Optimization of 3D Printing Technology for Fabrication of Dental Crown Prototype Using Plastic Powder and Zirconia Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Filament Extrusion from PLA and ZrO2 Resins
2.3. Design of Experiment for Filament Extrusion
2.4. Design of Experiment for 3D Printing
2.5. Scanning Electron Microscopy
2.6. Differential Scanning Calorimetry
2.7. Annealing Treatment
3. Results
3.1. Comparison of PLA and ZrO2 Filament Composition
3.2. Optimization of Filament Extrusion
3.3. Optimization of 3D Printing via FDM
3.4. Thermal and Mechanical Properties of Annealed Filaments
3.5. Comparison of PLA Synthetic Filament before and after Optimization Processes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dawson, J.; Dix, G.; Harris, T.B.; Lin, W. Importance of prototype use for implant-supported complete fixed dental prosthesis (ICFDP). Compend. Contin. Educ. Dent. 2018, 39, e5–e8. [Google Scholar]
- Raszewski, Z.; Brząkalski, D.; Derpeński, L.; Jałbrzykowski, M.; Przekop, R.E. Aspects and Principles of Material Connections in Restorative Dentistry—A Comprehensive Review. Materials 2022, 15, 7131. [Google Scholar] [CrossRef]
- Baldi, A.; Comba, A.; Ferrero, G.; Italia, E.; Dds, R.M.T.; Paolone, G.; Mazzoni, A.; Breschi, L.; Scotti, N.; Dds, A.B.; et al. External gap progression after cyclic fatigue of adhesive overlays and crowns made with high translucency zirconia or lithium silicate. J. Esthet. Restor. Dent. 2021, 34, 557–564. [Google Scholar] [CrossRef]
- Logozzo, S.; Zanetti, E.M.; Franceschini, G.; Kilpelä, A.; Mäkynen, A. Recent advances in dental optics–Part I: 3D intraoral scanners for restorative dentistry. Opt. Lasers Eng. 2014, 54, 203–221. [Google Scholar] [CrossRef]
- Davidowitz, G.; Kotick, P.G. The Use of CAD/CAM in Dentistry. Dent. Clin. N. Am. 2011, 55, 559–570. [Google Scholar] [CrossRef]
- Loges, K.; Tiberius, V. Implementation Challenges of 3D Printing in Prosthodontics: A Ranking-Type Delphi. Materials 2022, 15, 431. [Google Scholar] [CrossRef]
- Mohan, N.; Senthil, P.; Vinodh, S.; Jayanth, N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys. Prototyp. 2017, 12, 47–59. [Google Scholar] [CrossRef]
- Almazdi, A.A.; Khajah, H.M.; Monaco, E.A.; Kim, H. Applying microwave technology to sintering dental zirconia. J. Prosthet. Dent. 2012, 108, 304–309. [Google Scholar] [CrossRef]
- Cui, X.; Boland, T.; D’Lima, D.; Lotz, M.K. Thermal Inkjet Printing in Tissue Engineering and Regenerative Medicine. Recent Pat. Drug Deliv. Formul. 2012, 6, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Mohd Ariffin, M.; Sukindar, N.; Baharudin, B.; Jaafar, C.; Ismail, M. Slicer Method Comparison Using Open-source 3D Printer. IOP Conf. Ser. Earth Environ. Sci. 2018, 114, 012018. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Hoy, M.B. 3D Printing: Making Things at the Library. Med. Ref. Serv. Q. 2013, 32, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Dezaki, M.L.; Ariffin, M.K.A.M.; Hatami, S. An overview of fused deposition modelling (FDM): Research, development and process optimisation. Rapid Prototyp. J. 2021, 27, 562–582. [Google Scholar] [CrossRef]
- Garlotta, D.; Doane, W.; Shogren, R.; Lawton, J.; Willett, J. Mechanical and thermal properties of starch-filled poly (D,L-lactic acid)/poly (hydroxy ester ether) biodegradable blends. J. Appl. Polym. Sci. 2003, 88, 1775–1786. [Google Scholar] [CrossRef]
- Matsuzaki, R.; Ueda, M.; Namiki, M.; Jeong, T.-K.; Asahara, H.; Horiguchi, K.; Nakamura, T.; Todoroki, A.; Hirano, Y. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation. Sci. Rep. 2016, 6, 23058. [Google Scholar] [CrossRef] [Green Version]
- Osswald, T.A.; Puentes, J.; Kattinger, J. Fused filament fabrication melting model. Addit. Manuf. 2018, 22, 51–59. [Google Scholar] [CrossRef]
- Chia, H.N.; Wu, B.M. Recent advances in 3D printing of biomaterials. J. Biol. Eng. 2015, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Alghazzawi, T.F. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef]
- Kim, M.M.; Kim, B.S.; Ha, J.R.; Kim, S.K.; Yi, J.W.; Lim, J.Y. Interfacial Optimization of Lyocell Fabric/PLA with Silane Treatments. Adv. Mater. Res. 2010, 123, 1155–1158. [Google Scholar] [CrossRef]
- Letcher, T.; Waytashek, M. Material Property Testing of 3D-Printed Specimen in PLA on an Entry-Level 3D Printer. In Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Montreal, QC, Canada, 14–20 November 2014. IMECE2014-39379, V02AT02A014. [Google Scholar]
- Corcione, C.E.; Gervaso, F.; Scalera, F.; Montagna, F.; Sannino, A.; Maffezzoli, A. The feasibility of printing polylactic acid-nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. J. Appl. Polym. Sci. 2016, 134, 44656. [Google Scholar]
- TurboSquid. Available online: https://www.turbosquid.com/3d-models/free-tooth-roots-3d-model/763377 (accessed on 25 November 2020).
- Kiattipornpithak, K.; Thajai, N.; Kanthiya, T.; Rachtanapun, P.; Leksawasdi, N.; Phimolsiripol, Y.; Rohindra, D.; Ruksiriwanich, W.; Sommano, S.R.; Jantanasakulwong, K. Reaction Mechanism and Mechanical Property Improvement of Poly(Lactic Acid) Reactive Blending with Epoxy Resin. Polymers 2021, 13, 2429. [Google Scholar] [CrossRef] [PubMed]
- Srithep, Y.; Nealey, P.; Turng, L.-S. Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym. Eng. Sci. 2012, 53, 580–588. [Google Scholar] [CrossRef]
- Silverajah, V.; Ibrahim, N.; Zainuddin, N.; Yunus, W.; Hassan, H. Mechanical, thermal and morphological properties of poly (lactic acid)/epoxidized palm olein blend. Molecules 2012, 17, 11729–11747. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wu, N.; Pochiraju, K. Shape recovery characteristics of SiC/C/PLA composite filaments and 3D printed parts. Compos. Part A: Appl. Sci. Manuf. 2018, 108, 1–11. [Google Scholar] [CrossRef]
- Favier, I.; Pla, D.; Gómez, M. Metal-based nanoparticles dispersed in glycerol: An efficient approach for catalysis. Catal. Today 2018, 310, 98–106. [Google Scholar] [CrossRef]
- Han, H.; Wang, X.; Wu, D. Preparation, crystallization behaviors, and mechanical properties of biodegradable composites based on poly (L-lactic acid) and recycled carbon fiber. Compos. Part A Appl. Sci. 2012, 43, 1947–1958. [Google Scholar] [CrossRef]
- Al-Dulaijan, Y.A.; Alsulaimi, L.; Alotaibi, R.; Alboainain, A.; Alalawi, H.; Alshehri, S.; Khan, S.Q.; Alsaloum, M.; AlRumaih, H.S.; Alhumaidan, A.A.; et al. Comparative Evaluation of Surface Roughness and Hardness of 3D Printed Resins. Materials 2022, 15, 6822. [Google Scholar] [CrossRef] [PubMed]
- De Carvalho, J.G.; Zanini, N.C.; Claro, A.M.; Amaral, N.C.D.; Barud, H.S.; Mulinari, D.R. Composite filaments OF PHBV reinforced with ZrO2·nH2O particles for 3D printing. Polym. Bull. 2021, 79, 2113–2132. [Google Scholar] [CrossRef]
- Alsoufi, M.; Elsayed, A. Quantitative analysis of 0% infill density surface profile of printed part fabricated by personal FDM 3D printer. Int. J. Eng. Technol. 2017, 7, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.; Hillgartner, K.; Han, S.; Seppala, J. Mechanical strength of welding zones produced by polymer extrusion additive manufacturing. Addit. Manuf. 2017, 16, 162–166. [Google Scholar] [CrossRef]
- Ahn, S.-H.; Montero, M.; Odell, D.; Roundy, S.; Wright, P.K. Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Tlegenov, Y.; Hong, G.S.; Lu, W.F. Nozzle condition monitoring in 3D printing. Robot. Comput. Integr. Manuf. 2018, 54, 45–55. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.Z.; Yu, W.W.; Deng, Y.H. Numerical investigation of the influence of process conditions on the temperature variation in fused deposition modeling. Mater. Des. 2017, 130, 59–68. [Google Scholar] [CrossRef]
- Chacón, J.M.; Caminero, M.A.; García-Plaza, E.; Núñez, P.J. Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Mater. Des. 2017, 124, 143–157. [Google Scholar] [CrossRef]
- Moby, V.; Dupagne, L.; Fouquet, V.; Attal, J.P.; François, P.; Dursun, E. Mechanical Properties of Fused Deposition Modeling of Polyetheretherketone (PEEK) and Interest for Dental Restorations: A Systematic Review. Materials 2022, 15, 6801. [Google Scholar] [CrossRef]
- Willems, G.; Lambrechts, P.; Braem, M.; Vanherle, G. Composite resins in the 21st century. Quintessence Int. 1993, 24, 641–658. [Google Scholar]
- Jayanthi, N.; Vinod, V. Comparative Evaluation of Compressive Strength and Flexural Strength of Conventional Core Materials with Nanohybrid Composite Resin Core Material an in Vitro Study. J. Indian Prosthodont. Soc. 2013, 13, 281–289. [Google Scholar] [CrossRef]
- Vande, A.; Sushma, R.; Malvika, S.; Abhijeet, K.; Pronob, K. A comparative study of the mechanical properties of clear and pink colored denture base acrylic resins. Ann. Afr. Med. 2018, 17, 178–182. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Berto, F.; Ayatollahi, M.R.; Reinicke, T. Characterization of 3D-printed PLA parts with different raster orientations and printing speeds. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Kizhakkinan, U.; Rosen, D.W.; Raghavan, N. Experimental investigation of fracture toughness of fused deposition modeling 3D-printed PLA parts. Mater. Today Proc. 2022. [CrossRef]
- Kallannavar, V.; Kattimani, S. Effect of temperature and porosity on free vibration characteristics of a doubly-curved skew laminated sandwich composite structures with 3D printed PLA core. Thin-Walled Struct. 2023, 182, 110263. [Google Scholar] [CrossRef]
- Queslel, J.-P.; Mark, J.E. Rubber Elasticity and Characterization of Networks. Compr. Polym. Sci. Suppl. 1989, 2, 271–309. [Google Scholar] [CrossRef]
Factors | Level | |
---|---|---|
Low (−) | High (+) | |
Melting temperature (°C) | 195 | 205 |
PLA/ZrO2 ratio (wt.%) | 10 | 20 |
Screw speed (rpm) | 20 | 30 |
Factors | Level | |
---|---|---|
Low (−) | High (+) | |
Nozzle temperature (°C) | 190 | 210 |
Infill density (%) | 80 | 100 |
Print speed (mm s−1) | 20 | 100 |
Sample | Ultimate Tensile Strength (MPa) | Elongation (%) | Young’s Modulus (GPa) | Yield Strength (MPa) | Glass Transition (°C) | Crystallization (°C) | Melting (°C) |
---|---|---|---|---|---|---|---|
PLA | 22.68 ± 1.18 a | 14.55 ± 0.61 a | 1.14 ± 0.08 a | 15.08 ± 1.66 a | 62.56 | 93.32 | 175.38 |
PLA/ZrO2 | 14.42 ± 2.10 c | 10.17 ± 3.21 b | 1.05 ± 0.07 a | 10.40 ± 1.19 b | 61.22 | 85.83 | 170.58 |
PLA/ZrO2/glycerol | 17.94 ± 0.79 b | 15.85 ± 2.11 a | 1.02 ± 0.07 a | 12.15 ± 0.68 b | 64.90 | 98.19 | 177.58 |
PLA/ZrO2/silane | 21.09 ± 1.06 a | 13.69 ± 1.00 ab | 1.14 ± 0.09 a | 14.96 ± 2.04 a | 64.90 | 98.19 | 177.58 |
PLA/ZrO2/silane/glycerol | 22.91 ± 0.99 a | 15.45 ± 1.69 a | 1.19 ± 0.15 a | 16.37 ± 1.82 a | 61.41 | 88.02 | 174.43 |
Sample | Cold Crystallization | Re- Crystallisation | Melting | Crystallinity χc (%) | |||
---|---|---|---|---|---|---|---|
Tcc (°C) | ΔHc (J g−1) | T (°C) | ΔHm° (J g−1) | Tm (°C) | ΔHm (J g−1) | ||
PLA | 89.5 | 3.82 | 156.5 | 1.14 | 175.2 | 8.08 | 3.74 |
Annealed PLA | *N/A | 0.00 | 155.3 | 1.18 | 174.3 | 8.81 | 7.47 |
PLA/ZrO2 | 100.5 | 4.62 | 162.2 | 0.72 | 177.5 | 8.90 | 5.94 |
Annealed PLA/ZrO2 | *N/A | 0.00 | 159.3 | 1.20 | 177.0 | 10.63 | 9.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennett, C.; Sojithamporn, P.; Thanakulwattana, W.; Wattanutchariya, W.; Leksakul, K.; Nakkiew, W.; Jantanasakulwong, K.; Rachtanapun, P.; Suhr, J.; Sawangrat, C. Optimization of 3D Printing Technology for Fabrication of Dental Crown Prototype Using Plastic Powder and Zirconia Materials. Materials 2022, 15, 8618. https://doi.org/10.3390/ma15238618
Bennett C, Sojithamporn P, Thanakulwattana W, Wattanutchariya W, Leksakul K, Nakkiew W, Jantanasakulwong K, Rachtanapun P, Suhr J, Sawangrat C. Optimization of 3D Printing Technology for Fabrication of Dental Crown Prototype Using Plastic Powder and Zirconia Materials. Materials. 2022; 15(23):8618. https://doi.org/10.3390/ma15238618
Chicago/Turabian StyleBennett, Chonlada, Phanumas Sojithamporn, Warinthorn Thanakulwattana, Wassanai Wattanutchariya, Komgrit Leksakul, Wasawat Nakkiew, Kittisak Jantanasakulwong, Pornchai Rachtanapun, Jonghwan Suhr, and Choncharoen Sawangrat. 2022. "Optimization of 3D Printing Technology for Fabrication of Dental Crown Prototype Using Plastic Powder and Zirconia Materials" Materials 15, no. 23: 8618. https://doi.org/10.3390/ma15238618
APA StyleBennett, C., Sojithamporn, P., Thanakulwattana, W., Wattanutchariya, W., Leksakul, K., Nakkiew, W., Jantanasakulwong, K., Rachtanapun, P., Suhr, J., & Sawangrat, C. (2022). Optimization of 3D Printing Technology for Fabrication of Dental Crown Prototype Using Plastic Powder and Zirconia Materials. Materials, 15(23), 8618. https://doi.org/10.3390/ma15238618