Rational Design of Mesoporous Silica (SBA-15)/PF (Phenolic Resin) Nanocomposites by Tuning the Pore Sizes of Mesoporous Silica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Mesoporous Silica Materials
2.3. Fabrication of SBA-15-n/PF Hybrid
2.4. Preparation of SBA-15-n/PF Nanocomposites
2.5. Measurements
3. Results and Discussion
3.1. Structure and Properties of Mesoporous Silica SBA-15
3.2. Thermal Properties of M-SBA-15/PF Hybrid
3.3. Mechanical Analysis
3.4. Dynamic Mechanical Analysis
3.5. Friction Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vaia, R.A.; Maguire, J.F. Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-filled Polymers. Chem. Mater. 2007, 19, 2736–2751. [Google Scholar] [CrossRef]
- Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R.E. Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40, 1511–1565. [Google Scholar] [CrossRef]
- Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y.W. Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites. Compos. Part B 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface Modification of Inorganic Nanoparticles for Development of Organic–Inorganic Nanocomposites—A Review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Serenko, O.A.; Roldughin, V.I.; Askadskii, A.A.; Serkova, E.S.; Strashnov, P.V.; Shifrina, Z.B. The Effect of Size and Concentration of Nanoparticles on the Glass Transition Temperature of Polymer Nanocomposites. RSC Adv. 2017, 7, 50113–50120. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Boo, W.J.; Clearfield, A.; Sue, H.J. Intercalation and Exfoliation: A Review on Morphology of Polymer Nanocomposites Reinforced by Inorganic Layer Structures. Mater. Manuf. Processes. 2006, 20, 143–151. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Shadpour, M.; Mina, N. Polymer/SiO2 Nanocomposites: Production and Applications. Prog. Mater. Sci. 2018, 97, 409–447. [Google Scholar]
- Giannelis, E.P. Polymer-Layerd Silicate Nanocomposites: Emerging Scientific and Commercial Opportunitie. Adv. Mater. 1996, 78, 367–372. [Google Scholar]
- Permal, A.; Devarajan, M.; Hung, H.L.; Zahner, T.; Lacey, D.; Ibrahim, K. Improved Thermal and Mechanical Properties of Aluminium Oxide Filled Epoxy Composites by Reinforcing Milled Carbon Fiber by Partial Replacement Method. J. Mater. Sci. Mater. Electron. 2017, 28, 13487–13495. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A Review on Carbon Nanotubes and Graphene as Fillers in Reinforced Polymer Nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Artur, M.P.; Fernão, D.M. Graphene-Polymer Composites. Polymers 2021, 13, 685. [Google Scholar]
- Potts, J.R.; Dreyer, D.R.; Bielawski, C.W.; Ruoff, R.S. Graphene-Based Polymer Nanocomposites. Polymer 2011, 52, 5–25. [Google Scholar] [CrossRef]
- Zhao, D.Y.; Feng, J.L.; Huo, Q.S.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Asefa, T.; Yoshina-Ishii, C.; MacLachlan, M.J.; Ozin, J.A. New Nanocomposites: Putting Organic Function ‘‘inside’’ the Channel Walls of Periodic Mesoporous Silica. J. Mater. Chem. 2000, 10, 1751–1755. [Google Scholar] [CrossRef]
- Shiju, N.R.; Alberts, A.H.; Khalid, S.; Brown, D.R.; Rothenberg, G. Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions. Angew. Chem. Int. Ed. 2011, 123, 9789–9793. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.Y.; Zhu, S.M.; Zhang, D. Grafting of Thermo-Responsive Polymer Inside Mesoporous Silica with Large Pore Size Using ATRP and Investigation of Its Use in Drug Release. J. Mater. Chem. 2007, 17, 2428–2433. [Google Scholar] [CrossRef]
- Run, M.T.; Wu, S.Z.; Zhang, D.Y.; Wu, G. A Polymer/Mesoporous Molecular Sieve Composite: Preparation, Structure and Properties. Mater. Chem. Phys. 2007, 105, 341–347. [Google Scholar] [CrossRef]
- Frisch, H.L.; Mark, J.E. Nanocomposites Prepared by Threading Polymer Chains Hrough Zeolites, Mesoporous Silica, or Silica Nanotubes. Chem. Mater. 1996, 8, 1735–1738. [Google Scholar] [CrossRef]
- Sasidharan, M.; Mal, N.K.; Bhaumik, A. In-Situ Polymerization of Grafted Aniline in the Channels of Mesoporous Silica SBA-15. J. Mater. Chem. 2007, 17, 278–283. [Google Scholar] [CrossRef]
- Choi, M.; Kleitz, F.; Liu, D.; Lee, H.Y.; Ahn, W.S.; Ryoo, R. Controlled Polymerization in Mesoporous Silica toward the Design of Organic-Inorganic Composite Nanoporous Materials. J. Am. Chem. Soc. 2005, 127, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.A.; Lee, D.K.; Pinnavaia, T.J. PMMA/Mesoporous Silica Nanocomposites: Effect of Framework Structure and Pore Size on Thermomechanical Properties. Polym. Chem. 2010, 1, 107–113. [Google Scholar] [CrossRef]
- Alireza, A.; Rouhollah, B.; Saied, N.K.; Talebi, Z.; Derakhshanfar, P.; Neisiany, R.E. Mesoporous Silica Aerogel Reinforced Dental Composite: Effects of Microstructure and Surface Modification. J. Mech. Behav. Biomed. 2022, 125, 104947. [Google Scholar]
- Cheng, C.F.; Cheng, H.H.; Cheng, P.W.; Lee, Y.J. Effect of Reactive Channel Functional Groups and Nanoporosity of Nanoscale Mesoporous Silica on Properties of Polyimide Composite. Macromolecules 2006, 39, 7583–7590. [Google Scholar] [CrossRef]
- Matar, M.; Azambre, B.; Cochez, M.; Vahabi, H.; Fradet, F. Influence of Modified Mesoporous Silica SBA-15 on the Flammability of Intumescent High-Density Polyethylene. Polym. Adv. Technol. 2016, 27, 1363–1375. [Google Scholar] [CrossRef]
- Fazli, Y.; Khezri, K. Mesoporous Diatomite-Filled PMMA by in Situ Reverse Atom Transfer Radical Polymerization. Colloid Polym. Sci. 2017, 295, 247–257. [Google Scholar] [CrossRef]
- Ma, J.; Qi, X.; Zhao, Y.; Dong, Y.; Song, L.; Zhang, Q.L.; Yang, Y. Polyimide/Mesoporous Silica Nanocomposites: Characterization of Mechanical and Thermal Properties and Tribochemistry in Dry Sliding Condition. Mater. Des. 2016, 108, 538–550. [Google Scholar] [CrossRef] [Green Version]
- Motevalizadeh, S.F.; Khoobi, M.; Shabanian, M.; Shabanian, Z.; Faramarzi, M.A.; Shafiee, A. Polyacrolein/Mesoporous Silica Nanocomposite: Synthesis, Thermal Stability and Covalent Lipase Immobilization. Mater. Chem. Phys. 2013, 143, 76–84. [Google Scholar] [CrossRef]
- Yu, C.B.; Gao, M.; Feng, J.W.; Liu, Y.L.; Lv, J.; Liu, H.X.; Wei, C. Thermal and Frictional Properties of Mesoporous Silica SBA-15/Phenolic Resin Nanocomposites. Polym. Compos. 2017, 38, E351–E358. [Google Scholar] [CrossRef]
- Md, A.W.; He, C.; Tariq, A.; Albaqami, M.D.; Alothman, Z.A.; Haque, R. Nanopore Engineered Tortuosity towards Thermo-mechanically Enhanced low-k Polymer-mesoporous Organosilica Composite Membranes. Compos. Sci. Technol. 2021, 211, 108854. [Google Scholar]
- Feng, Z.; Liu, X.; Zhang, W.; Zeng, J.; Liu, J.; Chen, B.; Lin, J.; Tan, J.; Liang, L. Functionalized Mesoporous Silica Liqued Crystal Epoxy Resin Composite: An Ideal Low-dielectric Hydrophobic Material. J. Mater. Sci. 2022, 57, 1156–1173. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, L.; Lv, P.; Cui, Y.; Miao, J. Improved Dielectric and Mechanical Properties of Silica/Epoxy Resin Nanocomposites Prepared with a Novel Organic–Inorganic Hybrid Mesoporous Silica: POSS–MPS. Mater. Lett. 2014, 129, 16–19. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, L.; Lv, P.P.; Liu, P.; Cai, Y. Low Dielectric Constant Nanoporous Silica/PMMA Nanocomposites with Improved Thermal and Mechanical Properties. Mater. Lett. 2013, 109, 158–162. [Google Scholar] [CrossRef]
- Kumar, R.S.; Ariraman, M.; Alagar, M. Design of Lamellar Structured POSS/BPZ Polybenzoxazine Nanocomposites as the Novel Class of Ultra Low k Dielectric Material. RSC Adv. 2014, 4, 19127–19136. [Google Scholar] [CrossRef]
- Kumar, R.S.; Ariraman, M.; Alagar, M. Studies on MCM-41/PDMS Based Hybrid Polybenzoxazine Nanocomposites for Interlayer Low k Dielectrics. RSC Adv. 2015, 5, 40798–40806. [Google Scholar] [CrossRef]
- Suzuki, N.; Kiba, S.; Yamauchi, Y. Fabrication of Mesoporous Silica/Polymer Composites through Solvent Evaporation Process and Investigation of Their Excellent Low Thermal Expansion Property. Phys. Chem. Chem. Phy. 2011, 13, 4957–4962. [Google Scholar] [CrossRef] [PubMed]
- Vo, N.T.; Patra, A.K.; Kim, D. Pore Size and Concentration Effect of Mesoporous Silica Nanoparticles on the Coefficient of Thermal Expansion and Optical Transparency of Poly(ether sulfone) Films. Phys. Chem. Chem. Phys. 2017, 19, 1937–1944. [Google Scholar] [CrossRef]
- Suzuki, N.; Kiba, S.; Kamachi, Y.; Miyamoto, N.; Yamauchi, Y. Mesoporous Silica as Smart Inorganic Filler: Preparation of Robust Silicone Rubber with Low Thermal Expansion Property. J. Mater. Chem. 2011, 21, 5338–5344. [Google Scholar] [CrossRef]
Material | BET Surface Area (m2/g) | Total Pore Volume (cm3/g) | Average Pore Diameter (nm) |
---|---|---|---|
SBA-15 | 637 | 1.03 | 7.31 |
SBA-15-1 | 664 | 1.48 | 11.87 |
SBA-15-2 | 721 | 2.01 | 17.99 |
SBA-15-3 | 731 | 2.43 | 19.46 |
SBA-15-4 | 719 | 2.34 | 20.29 |
Material | Td,10, °C | Td,max, °C | Char Yield at 800 °C (wt %) |
---|---|---|---|
Pure PF SBA-15 | 327.0 342.2 | 377.0 385.0 | 42.1 46.5 |
SBA-15-1 | 348.9 | 392.5 | 46.9 |
SBA-15-2 | 355.7 | 392.0 | 46.6 |
SBA-15-3 | 340.4 | 384.0 | 47.0 |
SBA-15-4 | 342.1 | 390.0 | 46.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Lao, Y.; Wang, J.; Jiang, J.; Yu, C.; Liu, Y. Rational Design of Mesoporous Silica (SBA-15)/PF (Phenolic Resin) Nanocomposites by Tuning the Pore Sizes of Mesoporous Silica. Materials 2022, 15, 8879. https://doi.org/10.3390/ma15248879
Liu H, Lao Y, Wang J, Jiang J, Yu C, Liu Y. Rational Design of Mesoporous Silica (SBA-15)/PF (Phenolic Resin) Nanocomposites by Tuning the Pore Sizes of Mesoporous Silica. Materials. 2022; 15(24):8879. https://doi.org/10.3390/ma15248879
Chicago/Turabian StyleLiu, Hongxia, Yijia Lao, Jiayi Wang, Junjie Jiang, Chuanbai Yu, and Yuanli Liu. 2022. "Rational Design of Mesoporous Silica (SBA-15)/PF (Phenolic Resin) Nanocomposites by Tuning the Pore Sizes of Mesoporous Silica" Materials 15, no. 24: 8879. https://doi.org/10.3390/ma15248879
APA StyleLiu, H., Lao, Y., Wang, J., Jiang, J., Yu, C., & Liu, Y. (2022). Rational Design of Mesoporous Silica (SBA-15)/PF (Phenolic Resin) Nanocomposites by Tuning the Pore Sizes of Mesoporous Silica. Materials, 15(24), 8879. https://doi.org/10.3390/ma15248879