocarbons, the polymerization additive will brighten the FM images of the
matrix asphalt, SBS-modified asphalt and RPP/SBS composite-modified asphalt under
fluorescence (Figure 18). Figure 18b,c reveals that RPP is distributed in a spherical shape in
the asphalt. Although the distribution is relatively uniform, there is no connection between
them. The sphere diameter increases with the RPP content. Figure 18e,f shows the network
structure following the addition of 4% SBS to the modified asphalt. As the RPP content
increases, the network structure disappears and gradually agglomerates into a whole entity.
This indicates that the excessive addition of RPP will cause the polymer to gather together,
which may induce the storage stability problem of the modified asphalt. Moreover, since
the low-temperature toughness of RPP is low, the low-temperature performance of the
modified asphalt will further decline after the polymer is agglomerated. In summary,
the addition of suitable amounts of RPP and SBS will form a network structure inside
the composite modified asphalt to cross-link with the asphalt, which is conducive to the
improvement of the asphalt performance. However, this will not be the case if too much
RPP is added.
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4. Optimization of RPP/SBS Composite Asphalt

Common, comprehensive evaluation methods include the Delphi method, the SAW
method, the analytic hierarchy process and the fuzzy comprehensive evaluation method [24].
Among them, the Analytic Hierarchy Process (AHP) is widely used and belongs to the
category of system engineering methods. Due to the outstanding systematicness and
hierarchy of AHP, the establishment of an AHP model can organize complex problems and
quantitatively reflect the subjective judgment on the importance of multiple factors, thus
avoiding the error caused by subjective judgment. Therefore, this study employs AHP to
optimize the RPP content in RPP/SBS composite-modified asphalt, taking the Northeast
region of China as an example.

4.1. Selection of Evaluation Elements Based on Asphalt Performance

When comprehensively evaluating asphalt performance, various factors such as en-
vironmental climate, traffic grade and the performance of the asphalt should be compre-
hensively considered. The factors affecting the service performance of asphalt pavement
generally require high-temperature rutting resistance, low-temperature resistance, tem-
perature sensitivity and the anti-aging performance of asphalt binder. Therefore, the
aforementioned properties are selected as the optimal evaluation elements of asphalt
performance in this study.

4.2. Optimization of Evaluation Indicators

Based on previous research, and considering that the climate in Northeast China
exhibits large temperature differences in the four seasons and low temperatures in win-
ter, the K index and ductility at −18 ◦C were adopted to evaluate the low-temperature
performance of modified asphalt. Furthermore, the rutting factor G*/sin at 64 ◦C was
used to assess the high-temperature performance of modified asphalt. The temperature
sensitivity of modified asphalt was investigated by the penetration index PI, while the
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anti-aging performance was evaluated by the short-term aging residual penetration. PI
was calculated as follows:

PI =
20 − 500AlgPen

1 + 50AlgPen
, (4)

where AlgPen is the regression line slope of penetration at different temperatures. The pene-
tration tests of five types of modified asphalt with different RPP content were performed
under three temperatures (15 ◦C, 25 ◦C, and 30 ◦C).

4.3. Grading Standards of Multiple Technical Indexes for Modified Asphalt

The scoring standard essentially divides the values of each index into four grades
(e.g., excellent, good, fair, and pass) on the basis that each technical index meets the
current Technical Specification for the Construction of Highway Asphalt Pavement. The
proportions of the grades are 20%, 30%, 30% and 20%, with corresponding scores of 9, 8,
7 and 6, respectively. If a technical index does not meet the specification requirements,
the asphalt cannot be used in the project. Table 6 reports the numbers for each group of
modified asphalt. The values of each evaluation index are shown in Table 7, while Table 8
reports the grade score intervals, and the scores of each group of modified asphalt are listed
in Table 9.

Table 6. RPP content of modified asphalt.

Grade RPP (%)

A 1
B 2
C 3
D 4
E 5

Table 7. Summary of evaluation indexes of each modified asphalt group.

Bitumen Type A B C D E SBS Modified
Asphalt

G*/sinδ (64 ◦C)/KPa 3.34 4.42 4.73 5.01 5.24 2.41
k (MPa) 0.0645 0.06996 0.08457 0.09549 0.10837 0.05766

Ductility (5 ◦C)/cm 33.9 31.7 27.3 25.2 21.3 38
Penetration index PI 0.94 1.26 1.07 0.84 0.73 0.87

Residual penetration ratio (25 ◦C)/% 69.5 77.8 81.1 72.6 66.3 73

Table 8. Determination of adjacent grade scores.

Mark 0 6 7 8 9

G*/sinδ (64 ◦C)/KPa <2 2–3 3–4 4–5 >5
k (MPa) >1.1 1–1.2 0.8–1 0.6–0.8 <0.6

Ductility (5 ◦C)/cm <20 20–25 25–30 30–35 >35
Penetration index PI <0.7 0.7–0.8 0.8–0.9 0.9–1 >1

Residual penetration ratio (25 ◦C)/% <60 60–65 65–70 70–75 >75

Table 9. Scores for each modified asphalt group.

Bitumen Type A B C D E SBS Modified
Asphalt

G*/sinδ (64 ◦C)/KPa 7 8 8 9 9 6
k (MPa) 8 8 7 7 6 9

Ductility (5 ◦C)/cm 8 8 7 7 6 9
Penetration index PI 8 9 9 7 6 7

Residual penetration ratio (25 ◦C)/% 7 9 9 8 7 8
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4.4. Weight Determination of Optimal Evaluation Elements
4.4.1. Determination of Weight Based on the Comparison Matrix Method

In the analytic hierarchy process, the comparison matrix method is used to deter-
mine the weight of each element, which can clarify the fuzzy concept and determine the
important order of each element. First, the four evaluation elements are arranged into
4 × 4 matrices. The matrix values are determined according to the importance of each
element by pairwise comparisons of the elements. The maximum eigenvalue of the matrix
and corresponding maximum eigenvector is then calculated, and a consistency check is con-
ducted. If the consistency check is passed, the maximum eigenvector is considered to be the
weight vector. Using this method, the evaluation element universe R, R = (r1, r2, r3, r4),
is established, and two elements ri (i = 1, 2, 3, 4) and rj (j = 1, 2, 3, 4) are selected to
compare the importance of the two elements; rij represents the judgment value of the
importance of element ri to element rj. Table 10 reports the corresponding relationship
between the importance and actual values.

Table 10. Judgment matrix scale and its definition.

Importance (ri vs. rj) Judgment Matrix Scale rij (5/5–9/1 Scale)

Equal importance (level 0) 5/5 = 1
Slightly important (level 1) 6/4 = 1.5

More important (level 2) 7/3 = 2.33
Very important (level 3) 8/2 = 4

Absolutely important (level 4) 9/1 = 9

Intermediate state (-) 5.5/4.5 = 1.222 6.5/3.5 = 1.875
7.5/2.5 = 5 8.5/1.5 = 5.667

Table 11 presents the established comparison matrix model. In this study, high-
temperature performance is selected as the benchmark. With the exception of the high-
temperature performance, the importance of each factor is calculated according to the
high-temperature performance. Through the pairwise comparisons of each factor, we get:

rij (i = 1, 2, 3, 4; j = 1, 2, 3, 4)

and establish the following matrix:

R =


r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44

.

The northeast region of China (2-1 and 2-2) is selected to calculate the performance
weights. According to the climate partition-temperature chart of asphalt pavement in
China, the high and low-temperature grades of each climate partition can be determined,
and the temperature difference range of each climate partition can be estimated. Using
the temperature difference range, each climate partition can be roughly divided into three
grades, which are respectively denoted by reference numbers 1, 2 and 3. Previous studies
indicate that the main factors affecting the aging of asphalt pavement are temperature and
the ultraviolet grade [24]. Therefore, China’s annual total solar radiation distribution map
divides China’s radiation intensity into three grades, which are also represented by 1, 2
and 3. The lower the label, the worse the climatic condition. Table 12 reports the climatic
factor grades of two sub-regions in Northeast China.
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Table 11. Comparison of matrix models.

Index
Elevated

Temperature
Property

Cryogenic Property Temperature Sensing
Performance Ageing Resistance

Elevated
temperature

property
1

Importance of high
temperature

performance/low
temperature performance

Importance of high
temperature performance/

temperature sensitivity

Importance of high
temperature

performance/aging resistance

Cryogenic
property 1

Importance of low
temperature performance/

temperature sensitivity
performance

Importance of low temperature
performance/anti-aging

performance

Temperature
sensing

performance
1 Importance of temperature

sensitivity/aging resistance

Ageing resistance 1

Table 12. Climatic element grades in Northeast China.

Climate Zoning
High

Temperature
Grade

Low
Temperature

Grade

Temperature
Difference

Grade

Ultraviolet
Radiation

Intensity Level

Coupling Grade of High
Temperature and Ultraviolet

Radiation Intensity

2-1 northeast region 2 1 1 2 2
2-2 northeast region 2 2 2 3 3

The 2-1 and 2-2 partition judgment matrices are established as follows:

2-1 partition :


1 1/1.5 1/1.5 1

1.5 1 1 1.5
1.5 1 1 1.5
1 1/1.5 1/1.5 1



2-2 partition :


1 1 1 1.5
1 1 1 1.5
1 1 1 1.5

1/1.5 1/1.5 1/1.5 1

,

and the eigenvectors of these matrixes are determined as:

W2-1 = (0.2, 0.3, 0.3, 0.2)T ,

W2-2 = (0.273, 0.273, 0.273, 0.182)T .

4.4.2. Consistency Checking of Judgment Matrix

In order to improve the reliability of the evaluation results, it is necessary to check
the consistency of the judgment matrix. The criterion for the consistency of the judgment
matrix is CI = 0 [36], and CI is calculated as follows:

CI =
λmax − n

n − 1
, (5)

where CI is the matrix consistency index; and λmax is used to judge the maximum eigen-
value of the matrix, λmax2-1 = 4, λmax2-2 = 4.
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For both partitions, λmax = 4, and thus the CI values of the two partitions are 0. This
indicates that the matrix has complete consistency and hence has high reliability. Table 13
reports the recommended performance weights in the two climate zones.

Table 13. Recommended performance weights in the two climate zones.

Climate
Zoning

Elevated Temperature
Property

Cryogenic
Property

Temperature Sensing
Performance

Ageing
Resistance

2-1 0.2 0.3 0.3 0.2
2-2 0.273 0.273 0.273 0.182

4.4.3. Calculation of Asphalt Comprehensive Performance Index

The scoring basis and performance scoring results of the road performance evaluation
indexes obtained in Section 4.4.1 are combined with the weights of the road performances
determined in Section 4.4.2 to derive the comprehensive performance index of asphalt.
The low-temperature performance of asphalt is jointly evaluated by the k index at 5 ◦C
and −18 ◦C, and thus each accounts for 50% of the low-temperature performance weight.
P represents the comprehensive performance index calculated according to the technical
index score of the asphalt road performance weight level, p.

P = AωA + BωB + CωC + DωD + EωE, (6)

where ωA, ωB, ωC, ωD, and ωE are the rutting factor, ductility, k index, penetration index
PI, and weight coefficient of the penetration ratio after aging, respectively. Table 14 reports
the comprehensive performance index of asphalt under the two climatic zones.

Table 14. Comprehensive evaluation results of asphalt in the two climatic zones.

Climate Zoning A B C D E SBS Modified Asphalt

2-1 7.6 8.5 8.2 7.6 6.8 7.6
2-2 7.553 8.463 8.19 7.735 7.007 7.462

Asphalt B (2% RPP/4% SBS composite modified asphalt) is observed to have the
highest score. Compared with the SBS-modified asphalt, the scores obtained by combining
the performance indicators of the two partitions increase by approximately 11.8% and
13.4%, respectively. Therefore, considering the multiple technical performance indicators,
the optimal content of modified asphalt is 2% RPP.

5. Conclusions

In this study, three indexes were combined with DSR, BBR, FTIR and FM testing,
and AHP to comprehensively analyze various technical properties of RPP/SBS composite
modified asphalt. The optimal content of RPP in the modified asphalt and its modification
mechanism were quantitatively determined and compared with SBS-modified asphalt. The
key conclusions of the analysis are described in the following.

(1) The addition of RPP will significantly improve the high-temperature performance
and rutting resistance of asphalt, thus reducing the temperature sensitivity of mod-
ified asphalt and enhancing its temperature sensitivity, yet it has a limited impact
on the low-temperature performance of asphalt. Following the addition of SBS, the
low-temperature performance of modified asphalt significantly improves. At the
same temperature, the rutting factor of RPP/SBS composite-modified asphalt is about
100% higher than that of SBS-modified asphalt. According to Superpave regulations,
RPP/SBS composite modified asphalt reduces the low-temperature qualified tempera-
ture of base asphalt from −12 ◦C to below −24 ◦C and increases the high-temperature
failure temperature to above 76 ◦C, Great improvements are observed in the technical
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indicators of RPP/SBS composite modified asphalt, and the actual application scope
has expanded.

(2) The infrared spectra show that the addition of RPP does not produce a new absorption
peak, and thus there is no chemical reaction between just RPP and asphalt. According
to the fluorescence microscope images, RPP and SBS form a network structure in
asphalt to cross-link with asphalt, which improves the stability of the asphalt binder.
However, the excessive RPP addition will lead to aggregation between polymers and
destroy the original structure. As a result, the storage stability and low-temperature
crack resistance of modified asphalt further deteriorate. Therefore, attention should
be paid to the control of the RPP dosage in practical applications.

(3) The weight factor optimization system of modified asphalt was established with
the analytic hierarchy process, and combined with the environmental and climatic
characteristics of Northeast China, the comprehensive performance of 2% RPP/4%
SBS composite modified asphalt was quantitatively optimized. Compared with the
SBS-modified asphalt, the comprehensive performance of 2% RPP/4% SBS composite-
modified asphalt was also significantly improved. The scores obtained from the high
and low-temperature properties (amongst other properties) suggest that the modified
asphalt should be used in cold and moderate-temperate regions, such as Northeast
China. This method aids road builders in decision-making.

Based on the test results and analysis of the current study, compared with SBS-modified
asphalt, adding the appropriate amount of RPP improves the road performance of asphalt
and expands the application scope of modified asphalt in road engineering. The establish-
ment of the optimization system provides a method for the selection of material consump-
tion in the future. The combined micro- and macro-analysis of the modified asphalt also
improve the accuracy of the test conclusions. This work is of significance for the application
of waste plastics in road engineering, and the recycling of waste plastics will promote the
construction of a resource-saving and environment-friendly society. Future research will
focus on the optimal amount of modified asphalt in the mixture, road performance, and
economic value brought by the recycling of RPP so as to more intuitively reflect its social
and economic values.
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