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Abstract: Herein we report a simple and easily scalable method for fabricating ZnO/h-BN composites
with tunable photoluminescence (PL) characteristics. The h-BN support significantly enhances
the ultraviolet (UV) emission of ZnO nanoparticles (NPs), which is explained by the ZnO/h-BN
interaction and the change in the electronic structure of the ZnO surface. When h-BN NPs are
replaced with h-BN microparticles, the PL in the UV region increases, which is accompanied by a
decrease in visible light emission. The dependence of the PL properties of ZnO NPs on the thickness
of h-BN carriers, observed for the first time, is explained by a change in the dielectric constant of
the support. A quantum chemical analysis of the influence of the h-BN thickness on the electron
density redistribution at the wZnO/h-BN interface and on the optical properties of the wZnO/h-BN
composites was carried out. Density functional theory (DFT) calculations show the appearance of
hybridization at the h-BN/wZnO interface and an increase in the intensity of absorption peaks with
an increase in the number of h-BN layers. The obtained results open new possibilities for controlling
the properties of ZnO/h-BN heterostructures for various optical applications.

Keywords: boron nitride; zinc oxide; heterostructures; photoluminescence; DFT

1. Introduction

Zinc oxide nanoparticles (NPs) have an attractive combination of optoelectronic,
antibacterial, and magnetic properties, which make them a promising material in medicine,
cosmetics, photocatalysis, solar cells, and photodetectors [1]. The optical properties of
ZnO, namely photoluminescence (PL), are of particular interest because they play a crucial
role in most of the above areas. ZnO NPs can emit in the ultraviolet (UV) range and in
the visible region. Emission in the UV region is called near-band-edge (NBE) emission
and it is associated with band-to-band transitions. Emission in the visible region is called
deep level emission (DLE) and is related to surface defects [2]. NBE and DLE are two
competing processes that can be customized by creating heterojunctions. In particular, the
PL of ZnO NPs can be controlled via surface passivation by creating core-shell structures or
coatings [3–5]. This gives the possibility of creating a versatile material in which the optical
properties of ZnO NPs can be finely tuned depending on the application without changing
the fabrication process. There is an urgent demand for such a material, because ZnO NPs
are increasingly being used in UV light emitting devices (LED) and in cosmetics, but the
requirements for the optical properties of ZnO NPs are different. In the first case, one
needs ZnO NPs to emit in the UV range (<400 nm), while in the second case UV radiation
will be harmful to the skin, so ZnO NPs emitting in the visible range (400–800 nm) are
in demand [1,6]. Layered two-dimensional (2D) materials are a promising support for
ZnO NPs, because by changing the number of layers, i.e., the thickness, it is possible to
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change the properties of the 2D material, which may directly affect the optical properties
of ZnO NPs [7,8]. In addition, it is easy to deposit ZnO NPs particles on them, which
is a prerequisite for large-scale production [9]. Among various 2D materials, h-BN has
benefits as a support material for ZnO NPs due to its wide bandgap, thermal stability,
low dielectric constant and biocompatibility [10]. The optical properties of ZnO/h-BN
heterostructures are of interest, but the role of h-BN in the photoluminescence of ZnO NPs
is not clear [11]. In this paper, we report a simple and scalable method for fabricating
versatile ZnO/h-BN heterostructures with tunable PL characteristics. A noticeable increase
in the NBE emission of ZnO NPs is observed with an increase in the h-BN thickness. The
effect of h-BN thickness on the electron density redistribution at the wZnO/h-BN interface
and on the optical properties of wZnO/h-BN heterostructures is discussed based on density
functional theory (DFT) calculations. Our findings contribute to understanding of the
optical properties of ZnO NPs interactions with 2D layered materials, which is important
for the development of versatile heterostructures for wide range of applications: from
photocatalysis to biomedicine.

2. Materials and Methods
2.1. Materials

Hexagonal h-BN platelets (Plazmoterm, Russia) with an average size of ~ 1 µm and
~100 nm (hereinafter referred to as h-BNµm and h-BNnm, respectively) and ZnO powder
(Plazmoterm, Russia) several micrometers in size (Figure 1) were used as starting ma-
terials. Zinc acetate dihydrate ((CH3COO)2Zn × 2H2O) was acquired from Lenreaktiv
(St Petersburg, Russia). Sodium hydroxide (NaOH) and isopropyl alcohol (IPA) were pur-
chased from PrimeChemicalGroup (Mytishchi, Russia).
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Figure 1. SEM image (a) and corresponding EDX spectrum (b) of commercial ZnO powder.

2.2. Synthesis

ZnO NPs were obtained as described elsewhere [12]. A total of 30 mg NaOH was
dissolved in 15 mL IPA and cooled to 0 ◦C. Then, 100 mg (CH3COO)2Zn × 2H2O was
dissolved in 25 mL IPA and then added to 125 mL IPA cooled to 0 ◦C. Then, the cooled
NaOH solution was added slowly with gently stirring. The resulting solution was placed
in a thermostat heated to 65 ◦C and kept for 1 min. After that, 50 mL of the sonicated
suspension of h-BN in IPA was added. The resulting suspension was cooled in a thermostat
for 1.5 h at a cooling rate of 0.7 ◦C/min. The heterostructures were subtracted by vacuum
filtration using a cellulose acetate filter (d = 0.2 µm) and washed with IPA.
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2.3. Characterization

The structure, chemical composition, and distribution of ZnO NPs on the h-BN
surface were studied by transmission electron microscopy (TEM) and scanning trans-
mission electron microscopy (STEM) using a FEI Technai Osiris 200 kV (FEI company,
Hillsboro, OR, USA) equipped with an energy-dispersive X-ray spectrometer (EDXS). The
morphology of h-BN micro- and nanoparticles was analyzed by scanning electron mi-
croscopy (SEM) on a JEOL 7600F (JEOL, Tokyo, Japan) equipped with an X-Max detector
(Oxford Instruments, Abingdon, UK). The phase composition of the ZnO/h-BN heterostruc-
tures was determined by X-ray diffraction (XRD) on a DRON-4 diffractometer (Bourevest-
nik, Saint-Petersburg, Russia) operating at an accelerating voltage of 40 kV, a current of
19 mA, and Co-kα radiation with a wavelength of 0.1789 nm. The size of ZnO NPs was
estimated from the X-ray diffraction pattern of ZnO/h-BN heterostructures by measur-
ing the full width at half maximum (FWHM) of non-overlapping (103) ZnO peak. The
Debye–Scherrer equation for calculating particle size is:

D =
Kλ

β cos θ
, (1)

where K is a shape factor, λ is the X-ray wavelength, β is the peak broadening at FWHM, and
θ is the Bragg angle. The chemical composition and structure of the heterostructures and
raw materials were analyzed by Fourier transform infrared (FTIR) and Raman spectroscopy
on Bruker Vertex 70 spectrometer (Bruker, Billerica, MA, USA) and Thermo DXR spec-
trometer (Thermo Fisher Scientific, Waltham, MA, USA), respectively. Photoluminescence
was studied using a Cary Eclipse fluorescence spectrophotometer (Agilent Technologies,
Santa Clara, CA, USA) at a wavelength of 325 nm. For PL study, the concentrations of
ZnO/h-BN in IPA was 0.3 mg/mL. ZnO NPs sols was studied as synthesized.

2.4. Quantum-Chemical Calculations

Quantum-chemical calculations were performed within the density functional the-
ory (DFT) [13,14] using the VASP program package [15–17]. The exchange–correlation
functional was calculated using the generalized gradient approximation (GGA) in the
Perdew–Burke–Ernzerhof (PBE) parameterization [18]. The projector-augmented wave
(PAW) [19] basis set technique was used with an energy cutoff of plane waves equal
to 520 eV. We use the DFT+U formalism in the Dudarev approach [20] with parameters
Ud = 10 eV and Up = 7 eV [21] to consider strong correlations between neighboring PAW
spheres. The first Brillouin zone was sampled according to the Monkhorst–Pack scheme [22],
and a 2 × 2 × 1 k-point mesh was chosen. To consider the van der Waals interaction, the
Grimme correction (DFT-D3) [23] was applied. A vacuum region of at least 15 Å was chosen
to avoid artificial interaction between periodic images of structures. To solve the problem
associated with two non-equivalent (0001) wurtzite ZnO (wZnO) surfaces, we used the
conventional scheme, according to which the O-terminated side of wZnO was covered
with 1/2-valence pseudo hydrogen atoms. This scheme has been successfully applied to
many semiconductors and dielectrics including wZnO [24,25]. The atomic structure was
visualized by the VESTA 3 [26] software.

To create an interface between the h-BN and wZnO structures, the “Heterotool” pro-
gram developed by Sukhanova was used. The selected heterostructure unit cell consisted
of
→
a hBN×

√
7
→
a hBN h-BN and 2

√
7
→
a ZnO×2

→
a ZnO ZnO supercells, in which the mismatch of

the individual component vectors calculated relative to the h-BN layer was less than 1.7%.
The transformation of ZnO and h-BN slabs in the resulting heterostructure can be carried
out using the matrix P:

(
a′, b′

)
= (a, b)P = (a, b)

(
P11 P12
P21 P21

)
, (2)
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where (a′, b′) are the vectors of the heterostructure components (either h-BN or wZnO),
(a, b) are the initial vectors of h-BN or wZnO. The transformation matrix P is equal to(

0 1
7 −2

)
for h-BN and

(
−6 2
−4 2

)
for wZnO slabs in the considered heterostructure.

3. Results
3.1. TEM

Characteristic STEM micrographs of ZnO/h-BN heterostructures and size distributions
of ZnO NPs are presented in Figure 2. As can be seen, size distributions of ZnO NPs
deposited on h-BNµm and h-BNnm are quite the same. ZnO NPs are uniformly deposited
on both carriers. According to the EDXS analysis (not shown), the mass fraction of ZnO
NPs was about 25% for both ZnO/h-BNµm and ZnO/h-BNnm composites.
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Figure 2. Characteristic STEM micrographs and ZnO NPs size distributions of ZnO/h-BNµm (a,c)
and ZnO/h-BNnm (b,d) heterostructures.

Figure 3 shows the high-angular dark field scanning TEM (HADF-STEM) image
with corresponding EDXS elemental maps and HRTEM image of ZnO/h-BNnm sample.
According to the STEM and EDXS analysis, the h-BN surface is covered with numerous
Zn-containing NPs. The characteristic distance between the lattice fringes of these NPs
is d = 0.260 nm (Figure 3b), which corresponds well to the (002) interplanar spacing in
hexagonal ZnO (d = 0.2603 nm, JCPDS card No. 361451).
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Figure 3. HADF-STEM image (a) with corresponding spatially resolved B, N, O and Zn EDXS
elemental maps (c) and HRTEM image (b) of ZnO/h-BNnm sample. Insets in (b) show FFT pattern
obtained from the framed area.

3.2. XRD and FTIR

The results of XRD analysis are shown in Figure 4a. Compared to the reference
sample h-BNµm, the XRD patterns of ZnO/h-BN composites reveal characteristic peaks
of hexagonal ZnO. The size of ZnO NPs, estimated by the Debye–Scherrer formula, is
3–5 nm, which is in good agreement with the results of SEM and TEM analysis. The FTIR
spectra of samples h-BNµm and h-BNnm (Figure 4b) show two characteristic h-BN peaks at
positions 804 and 1386 cm−1. The presence of these peaks is associated with out-of-plane
B-N-B bending and in-plane B-N stretching vibrations, respectively. The FTIR spectra
of ZnO/h-BNµm and ZnO/h-BNnm composites show an additional peak approximately
at 450 cm−1, which is a characteristic of Zn-O stretching vibration. Since no (-COOH)
related peaks in the range of 1100–1700 cm−1 are seen, it is reasonable to conclude that
the obtained ZnO/h-BN heterostructures do not contain residual acetate precursor or
additional functional groups.
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3.3. Photoluminescence

To study the optical properties of ZnO NPs deposited on h-BN support, room-temperature
PL spectra of ZnO/h-BN heterostructures, ZnO NPs and ZnO powder were recorded and
normalized (Figure 5).
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Figure 5. PL spectra of ZnO/h-BN samples in comparison with ZnO micron powder and ZnO NPs.

Samples show emission in three ranges: UV band with peaks at ~362 nm (~3.4 eV),
~375 nm (~3.3 eV), and ~383 nm (~3.2 eV), blue emission band with peaks at ~425 nm
(~2.9 eV) and ~445 nm (~2.8 eV), and green emission band with a broad peak around
~545 nm (~2.3 eV). The emission in the UV range is attributed to the NBE due to the
recombination of the free exciton transition. The blue band is due to the transition of an
electron from the shallow donor level of interstitial zinc atoms (Zni) to the top of the valence
band (VB). The green emission is usually associated with oxygen vacancies (Vo). A more
detailed description of the origin of each peak, with references to literature data, is given
in Table 1.
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Table 1. Possible origin of emission peaks in PL spectra of ZnO/h-BN samples.

nm(eV) Electron Transition References

~363(~3.4)
CB 1→VB

[27,28]
~375(~3.3) [29]
~383(~3.2) [30,31]

~425(~2.9) Zni→VB [5]

~445(~2.8) VZn
++ 2→VB [32]

~545(~2.3) CB→VO
++ 3 [29]

1 CB—conduction band. 2 VZn
++—ionized zinc interstitials. 3 VO

++—double positively charged oxygen vacancy.

As expected, due to the large particle size, the micron ZnO powder shows a stronger
peak in the UV region, while the as-synthesized ZnO NPs mainly emit in the visible region.
Samples ZnO/h-BNµm and ZnO/h-BNnm exhibit relatively strong emissions in both the
UV and visible regions. The most interesting observation is that, compared to ZnO NPs,
the PL of samples ZnO/h-BNµm and ZnO/h-BNnm in the UV range is much stronger. It is
noteworthy that although the size of ZnO NPs in samples ZnO/h-BNµm and ZnO/h-BNnm
is approximately the same, ZnO/h-BNµm emits much more strongly in the UV range, but
is weaker in the visible range.

4. Discussion

Considering that the sizes of ZnO NPs in the ZnO/h-BNµm and ZnO/h-BNnm sam-
ples are approximately the same, there must be another reason for their different PL
intensity in the UV range, rather than surface-to-volume ratio. The most probable explana-
tion for the weakening of DLE and the enhancement of NBE can be the particle/support
interaction, which leads to a change in the electronic structure of the metal oxide NPs [3,4].
Visible light emission arises due to the recombination of an electron from the conduction
band with a double positively charged oxygen vacancy. To generate Vo++, it is necessary to
activate a single positively charged oxygen vacancy (Vo+). This requires that a hole trapped
in surface defects tunnels to Vo+, forming Vo++. This process is faster than the exciton
recombination responsible for the NBE, but if the local electronic structure of the ZnO
surface is changed with a dielectric, there will be a decrease in the number of surface traps
due to the screening effect, which will weaken the DLE and enhance the NBE. Since the
surface of ZnO NPs is passivated because the contacting material has a different dielectric
constant, it may be the difference in dielectric constant between h-BNnm and h-BNµm
that caused the effect we observed. The dielectric constant, in turn, can depend on the
thickness of h-BN particles [33], which in our case is an order of magnitude larger for
h-BNµm compared to h-BNnm, as evidenced by the results of SEM analysis and an increase
in the intensity of the Raman peak [34] (Figure 6).

The quantum chemical calculations were performed to explain the effect of the
h-BN thickness on the electron density redistribution in the wZnO/h-BN heterostruc-
ture. Two systems were considered with a ~1.8 nm thick wZnO slab (1L-h-BN/wZnO) and
either one or four h-BN layers in the AA’ stacking (4L-h-BN/wZnO). The choice of this
stacking is due to the fact that previous studies have shown that this stacking is the one
of the most energetically favorable [35,36]. The calculated densities of states (DOSs) of
the 1L-h-BN/wZnO and 4L-h-BN/wZnO heterostructures demonstrate the difference near
the Fermi level of wZnO, and in both cases the DOSs depend on the distance from the
considered wZnO layer to the interface with h-BN (Figure 7a,b).
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Figure 7. 1L-h-BN/wZnO (a) and 4L-h-BN/wZnO (b) heterostructures and corresponding densities
of states. Red, large grey, small grey, green, and pink cycles show oxygen, zinc, boron, nitrogen, and
hydrogen atoms.

The charge difference distribution calculated as:

ρ = ρ(wZnO/h-BN)− ρ(h-BN)− ρ(wZnO) (3)

shows the appearance of hybridization between the orbitals of the h-BN monolayer closest
to the interface and the upper wZnO layer (Figure 8).
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(b) 4L-hBN/wZnO heterostructures. Yellow and blue clouds show the accumulation and loss of
electrons. The isosurface level is 5 × 10−5 e/Å3.

To study the optical properties of wZnO/h-BN composites, we considered the wavelength-
dependent complex dielectric function

ε(λ) = ε1(λ) + iε2(λ), (4)

in which the real part was calculated using the Kramers–Kronig transformation, and the
imaginary part was determined by the sum over empty states [37,38]. The extinction
coefficient in the direction parallel and perpendicular to the heterostructure surface was
calculated as:

K(λ) =


√

ε2
1(λ) + ε2

2(λ)− ε1(λ)

2

1/2

. (5)

The obtained results for the wZnO/h-BN heterostructures are shown in Figure 9, and
the individual parts of the heterostructures are depicted in Figure 10. When wZnO/h-BN
composites are irradiated with light with parallel and perpendicular polarization, three
groups of absorption peaks are observed in the UV region, located approximately at
85, 140, and 215 nm (transverse polarization) and 100, 150, and 239 nm (perpendicu-
lar polarization). It should be noted that the intensity of the absorption peaks for the
4L-h-BN/wZnO heterostructure is higher than that for 1L-h-BN/wZnO, which agrees well
with experimental results.
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the surface.

The h-BN band gap in the monolayer exceeds the value for the bulk form [39]. Accord-
ing to previous atomistic calculations [40], multilayered h-BN, despite the indirect band
gap, luminesces as strongly as direct band gap materials. Therefore, epitaxial h-BN has a
high potential in deep ultraviolet optoelectronics and quantum photonics. The band gap
arrangement of freestanding 1L-h-BN and 4L-h-BN relative to the wZnO slab is shown
in Figure 11.
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Despite the significant difference in the calculated band gap values for the wZnO slab
and h-BN, the position of the valence band minimum (VBM) of the upper layer of the wZnO
slab is lower by 2.0 and 2.4 eV than the VBM of 4L- and 1L-h-BN, respectively. The VBM of
the 4L-h-BN is 0.4 eV closer to the VBM of wZnO, which is consistent with the observed
changes in the PL spectra and enhancement in the UV region for thicker h-BN.

5. Conclusions

We have successfully deposited 3–5 nm ZnO nanoparticles (NPs) on two types of
h-BN support with sizes of about 100 nm and 1 µm. The h-BN support enhances the
photoluminescence of ZnO NPs in the UV range. When using micron-sized h-BN carriers,
the PL in the UV range is stronger, and it is weaker in the visible range compared to nano
h-BN support. This may be because h-BN, as an insulator, passivates the surface of ZnO
NPs. We assume that the degree of passivation may depend on the thickness of the h-BN
particles, which affects the electronic structure of the ZnO NPs surface. This is confirmed
by the results of DFT calculations, which indicate the appearance of hybridization at the
h-BN/wZnO interface and an increase in the intensity of absorption peaks with increasing
h-BN thickness. Thus, we have proposed a simple and scalable method for creating
ZnO/h-BN heterostructures, which makes it possible to control the PL properties of ZnO
NPs by changing the thickness of h-BN support.
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