Mechanical Properties of Polyethylene Fiber Reinforced Ultra High Performance Concrete (UHPC)
Abstract
:1. Introduction
2. Experimental Program
2.1. Raw Materials and Mix Proportions
2.2. Test Procedure
3. Results and Discussion
3.1. Compressive Strength
3.2. Tensile Behavior
3.3. Tensile Strains and Stress Curve
3.4. Tensile Toughness
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qin, J.; Dai, F.; Ma, H.; Dai, X.; Li, Z.; Jia, X.; Qian, J. Development and characterization of magnesium phosphate cement based ultra-high performance concrete. Compos. Part B-Eng. 2022, 234, 109694. [Google Scholar] [CrossRef]
- Yoo, D.; Banthia, N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem. Concr. Compos. 2016, 73, 267–280. [Google Scholar] [CrossRef]
- Gong, J.; Ma, Y.; Fu, J.; Hu, J.; Ouyang, X.; Zhang, Z.; Wang, H. Utilization of fibers in ultra-high performance concrete: A review. Compos. Part B-Eng. 2022, 241, 109995. [Google Scholar] [CrossRef]
- Schmidt, M.; Fehling, E. Ultra-high-performance concrete: Research, development and application in Europe. ACI Spec. Publ. 2005, 228, 51–78. [Google Scholar]
- Xu, S.; Wu, P.; Li, Q.; Zhou, F.; Chen, B. Experimental investigation and numerical simulation on the blast resistance of reactive powder concrete subjected to blast by embedded explosive. Cem. Concr. Compos. 2021, 119, 103989. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, F.; Li, Q.; Wu, P. A novel dynamic cavity expansion model to predict the resistance of reactive powder concrete (RPC) against projectile impact. Compos. Part B-Eng. 2021, 223, 109107. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Zhang, G. Static, dynamic mechanical properties and microstructure characteristics of ultra-high performance cementitious composites. Sci. Eng. Compos. Mater. 2012, 19, 237–245. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, S.; Park, G.J.; Park, J.J.; Kim, S.W. Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Compos. Struct. 2017, 174, 375–388. [Google Scholar] [CrossRef]
- Xu, L.; Wu, F.; Chi, Y.; Cheng, P.; Zeng, Y.; Chen, Q. Effects of coarse aggregate and steel fibre contents on mechanical properties of high performance concrete. Constr. Build. Mater. 2019, 206, 97–110. [Google Scholar] [CrossRef]
- Yu, R.; Spiesz, P.; Brouwers, H. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cem. Concr. Res. 2014, 56, 29–39. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, S.; Kim, J.J.; Chun, B. An experimental study on pullout and tensile behavior of ultra-high-performance concrete reinforced with various steel fibers. Constr. Build. Mater. 2019, 206, 46–61. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, C.; He, W.; Wu, L. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr. Build. Mater. 2016, 103, 8–14. [Google Scholar] [CrossRef]
- Wu, Z.M.; Shi, C.J.; Khayat, K.H. Investigation of mechanical properties and shrinkage of ultra-high performance concrete: Influence of steel fiber content and shape. Compos. Part B-Eng. 2019, 174, 107021. [Google Scholar] [CrossRef]
- Liu, J.; Han, F.; Cui, G.; Zhang, Q.; Jin, L. Combined effect of coarse aggregate and fiber on tensile behavior of ultra-high performance concrete. Constr. Build. Mater. 2016, 121, 310–318. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, M.; Kim, S.W.; Park, J.J. Development of cost effective ultra-high-performance fiber-reinforced concrete using single and hybrid steel fibers. Constr. Build. Mater. 2017, 150, 383–394. [Google Scholar] [CrossRef]
- Yoo, D.; Kang, S.; Yoon, Y. Enhancing the flexural performance of ultra-high-performance concrete using long steel fibers. Compos. Struct. 2016, 147, 220–230. [Google Scholar] [CrossRef]
- Dong, J.K.; Park, S.H.; Ryu, G.S.; Koh, K.T. Comparative flexural behavior of Hybrid Ultra High Performance Fiber Reinforced Concrete with different macro fibers. Constr. Build. Mater. 2011, 25, 4144–4155. [Google Scholar]
- Yoo, D.; Yoon, Y. Structural performance of ultra-high-performance concrete beams with different steel fibers. Eng. Struct. 2015, 102, 409–423. [Google Scholar] [CrossRef]
- Huang, B.T.; Wu, J.; Yu, J.; Dai, J.G.; Li, V.C. Seawater sea-sand engineered/strain-hardening cementitious composites (ECC/SHCC): Assessment and modeling of crack characteristics. Cem. Concr. Res. 2021, 140, 106292. [Google Scholar] [CrossRef]
- Yu, K.; Hou, M.; Zhu, H.; Li, V.C. Self-healing of PE-fiber reinforced lightweight high-strength engineered cementitious composite. Cem. Concr. Compos. 2021, 123, 104209. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Q.; Xu, S. Contribution of steel fiber on the dynamic tensile properties of hybrid fiber ultra high toughness cementations composites using brazilian test. Constr. Build. Mater. 2020, 246, 118416. [Google Scholar] [CrossRef]
- Huang, B.; Weng, K.; Zhu, J.; Xiang, Y.; Dai, J.; Li, V.C. Engineered/strain—Hardening cementitious composites (ECC/SHCC) with an ltra-high compressive strength over 210 MPa. Comp. Comm. 2021, 26, 100775. [Google Scholar] [CrossRef]
- Ranade, R.; Li, V.C.; Heard, W.F. Tensile rate effects in high strength-high ductility concrete. Cem. Concr. Res. 2015, 68, 94–104. [Google Scholar] [CrossRef]
- Yu, K.-Q.; Dai, J.-G.; Lu, Z.-D.; Poon, C.-S. Rate-dependent tensile properties of ultra-high performance engineered cementitious composites (UHP-ECC). Cem. Concr. Compos. 2018, 93, 218–234. [Google Scholar] [CrossRef]
- Yu, K.; Ding, Y.; Zhang, Y.X. Size effects on tensile properties and compressive strength of engineered cementitious composites. Cem. Concr. Compos. 2020, 113, 103691. [Google Scholar] [CrossRef]
- Zhang, D.; Tu, H.; Li, Y.; Weng, Y. Effect of fiber content and fiber length on the dynamic compressive properties of strain-hardening ultra-high performance concrete. Constr. Build. Mater. 2022, 328, 127024. [Google Scholar] [CrossRef]
- Yu, K.Q.; Yu, J.T.; Dai, J.G.; Lu, Z.D.; Shah, S.P. Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers. Constr. Build. Mater. 2018, 158, 217–227. [Google Scholar] [CrossRef]
- He, S.; Qiu, J.; Li, J.; Yang, E. Strain hardening ultra-high performance concrete (SHUHPC) incorporating CNF-coated polyethylene fibers. Cem. Concr. Res. 2017, 98, 50–60. [Google Scholar] [CrossRef]
- Hannawi, K.; Bian, H.; Prince-Agbodjan, W.; Raghavan, B. Effect of different types of fibers on the microstructure and the mechanical behavior of Ultra-High Performance Fiber-Reinforced Concretes. Compos. Part B-Eng. 2016, 86, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.; You, I.; Banthia, N.; Yoo, D.Y. Deposition of nanosilica particles on fiber surface for improving interfacial bond and tensile performances of ultra-high-performance fiber-reinforced concrete. Compos. Part B-Eng. 2021, 221, 109030. [Google Scholar] [CrossRef]
- Ding, Y.; Ning, X.; Zhang, Y.; Pacheco-Torgal, F.; Aguiar, J.B. Fibres for enhancing of the bond capacity between gfrp rebar and concrete. Constr. Build. Mater. 2014, 51, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Naaman, A.E.; Reinhardt, H.W. Setting the stage: Toward performance based classification of FRC composites. In Proceedings of the 4th RILEM Symposium on High Performance Fiber Reinforced Cement, Composites (HPFRCC4), Ann Arbor, MI, USA, 16–18 June 2003; pp. 1–4. [Google Scholar]
- Wille, K.; El-Tawil, S.; Naaman, A.E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cem. Concr. Compos. 2014, 48, 53–66. [Google Scholar] [CrossRef]
Loss on Ignition (%) | Sulfur Trioxide (%) | Magnesium Oxide (%) | Chloride Ion (%) | Cement Standard Consistency (%) | Specific Surface Area (m²/kg) | 28 d Flexural Strength (MPa) | 28 d Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|
1.98 | 2.21 | 1.98 | 0.013 | 28.2 | 397 | 8.3 | 53.7 |
Chemical Composition | Loss on Ignition (%) | Water Content (%) | 45 μm Sieve Surplus (%) | ||
---|---|---|---|---|---|
SiO2 ≥ 87.2 | K2O ≤ 0.86 | Na2O ≤ 0.13 | ≤3.63 | 0.77 | 1.61 |
Cement | Silica Fume | Slag | Sand | Water Reducer | Defoamer | Water |
---|---|---|---|---|---|---|
1000 | 200 | 100 | 1200 | 20 | 3 | 240 |
PE Fiber | Length (mm) | Diameter (μm) | Elastic Modulus (GPa) | Tensile Strength (MPa) | Slump of Matrix with 2% vol. Fiber (mm) |
---|---|---|---|---|---|
PA fiber | 6 | 13.5 | 82 | 2640 | 141 |
PB fiber | 12 | 13.5 | 82 | 2640 | 137 |
PC fiber | 12 | 15 | 117 | 3312 | 133 |
PD fiber | 12 | 27 | 117 | 2976 | 142 |
PF fiber | 15 | 27 | 117 | 2976 | 153 |
Specimen | (MPa) | (%) | (%) | (%) | (%) | (GPa) | (GPa) | |||
---|---|---|---|---|---|---|---|---|---|---|
PA-1 | 3.97 | 4.75 ± 0.63 | 0.006 | 0.0093 ± 0.0034 | 5.38 | 5.51 ± 0.18 | 0.305 | 0.5095 ± 0.183 | 37.88 | 42.21 ± 6.76 |
PA-2 | 4.76 | 0.011 | 5.32 | 0.778 | 50.00 | |||||
PA-3 | 5.72 | 0.014 | 5.79 | 0.572 | 38.76 | |||||
PA-4 | 4.55 | 0.006 | 5.53 | 0.383 | -- | |||||
PB-1 | 5.34 | 5.71 ± 0.62 | 0.011 | 0.0140 ± 0.002 | 6.51 | 6.15 ± 0.41 | 0.383 | 0.2736 ± 0.362 | 47.17 | 48.79 ± 3.92 |
PB-2 | 5.64 | 0.013 | 5.64 | 0.013 | 44.25 | |||||
PB-3 | 6.74 | 0.017 | 6.74 | 0.017 | 49.50 | |||||
PB-4 | 5.94 | 0.015 | 5.94 | 0.015 | 54.90 | |||||
PB-5 | 4.89 | 0.014 | 5.94 | 0.94 | 48.08 | |||||
PC-1 | 4.15 | 4.68 ± 0.87 | 0.015 | 0.0152 ± 0.0019 | 4.82 | 5.23 ± 0.71 | 0.684 | 0.6114 ± 0.134 | 48.54 | 47.34 ± 1.13 |
PC-2 | 6.11 | 0.016 | 6.6 | 0.395 | 47.17 | |||||
PC-3 | 3.49 | 0.012 | 4.6 | 0.762 | 46.30 | |||||
PC-4 | 4.83 | 0.015 | 4.95 | 0.52 | -- | |||||
PC-5 | 4.8 | 0.018 | 5.19 | 0.696 | -- | |||||
PD-1 | 3.06 | 4.69 ± 1.15 | 0.007 | 0.0125 ± 0.0035 | 5.52 | 6.13 ± 0.53 | 1.014 | 0.9148 ± 0.136 | 47.17 | 50.15 ± 4.24 |
PD-2 | 5.29 | 0.015 | 6.05 | 0.806 | 45.87 | |||||
PD-3 | 4.27 | 0.012 | 5.97 | 0.758 | 54.35 | |||||
PD-4 | 6.13 | 0.016 | 6.99 | 1.081 | 53.19 | |||||
PF-1 | 4.59 | 5.30 ± 0.78 | 0.014 | 0.0153 ± 0.0044 | 5.61 | 6.28 ± 0.66 | 1.536 | 1.1550 ± 0.553 | 48.08 | 48.63 ± 2.86 |
PF-2 | 5.58 | 0.009 | 5.96 | 0.396 | 49.50 | |||||
PF-3 | 6.45 | 0.021 | 7.37 | 1.807 | 45.05 | |||||
PF-4 | 4.59 | 0.017 | 6.18 | 0.881 | 51.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Cai, L.; Ji, X.; Zeng, W.; Liu, J. Mechanical Properties of Polyethylene Fiber Reinforced Ultra High Performance Concrete (UHPC). Materials 2022, 15, 8734. https://doi.org/10.3390/ma15248734
Zhao X, Cai L, Ji X, Zeng W, Liu J. Mechanical Properties of Polyethylene Fiber Reinforced Ultra High Performance Concrete (UHPC). Materials. 2022; 15(24):8734. https://doi.org/10.3390/ma15248734
Chicago/Turabian StyleZhao, Xin, Lei Cai, Xiaohua Ji, Wei Zeng, and Jintao Liu. 2022. "Mechanical Properties of Polyethylene Fiber Reinforced Ultra High Performance Concrete (UHPC)" Materials 15, no. 24: 8734. https://doi.org/10.3390/ma15248734
APA StyleZhao, X., Cai, L., Ji, X., Zeng, W., & Liu, J. (2022). Mechanical Properties of Polyethylene Fiber Reinforced Ultra High Performance Concrete (UHPC). Materials, 15(24), 8734. https://doi.org/10.3390/ma15248734