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Abstract: Composite coatings of polyvinylidene fluoride (PVDF)/CeO2 were developed by using the
spray approach to explore the wetting and corrosion behaviour of coated materials for applications
related to industry. PVDF was combined with different quantities of CeO2 nanoparticles followed by
spraying onto glass, aluminium, and steel substrates. The sessile droplet method and microscopy
studies were used to assess the wetting behaviour and morphology of the coated surfaces, respectively.
The corrosion resistance of uncoated substrates coated with PVDF only was compared with those
coated with PVDF/CeO2 nanoparticles through Tafel polarization techniques. In psi, the force of
adhesion was measured between the coating layer and the substrates. The PVDF/CeO2-coated
steel had a significantly greater water contact angle and lower contact angle hysteresis than coated
aluminium and glass substrates, reaching 157 ± 2◦ and 8 ± 1◦, respectively. The corrosion protection
efficiency of the superhydrophobic PVDF/CeO2 coatings was considerably higher for steel and
aluminium when compared with PVDF coatings. The PVDF/CeO2 coated substrates had modest
adhesion between the coating layer and the substrates, but it was still acceptable. Furthermore, the
PVDF/CeO2 coatings outperformed PVDF alone in terms of mechanical properties.

Keywords: superhydrophobicity; PVDF-CeO2; composite; morphology; corrosion

1. Introduction

Superhydrophobic surfaces (SHCs) have gained a considerable interest because of
their outstanding qualities such as self-cleaning, anti-sticking, and anticontamination [1].
Water repellent, self-cleaning, and corrosion-resistant superhydrophobic coatings having
a water contact angle (WCA) higher than 150◦ have piqued the attention in scientific
societies [2]. Because the phenomenon of superhydrophobicity is a result of roughness
and surface free energy, two ways for producing SHCs have been proposed: chemically
changing a substance’s surface of low surface energy, or increasing the target materials’
surface roughness [3–5].

Deposition of chemical vapor [6], hydrothermal-dip coating [7], electrochemical depo-
sition [8], sol gel [9], layer-by-layer self-assembly [10], and polymerization by plasma [11]
are some of the techniques for producing rough surfaces with a variety of microstructures
that have been documented thus far. For developing the superhydrophobic surfaces having
a WCA of more than 150◦, many processes were implemented, including hydrothermal
growth [12], pulsed laser deposition [13], chemical vapor transport and condensation [14],
and spray process [15].

The need for a cost-effective and easier approach for rapid manufacturing of superhy-
drophobic surfaces has increased, since most of the above procedures require expensive
components, more time-consuming manufacturing techniques, and the use of dangerous
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chemicals. The techniques need high priced components, usage of hazardous chemicals,
and gradual and slow fabrication techniques; this gained importance of a clear and simple
approach for mass-producing superhydrophobic surfaces that does not cost a lot of money
or has limitations should be extensively used.

Spray coating is a cost-effective and straightforward approach for a wide range of
applications. It is not bound to a specific type of substrate and can be applied to a large
surface area with ease; additionally, it rarely necessitates a more complex and expensive
application procedure [16].

Traditionally, polyvinylidene fluoride has been considered to be a hydrophobic mate-
rial. The thermal and mechanical properties of polyvinylidene fluoride make it suitable for
porous polymeric film for use in membrane distillation and filtering [17–19]. Even though
PVDF has been exposed to numerous methods for enhancing its hydrophobicity to superior
levels [20,21], only a few industrial and civil applications of superhydrophobic PVDF-based
coatings have been observed. Chaoyi et al. [18], developed a superhydrophobic PVDF
coating that possess a WCA and water contact angle hysteresis (WCAH) of 156 ± 1.9 and
2 degrees, respectively, with simple and innovative techniques.

In enhancing the properties of polymers that makes them suitable for particular com-
mercial applications, inorganic nanoparticles such as SiO2 [22,23], TiO2 [12,24], alumina [25]
ZnO [26,27], and ZrO2 [28,29] have been used in polymers. A larger fraction of inorganic
components is frequently incorporated as a result of these changes.

Among these inorganic components, the low surface energy, surface roughness, and
re-entrant structure of CeO2 particles have gained popularity, and all these are vital for at-
taining hydrophobicity. By combining solid materials such as nickel, cerium, and graphene
with the metal oxides such as TiO2, SiO2, ZnO, and CeO2 [30], the surface roughness, which
is a parameter of hydrophobicity, can be developed. The toughness and similarity with the
organic solvents needed to obtain the PVDF solution have motivated researchers to intro-
duce SiO2 instead of CeO2 (which is frequently used as an integrated particle) to enhance
the abrasion strain and scratch [31–33]. In this research, the properties of PVDF/CeO2 com-
posite coatings on steel, aluminium, and glass substrates such as wettability, morphology,
adhesion, corrosion, and hardness were examined.

2. Experimental Work
2.1. Materials

PVDF polymer (CH2-CF2)n and cerium dioxide (CeO2) nanoparticles of <100 nm
particle size were used as raw materials to synthesize PVDF/CeO2 composite coatings. In
this study, solvents such as N,N-dimethylformamide (DMF, HCON(CH3)2, >99%, reagent),
stearic acid (CH3-(CH2)16-COOH), and hexane (C6H14) supplied by the AlSAFWA Centre
(Cairo, Egypt) were also employed.

2.2. Preparation of the Coatings

Steel, aluminium, and glass substrates were first cleaned using an ultrasonic cleaner
in acetone for 8 min, then distilled water for 8 min, and then they were blown dry in a flow
of air before being coated. An amount of 5 g of PVDF was dissolved in DMF at 50 ◦C and
stirred at 500 rpm for 1 h to obtain a homogenous solution. A homogenous dispersion of
CeO2 nanoparticles was generated by dispersing different concentrations of CeO2 (1.5, 2,
and 2.5 g) in a hexane solution of granules stearic acid and stirring at 500 rpm for 1 h.
Obtaining the nanocomposites then required the addition of the CeO2 dispersion solution
to the PVDF solution. The final solution was created by vigorous mixing with a magnetic
stirrer and mild heating. To achieve a flat surface, the final solution was applied using a
spray coating procedure on the cleaned substrates. The coated substrates were then dried
for 20 min at 80 ◦C in a drying furnace. The trial conditions are summarised in Table 1.
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Table 1. Conditions of the experiments.

Substrate Coating Wt/100 mL of
Composite Solution Substrate Code

Steel

Uncoated - S1

PVDF 5.0 g S2

CeO2

1.5 g S3
2.0 g S4
2.5 g S5

Aluminium

Uncoated - A1

PVDF 5.0 g A2

CeO2

1.5 g A3
2.0 g A4
2.5 g A5

Glass

Uncoated - G1

PVDF 5.0 g G2

CeO2

1.5 g G3
2.0 g G4
2.5 g G5

2.3. Characterization Methods

At room temperature, the water contact angle (WCA) and water contact angle hys-
teresis (WCAH) were determined using the sessile droplet method with an Attension
Biolin instrument (Model: Theta Optical Tensiometers, Helsinki, Finland). Readings of
WCA and WCAH were taken on the coated substrates’ upper surface using 5 µL dis-
tilled water droplets. At least five independent determinations made at different places
were combined into one sample. The corrosion behaviour of coated steel and aluminium
substrates was investigated by measuring Tafel polarisation curves with a VersaSTAT 3
potentiostat/galvanostat (GAMRY, Munich, Germany). A three-electrode cell comprising a
working electrode, a graphite counter electrode, and a saturated calomel reference electrode
(SCE) at room temperature in 3.5 wt percent NaCl solution at a scan rate of 2 mVs−1 was
developed to carry out the corrosion tests. The electrolyte was exposed to 6.25 cm2 of
the test sample area. The adhesive force between the coating layer and the substrates
was measured using a DeFelsko Digital Pull-off Adhesion Tester (Model: PosiTest AT-M,
LANGRY, Shandong, China). With a suitable adhesive (epoxy), every sample was attached
to a 20 mm diameter dolly. Thereafter, the combination (dolly + sample) was inserted into
a tester, and force was applied to divide them.

The tested samples were sputter coated with Au and vacuum dried prior to morphol-
ogy analysis. The morphology of the surface for the produced membranes was examined
using scanning electron microscopy (SEM Model: JSM-IT200, JOEL, Tokyo, Japan) attached
with energy dispersive spectroscopy.

3. Results
3.1. Wettability Results

The existence of solid surface energy can be proved by the contact angles since they
are the differentiating parameters between solids and liquids. The best condition’s WCAH,
which is the difference between the advancing contact angle and receding contact angle,
was also observed. Coating a flat solid surfaces with fluorinated methyl groups leads to a
maximum WCA of only 120◦, which is too low to be considered superhydrophobic [34].
The wettability of the coating affects its anti-corrosion behaviour, as was studied by several
researchers [2,19,25,35,36]. CeO2 nanoparticles were placed on the solid surface to induce
superhydrophobicity. The averages of WCA and WCAH values of PVDF-CeO2 composites
are shown in Figures 1–3.
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Figure 1. Surface wetting of S1, S2, S3, S4, and S5 samples (steel substrates).
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Figure 2. Surface wetting of A1, A2, A3, A4, and A5 samples (Al substrates).

As shown in Figure 1, the WCA on uncoated steel was about 54 ± 3◦, and it was
90 ± 2◦ when coated with PVDF only, but it climbed to a high of 157 ± 2◦ upon addition
of 2.5 g of CeO2 nanoparticles. WCA was 71 ± 3◦ on uncoated Al substrates and 91 ± 2◦

when coated with PVDF only, with an extreme of 147 ± 2◦ when 2.5 g CeO2 nanoparticles
were added, as revealed in Figure 2. WCA on glass substrates was roughly 51 ± 3◦ prior
to coating, 93 ± 2◦ after coating with PVDF alone, and 155 ± 3◦ after adding 2.5 g CeO2
nanoparticles, as illustrated in Figure 3. The amount of 2.5 g of CeO2 coating on each
substrate exhibited the minimum water contact angle hysteresis (WCAH) ranging from
1 ± 0.5◦ to 5 ± 1 compared with the uncoated specimens or PVDF alone.
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Figure 3. Surface wetting of G1, G2, G3, G4, and G5 samples (glass substrates).

It was suggested to use as an optimal amount the following: For every 100 mL of the
final complex solution, 2.5 g of CeO2 can be added to enhance the super hydrophobicity of
the PVDF. The decrease in the contact angle hysteresis and increase in the water contact
angle was observed and demonstrated as follows. As the amount of CeO2 added increased,
the number of nano-sized asperities generated on the surface increased, which increased the
layer roughness. In the space between asperities and the liquid droplets, air was trapped by
the nanosized asperities that generated a solid–liquid contact surface in the form of water
droplets. This discovery bears some resemblance with the Cassie–Baxter hypothesis [1].
The WCA of air was formerly assumed to be 180◦. As stated by Cassie–Baxter’s theory, the
Yong–Laplace pressure between the interfaces hinders complete contact between liquid
droplets and the solid surface; therefore, the asperities trap air in between, resulting in a
stable solid–air–liquid three-phase interface [37].

The WCA on a flat surface (θ) and a rough surface (θ’) composed of a solid surface
and air [38] can be drawn from Equation (1).

cos
(
θ′
)
= f1cos(θ)− f2 (1)

Here, f 1 and f 2 are the solid surface and air ratios in contact with liquid, correspond-
ingly. The value of f2 for steel substrates was found to be 0.92, demonstrating that the
air was trapped in the roughened hierarchical micro/nanostructures of CeO2, which was
the main reason for superhydrophobicity in PVDF-based nanocomposites, based on the
WCAs of the flat PVDF film (∼90◦) and the PVDF nanocomposite (∼157◦). As a result,
the larger fraction of air trapped would create a higher WCA after the three phases were
stabilized. The WCAH and the WCA are both important elements in determining surface
hydrophobicity. It was observed that the increase in CeO2 concentration in the PVDF
polymer to 2.5 g/100 mL of the final complex solution enhanced the nanocomposite’s
hydrophobicity when the WCAH of the coating film on steel substrates was decreased from
37 ± 2◦ in the case of PVDF-only coating to only 5 ± 1◦ after 2.5 g of CeO2 nanoparticles
were added (Figure 1),which allows water droplets to easily roll off down the surface.

3.2. Corrosion Analysis

The corrosion resistance of PVDF and PVDF/CeO2 composite coatings was deter-
mined using potentiodynamic polarization curves (Tafel). Figures 4 and 5 show the Tafel
polarization curves for steel and Al substrates, respectively, for uncoated substrates; PVDF-
coated substrates; and PVDF + 1.5, 2, and 2.5 g CeO2-coated substrates at a scan rate of
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2 mVs−1 in 3.5 wt. percent NaCl solution. Table 2 provides a summary of the Tafel analysis
for the polarization curves.
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Figure 5. Tafel curves of uncoated Al, PVDF-coated Al, and coated Al with varying CeO2 contents of
coatings (1.5, 2, and 2.5 g) in a 3.5 percent NaCl solution at a scan rate of 2 mVs−1.

Table 2. Tafel analysis of uncoated substrates, PVDF alone, and composite coatings (PVDF + 2.5 g CeO2)
after immersion in a 3.5 percent NaCl aqueous solution; 2 mVs−1 was the scan rate.

Steel Substrates βa (mV) βc (mV)
Rp

(K Ω cm2)
CR Rate (mpy) icorr (µA/cm2) η (%)

Uncoated Steel 117 139 0.7 17 37.75 -
PVDF 73 198 6.9 0.24 3.34 91
PVDF + 2.5 g CeO2 538 689 42.6 0.22 3.08 92

Aluminium
Substrates βa (mV) βc (mV)

Rp

(K Ω cm2)
CR Rate (mpy) icorr (µA/cm2) η (%)

Uncoated Aluminium 54 122 1.9 3.54 8.26 -
PVDF 93 865 28 0.08 1.3 84
PVDF + 2.5 g CeO2 383 658 525 0.02 0.2 97
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As seen in Table 2, there was a drastic change in the corrosion current density (icorr)
of PVDF alone-coated steel and (PVDF + 2.5 g CeO2)-coated steel from 37.75 in uncoated
steel to 3.34 µAcm−2 in PVDF alone-coated steel and 3.08 µAcm−2 (PVDF + 2.5 g CeO2)-
coated steel. The icorr of PVDF alone-coated Al and (PVDF + 2.5 g CeO2)-coated Al was
reduced from 8.26 (uncoated Al) to 1.3 µAcm−2 (PVDF alone-coated Al) and 0.2 µAcm−2

(PVDF + 2.5 g CeO2)-coated Al). However, the protection efficiency was enhanced to
92% with the improved nanocomposite coating (PVDF + 2.5 g CeO2) from 91% with the
PVDF alone. An enhancement in the protection efficiency of Al from 84% (PVDF only) to
97% (PVDF + 2.5 g CeO2) was observed when we improved the nanocomposite coating.
Equation (2) gives the protection efficacy of the coatings (η) [39].

η =
i1 − i2

i1
× 100% (2)

The corrosion current densities of uncoated and coated substrates, respectively, were
i1 and i2.

The values of polarization resistance, Rp, determined using the Stern–Geary equation
are also provided in Table 2.

Rp =
βaβc

2.303(βa + βc)icorr
(3)

βa and βc are the anodic and cathodic Tafel slopes, respectively, while the polarization
resistance is Rp. The Rp value of the superhydrophobic (PVDF + 2.5 g CeO2) was found
to be 10 times higher than that of PVDF alone-coated steel, indicating that Rp for the
superhydrophobic (PVDF + 2.5 g CeO2) nanocomposite coating was about 10 times greater.

The same was true for Al substrates. When the Rp of the superhydrophobic (PVDF + 2.5 g CeO2)
nanocomposite coating was compared to that of the PVDF alone-coated Al, it is clear
that the Rp of the superhydrophobic (PVDF + 2.5 g CeO2) nanocomposite coating was
19 times higher.

This means that when coated with (PVDF + 2.5 g CeO2) nanocomposite, both steel
and aluminium were much less prone to corrosion than when coated with PVDF alone.

At the polymer surface, gaps were found due to trapped air and the inclusion of
CeO2 nanoparticles on the PVDF polymer, which prevented hostile ions from entering the
nanocomposite coating [40]. However, when only PVDF was used, the broad pore with
low pore resistance allowed aggressive ions to reach the Al surface.

3.3. Adhesion Results

Adhesion is a highly important parameter for the practical application of coatings.
Figure 6 depicts the adhesive force of the generated coatings. It is obvious that the adhesion
force values for each material of substrate in coated materials followed a similar pattern,
with PVDF coatings alone having the highest adherence with the substrates. When CeO2
nanoparticles were introduced, this adhesion was diminished. There were high adhesion
forces when they were coated with a low level of nanoparticles (1.5 g CeO2) rather than
coatings with high CeO2 concentration.

It is assumed that the high adhesive force of the generated coating surface is mostly due
to the effect of cross-linking of PVDF macromolecules through the synthesis of functional
groups (C–C or C=C) in the drying process [19]. A decline in the substrate surface’s contact
area with the heavy adhesive PVDF was observed by the involved CeO2, which made some
nanoparticles settle at the interface between the substrate and coating.

The substrate’s surfaces contact area with the heavy adhesive PVDF decreased with
the addition of CeO2, which allowed some nanoparticles to settle at the interface between
the substrate and coating, as shown by the bright areas in the crosscut in Figure 7. In terms
of adhesive superhydrophobic properties, coatings of (PVDF + 2.5 g CeO2) are preferable,
as this combination combines superhydrophobicity with moderate adhesion.
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3.4. Coatings’ Surface Morphology

The surface morphology of the generated coatings was investigated using SEM at
various magnifications. Figure 8a–c show sponge-like structures in the hydrophobic surface
microstructure, showing that the coating layer is predominantly formed of PVDF polymer
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at high magnification [27,41]. The hydrophobic sample has a uniform surface structure with
slight roughness. There are other massive microvoids beyond these formations. Figure 8c
shows how EDS was utilised to check the composition of PVDF polymer. According to
EDS studies, PVDF material consists mostly of two fluorine (F) and carbon (C) peaks.
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Figure 8. (a–c) PVDF alone coatings at various magnifications and (d) EDS peaks of point 1 in image (c).

As indicated by the bright areas in Figure 9, the addition of CeO2 nanoparticles resulted
in a considerable change in morphology (a–c). The composite coatings were comprised
of CeO2 particle aggregates, as seen in Figure 9a. As shown in Figure 9c, the micro–nano
scale structured roughness surfaces were made from CeO2 particles with a variety of
morphologies. This micro–nano scale structure aids the film’s superhydrophobicity, which
has a static WCA of 157 ± 2◦ and a WCAH of 5 ± 1◦. The EDS spectrums in Figure 9d
reveal the main chemical components of the samples comprising (PVDF + 2.5 g CeO2).
The PVDF structure had carbon and fluorine, but the integrated CeO2 structure contained
cerium (Ce) and oxygen (O). EDS elemental analysis of the coated surfaces is shown in
Table 3.
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Figure 9. (a–c) SEM images of PVDF composites containing 2.5 g CeO2 at various magnifications and
(d) EDS peaks of point 1 in image (c).

Table 3. EDS analysis of surface components on an Al substrate for PVDF alone and (PVDF + 2.5 g CeO2)
composite coatings.

Element
PVDF Only PVDF + 2.5 g CeO2

Mass % Atom % Mass % Atom %

C 55.80 59.35 33.18 53.52
F 44.20 40.65 24.90 25.40
O - - 14.25 17.25
Ce - - 27.67 3.83

Total 100.00 100.00 100.00 100.00

4. Conclusions

The following are some possible conclusions based on the preceding discussion:

1. PVDF/CeO2 composites were successfully made using spray coating processes. This
technology has the potential to be employed in wide-scale procedures and to be a
cheap solution for industrial applications.

2. The superhydrophobicity of PVDF/CeO2 composite coatings is due to the PVDF’s
low surface energy and the mixing of hierarchical micro and nanostructures of CeO2
incorporated in the polymer.
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3. If we raise the concentration of CeO2 nanoparticles to 2.5 g/100 mL, the complex
solution on the steel surface in the PVDF matrix obtained a considerable increase of
WCA from 90 ± 2◦ to 157 ± 2◦, with a fall in WCAH to 5 ± 1◦. Both Al and glass
substrates produced similar results.

4. By minimizing the size of pores in the composite coating and raising air trapping
within the surface’s gaps, CeO2 nanoparticles improve the hydrophobicity of PVDF
coatings.

5. A significant enhancement in the corrosion resistance of the superhydrophobic PVDF/CeO2
composite coatings was observed as 77 times less than the uncoated steel and 177 times
lower than the Al substrate. The corrosion rates of the prepared PVDF coating without
CeO2 nanoparticles were 71 times less than on steel and 44 times lower than on the Al
substrates.

6. Although PVDF alone has a stronger adhesive force than (PVDF + 2.5 g CeO2) com-
posite coatings, the composite’s adherence is acceptable.
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