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Abstract: In this work, derivation of the main thermodynamic relationships is realized together with
the applied calculation of some parameters, providing the systematized description of non-linear
thermo-mechanical deformation at dynamic mechanical analysis (DMA). Obtained equations and
values agree well with experiments on different ribbon metallic glasses. We generalize the main
initial conditions (i.e., experimental and numerical parameters) by that the proposed model can be
used for the investigation of DMA in different materials. The further opportunities of the found
approach are also discussed in frames of phase transitions in metallic glass.
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1. Introduction

Formally, the study of deformation in materials has been developing in physics and
technics since the forming of different scientific fields [1]. After comprehensive inves-
tigations of the elastic response in materials [2], scientists observed isothermal [3] or
non-isothermal [4] creep and internal friction [5]. The investigated materials varied from
metals [6] or simple inorganic compositions [7] to complex polymer systems [8]. Some
deformation features (for example, yield drop, non-linear plastic stage and so on) appear-
ing at elasto-plastic deformation also are described in frames of the different structural
models [9]. Viscoelastic deformation is quite well described both in continuum mechan-
ics [10] and by the semi-empirical models [11]. However, non-isothermal conditions (with
different regimes of mechanical loading) are not properly investigated due to the absence
of a general model describing the temporal or temperature deformation function. One
of them is in material response to variable (uniform in time) heating with periodic force
impact (dynamic mechanical analysis, i.e., DMA) [12]. The study of this deformation case
by model generalization is of interest in physics and technics not only from fundamental
but also from applied standpoints.

Along with corrosion [13] and magnetic [14] properties, mechanical parameters of
different amorphous alloys (AMA) have been intensively investigated [15] since the first
synthesis of metallic glass (MG) [16]. As these materials have some quantitative advantage
by the mentioned properties, analysis of their behavior is more actual for the industry [17].
Viscosity [18] and dynamic properties [19] are intensively investigated in MG under differ-
ent conditions (such as annealing [20] and rolling [21]), but mainly elastic (Kelvin–Voigt)
deformation stage is the most investigated yet. Traditionally, an analogy is drawn between
amorphous alloys, polymers and liquids [22] because the interatomic disordered structure
is typical for these materials and substances [23]. However, the differences between their
chemical composition and state must be accounted, and that is not always taking place
because of insufficient data on this matter. For example, the Kauzmann paradox [24] is
proposed to exist for metallic glasses [25] but not for all cases of their deformation, the
analytical view of entropy function and other parameters, mentioned in the original work
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(i.e., in [24]), is known. Thus, taking into account described points and other ones, thermo-
dynamic description (with applied calculations) of cyclic inelastic deformation (DMA) of
as-prepared and rolled MG is the main goal of this work.

2. Materials and Methods

As a basement for this investigation, our previous experimental data on DMA of
Al- and Cu-based ribbon amorphous alloys (with ~40 µm of thickness and 4.5 mm of
width) were chosen [26–28]. The general conditions for DMA are in the presence of Fload.
Preloading (constant during an experiment) and oscillating (with ω = 6π rad/s frequency
and A amplitude) force, which impact a specimen together. Moreover, continuous heating
of alloy (with VT = 5 K/min constant rate) from the heater was carried out in t time that led
to break of the specimen in the B moment. During experiment, each specimen elongates
from l0~18.5 mm of working size (at potentially variable length) up to the critical maximum
(~27 mm). Further model analysis must be carried out, starting from our previous equations,
which were obtained in [26] for l variable deformation and Freact. reaction force:

l(t) = l0 +
Ct

B2 − Bt
, (1)

Freact.(ω; t(T)) = Fload − A sin(ωt)− 2mC

(B− t)3 . (2)

For uniform temporal heating, from T0 (~300 K) temperature to variable T one (not
above ~550 K and 568 K crystallization temperatures of Al-based and Cu-based MG,
consequently), we can write the time–temperature relationship:

t =
T − T0

VT
=

∆T
VT

. (3)

Moreover, T and T0 are temperatures of the environment near the specimen (the
pure temperature of alloy cannot be precisely measured because of technical calorimetric
principles). In our experiments, different parasitic thermal effects (such as self-heating)
arising at cyclic deformation in other systems [29] are not registered by a pyrometer or
thermocouple. For Al- and Cu-based alloys, the mean values, presented in Table 1, are
typical, among which C is a personal deformation coefficient, and m corresponds to the
mass of a specimen.

Table 1. Experimental parameters and personal material values of investigated MG.

Alloy (at.%) C, [m·s] B, [s] m, [kg] Fload, [N] A, [N]

Al85Y8Ni5Co2 0.078 3157 10−4 3.6 0.0036

Cu54Pd28P18 0.0492 2827 10−4 0.9 0.0063

Generally, parameters in Equations (1)–(3) can take different numbers, depending on
variable values of DMA. Further model derivations will be realized based on the described
Equations (1)–(3) and data from Table 1.

3. Results and Discussion

Before solving a thermodynamic problem, the boundaries of investigated system with
external and internal parameters [30] are necessary to determine. Thus, let us consider
the «load-specimen» or «machine grip-specimen» system, characterized by a = l (length)
external parameter and T temperature, and that is heated with δQ amount (of heat) for
change its dU internal energy with further doing of δW work on its environment (i.e., work
of a specimen on the machine grip and force sensors). With respect to the construction
features of the DMA machine, its furnace can be considered a container that does not
exchange heat with external space. As a generalized force in this system, reaction one
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(2) is chosen, and its analytical form can be represented as a function both of length
and temperature [28]:

Freact.(l; T) = Fload − A sin
(

ω
T − T0

VT

)
− 2mC(

B− B2(l−l0)
C+B(l−l0)

)2(
B− T−T0

VT

) . (4)

Moreover, preloading force (i.e., Fload) is already accounted for the description of
the initial system state, and, therefore, the elastic (post-preloading) transition process in
a specimen is not necessary for consideration at DMA. Such delimitation in the system
permits optimal modeling of the oscillating force as an inner process instead as a part of the
external work performed on the specimen. This feature is also justified by the anharmonic
amplitude-frequency response of the specimen (due to the change of the ω(T) in the sinus
argument of Equation (2) or (4)) in some range at further temperature growth [26,28]. Thus,
the volume of the thermodynamic system is set some larger than the personal sizes of
a specimen, but all its parts preserve or change reversibly their properties, unlike alloy,
which deforms.

For a more valid model derivation and further analysis of DMA, the mentioned
Equation (4) also can be checked with thermodynamic criteria of a state function. It is
possible to do this with generalized force (4) by the equation of a differential form [31].

In this case, equality of the mixed partial derivatives
(

∂2Freact.(l;T)
∂l∂T

)
T
=
(

∂2Freact.(l;T)
∂T∂l

)
l

takes

place, and both parts are equal to − 4mB2C2

VT

(
B− T−T0

VT

)5
(C+B(l−l0))

2
. On the whole Σ(l;T) definition

domain and trajectory l(T), i.e., on a deformation curve (process), the function (4) is contin-
uous. Therefore, proposed equations can be considered for a deterministic description of
deformation because Freact. value is the state function, described by an equation of state,
i.e., by Equation (4), on the Σ(l;T) connected domain. Note that, because of the metastable
initial state, the deformation of metallic glass can be considered in frames of equilibrium
thermodynamics with a possible change of the obtained equations onto inequalities at
non-equilibrium conditions (for example, near the crystallization temperature). As the
thermal equation of state is known, the caloric one, i.e., full internal energy, can be found.
From the first thermodynamic law δQ = dU + δW, full energy ∆U will be determined as
the difference between whole heat ∆Q and work ∆W. Moreover, this law (equation) is
integrated with respect to the deformation process (L(l(T);T) with a non-linear trajectory),
taking into account Equation (4), i.e., as

∫
L

δQ =
∫
L

dU +
∫
L

δW =
∫
L

dU +
∫
L

Freact.(l; T)dl.

We also notice that curvilinear integral over δQ must be conditionally equalized to the full
amount of heat received from an electric heater in a furnace (by Joule’s law)

∆Q = Pt = P
∆T
VT

(5)

where P is electrical heater power and t is heating duration according to Equation (3). This
condition can give some overvalue number for real heating of alloy because of secondary
heat transfer from the thermal element to inner furnace walls and environment of a spec-
imen. However, this value has a fixed limit, not exceeding all generated heat (5), and it
permits estimation of the system dynamics up to the constant difference. Actually, the
amount of heat, passing only through the specimen, could be calculated with the different
thermal models (such as Fourier or Maxwell–Cattaneo laws) instead of Equation (5), but the
real heat flow dynamic and its spatial distribution in the alloy are hard to estimation from
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the experimental standpoint. Therefore, we use standard full estimation (5) for analysis.
After curvilinear integration of δW, an equation for work at DMA of MG has a form:

∆W =
FloadC(T − T0)− ACΘ(T − T0)

BVT

(
B− T−T0

VT

) +

C2m
((

B− T−T0
VT

)4
− B4

)
2B4

(
B− T−T0

VT

)4 , (6)

where Θ (|Θ| ≤ 1) is a multiplier of
T∫

T0

AC sin
(

ω(T−T0)
VT

)
VT

(
B− T−T0

VT

)2 dT, according to the mean value

theorem [31], which takes place at curvilinear integration, then, full internal energy will be
determined as:

∆U = ∆Q− ∆W = P
∆T
VT
− (FloadC− ACΘ)(T − T0)

BVT

(
B− T−T0

VT

) −
C2m

((
B− T−T0

VT

)4
− B4

)
2B4

(
B− T−T0

VT

)4 . (7)

Analysis of Equation (6) shows that work conducted in the considered system is
positive that corresponds to the action of the deformation force, directed along a total
shift of the machine grip. Up to the term of supplied heat, the full internal energy of the
specimen decreases during deformation (see Figure 1).
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Amplitude-frequency and phase-frequency modulations, arising at the deformation of 
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about the strong relationship between these values and the deformation conditions of the 

Figure 1. Change of full internal energy in Al85Y8Ni5Co2 MG with rolling (red dots) or without it
(blue dots). The glass-transition temperature (Tg) is mentioned with the arrow.

The calculated curves in Figure 1 correlate with our hypothesis (in the collective
work [28]) about structural rearrangement to a more uniform change of full internal energy
after rolling. It also agrees with our interpretation that rolled and as-prepared specimens
achieve joint minimal energy points near Tg (~540 K) [28]. Amplitude-frequency and
phase-frequency modulations, arising at the deformation of amorphous alloys [26–28], do
not sufficiently impact the main decrease tendency of function (7), but some variation for
its rate takes place. Change of C and B parameters corresponds quantitatively with the
thermodynamic functions (4)–(7) that also testifies about the strong relationship between
these values and the deformation conditions of the material. Moreover, by Equation (7),
we obtain the same tendency for Cu-based alloy (decrease of ∆U(T) up to the minimum),
and it changes faster near personal B time (2827 s) than for Al-based one. The difference in
energy dynamics of both alloys (if we compare their B parameters from Table 1) causes a
relatively earlier fracture of the Cu-based ribbon. However, any comparison of these alloys
in an amorphous state is limited by Tg of copper-based MG (528 K) [27].

In some works on metallic glass thematic (such as described in the review [32]), the
structural condition is described in frames of energy Arrhenius model, i.e., by Maxwell–
Boltzmann (generally, Gauss) statistics. Moreover, this approach is often supposed to
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be applicable for the glass transition region. However, by definition [33], the mentioned
statistics take place in the equilibrium state with a predominantly fixed temperature that
obstructs the model using in more complex cases (for example, in a non-isothermal process
with loading or at a phase transform point). Someone can note the necessity in a more
complex modified exponential function at a strong behavioral deviation of alloy from ideal
normal distribution [34]. These features make necessary a thermodynamic estimation of
statistics in the conditions of DMA.

By opening the brackets in Equation (7) with further term division of the numerator
by the denominator, full internal energy can be represented in a form:

∆U = P
∆T
VT
− FloadC

B− T−T0
VT

+
FloadC

B
+

ACΘ

B− T−T0
VT

− ACΘ
B

+
C2m

2
(

B− T−T0
VT

)4 −
C2m
2B4 . (8)

Then, the remembered expression of 〈U(T)〉mean (i.e., expected) energy by its distri-
bution (and probability density function, i.e., PDF) [33], we can write the equations:

∆U(T1/2) ∼ 〈U(T)〉 =
∫
T

U(T) f (T)dT; (9a)

d〈U(T)〉
dT = U(T) f (T) ∼ d(∆U(T1/2))

dT =

= P
VT
− FloadC

VT

(
B− T1/2−T0

VT

)2 +
ACΘ

VT

(
B− T1/2−T0

VT

)2 +
2C2m

VT

(
B− T1/2−T0

VT

)5
, (9b)

where T1/2 is the mean experimental temperature (~430 K), ∆U(T1/2) is the function value
of (8) at the middle-temperature point, f (T) is a derivative of the distribution function (in
the differential dP(T) = P′(T)dT = f (T)dT, i.e., PDF. T1/2 can be considered as a variable if we
describe the whole experimental data array, i.e., variation of the experimental mean point is
taken into account for different DMA tests occurring for the same alloy system (specimen
set) in frames of Equation (8). In the second term of (9b), we note the U1 = FloadC

B− T1/2−T0
VT

multiplier, also being in (8), and write the recurrent equation (that takes place not only in
T1/2 point but at different T):

dU1

dT
=

U1

VT

(
B− T−T0

VT

) , (10)

which is a differential one with separated variables, and its general solution (i.e., U1) can
be represented in a form:

U1 = M1 exp

∫ dT

VT

(
B− T−T0

VT

)
 (11a)

where M1 is an integration constant. Performing similar steps in the third and fourth terms
in (9b), let us derive equations:

U2 = M2 exp

∫ dT

VT

(
B− T−T0

VT

)
, U3 = M3 exp

∫ 4dT

VT

(
B− T−T0

VT

)
 (11b)
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in which M2 and M3 are integration constants of the corresponding differential equations.
By substitution of (11a) and (11b) in the left part of (9a) instead U1, U2 and U3 with M0
notation for a sum of all remained terms, we find the relationship:

M0 + M1 exp(τ) + M2 exp(τ) + M3 exp(4τ) ∼ 〈U(T)〉 =
∫
T

U(T) f (T)dT, (12)

where τ =
∫ dT

VT

(
B− T−T0

VT

) . Using the mean value theorem for the integral in (12), let us

derive the expression:

M0 + M1 exp(τ) + M2 exp(τ) + M3 exp(4τ) ∼ 〈U(T)〉 = u
∫
T

f (T)dT (13)

where both parts can be divided by u (i.e., mean value of U(T) at T~T1/2), and after
differentiation by T, the final estimation form for PDF will be found as:

α0 + α1 exp(τ) + α2 exp(τ) + α3 exp(4τ) ∼ f (T) (14)

with αk exponential coefficients (i.e., the quotients of Mk/u, (k = 0–3)).
As seen from (14), f (T) can be described by the sum of exponents, and its normalizing

condition
∫
T

f (T)dT = 1 will be determined by the equality between u and the sum in

the left part of (13), i.e., the precise equation between 〈U(T)〉 and ∆U(T1/2) is potentially
possible at T = T1/2 (or description will be qualitative at T~T1/2). Moreover, the number of
terms (depending on Mk) and value of τ argument in exponents provide the view of f (T)
in each experiment. This variation of the coefficients can lead to quite different functional
representations, which have a similar curve form but not the same interpolation accuracy
for the experiment. Integrals in exponent arguments (i.e., in Equation (11a,b)) also can
be considered in frames of mean value theorem that gives ∼ exp

(
∆T

VT(B−∆T1/2VT−1)

)
an

expression for them. Moreover, by exact integration in τ, ∼ 1
B−∆T1/2VT−1 expression is an

alternative form for the same equations with analogous functional behavior, compared with
exponents. The existence of many analytical representations for f (T) (also at the numerical
fitting of experiments [32]) can be caused by a change of interaction behavior between atoms
and molecules in metallic glass. Arrhenius equation is typical for more ideal equilibrium
systems with independent «particles» interacting elastically with one another [33]. The
presence of non-elastic pair interactions between «particles» leads to a change of PDF and
related values, which can be observed in Debye’s and Einstein’s works on heat capacity or
in Van der Waals’s article, for example [35]. During DMA of amorphous alloys with heating
above room temperatures, probable anharmonic interaction of the atoms and molecules
is similar to simultaneous periodical stretching of many elastic and non-elastic springs,
acting between material points. In this case, the collective resonance effects with specific
experimental signals (relaxation maxima, beating and so on) are possible.

In frames of applied thermodynamics, molar capacity and thermal expansion coeffi-
cient are often determined. Moreover, the estimation of entropy change in a process is an
important task. As we derive the main functions of the state, an analysis of the described
parameters can be provided. Particularly, from Equation (5), the average entropy change
function has a form:

∆S =
∆Q
T

= P
∆T
TVT

, (15)

and its plot is depicted in Figure 2.
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As seen from Figure 2, non-isothermal deformation with mechanical loading is in
equilibrium only at room temperature (initial conditions) because ∆S = 0. The further
temperature growth leads to the development of a non-equilibrium process (∆S > 0).
Therefore, using only equilibrium models (such as Maxwell–Boltzmann statistics) appears
to be ineffective in the high-temperature range. Moreover, from Equation (15), we can
notice that temperature impact is the main source of the entropy change, i.e., thermal
activation is a distinctive feature for this type of experiment.

Previously [36], we calculated linear thermal expansion coefficient (CLTE), whose
number value agreed with the experiment up to the integer part of a number and mag-
nitude order (αL~4·10−6–6·10−6 1/K for Cu-based and Al-based MG, consequently). It
permits estimation of molar heat capacity, which relates with CLTE linearly by γ Gruneisen
parameter [37] for many materials. In most cases, precise analytical derivation of γ is
complicated by different factors, but this proportion coefficient can be specified empirically.
As known [38], the thermal capacity of amorphous alloys varies less intensively, unlike
partially crystallized (i.e., post-annealed) one, near Tg. However, the estimation of this
value by «crystalline» data gives a confidential interval. From the literature [39], we observe
that the ratio between molar heat capacity Cmol and CLTE (i.e., b = Cmol/αL) changes on
15–30 units for most crystalline alloys, and, therefore, Cmol for Al- and Cu-based metallic
glasses lies between the numbers αL·b = 60–180 J/(mol·K). This result agrees with exper-
imental data by the magnitude order both for crystalline and amorphous alloys [40,41].
Some our model relationships can be considered as a basement for analysis of the different
systems or conditions, such as complex deformation of Al-based [42] or Ti-based alloys [43].

4. Conclusions

In this work, we carried out consistent calculations of the main thermodynamic
relations for Al- and Cu-based amorphous alloys, which underwent acting of uniform (in
time) heating and oscillating mechanical load. Non-equilibrium deformation behavior,
which limits using of Maxwell–Boltzmann statistics in a wide high-temperature interval
(above room ones), has been shown. CLTE and molar heat capacity, which are sensitive
to molecular rearrangements, are calculated in frames of the proposed model. Moreover,
our model corresponds quite precisely with experimental data from the different works on
amorphous and crystalline thematics. Derived relationships can be used to analyze DMA
in different materials that demonstrate the same behavior in similar conditions. Using
the thermal and caloric state equations permits analysis of cyclic processes and system
stability (by potentials) that can give additional information about different properties of
the investigated systems near phase transition points.
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