Stability Analysis of Thin-Walled Perforated Composite Columns Using Finite Element Method
Abstract
:1. Introduction
2. Research Subject and Methodology
3. Numerical Analysis
4. Results and Discussion
5. Conclusions
- ➢
- The introduction of perforations caused a decrease in the buckling loads: 21.30 ÷ 35.06% for the square shape, 17 ÷ 28.48% for the circular shape and 18.76 ÷ 31.54% for the hexagonal shape.
- ➢
- The obtained results show that the shape of holes, opening ratio and arrangement of laminate layers have the greatest impact on the value of buckling load, whereas the spacing ratio has no significant influence on the buckling load.
- ➢
- The circular holes with D/D0 = 2 and S/D0 = 1.67 gave the highest value of critical force.
- ➢
- The highest critical load was obtained for the P2 lay-up, while the lowest one for the P4 lay-up.
- ➢
- The introduced perforation caused not only a decrease in the critical load value, but also a change in the buckling form. The decrease in the critical load for all tested configurations was: 17.4% for P1, 15.27% for P2, 18.08% for P3 and 29.32% for P4.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kopecki, T.; Mazurek, P.; Lis, T.; Chodorowska, D. Post-Buckling Deformation States of Semi-Monocoque Cylindrical Structures with Large Cut-Outs under Operating Load Conditions. Numerical Analysis and Experimental Tests. EiN 2016, 18, 16–24. [Google Scholar] [CrossRef]
- Kopecki, T.; Mazurek, P.; Lis, T. Experimental and Numerical Analysis of a Composite Thin-Walled Cylindrical Structures with Different Variants of Stiffeners, Subjected to Torsion. Materials 2019, 12, 3230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, A.A.; Dutton, S.; Kelly, D. (Eds.) Composite Materials for Aircraft Structures, 2nd ed.; Education Series; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2004; ISBN 978-1-56347-540-5. [Google Scholar]
- Debski, H.; Rozylo, P.; Wysmulski, P.; Falkowicz, K.; Ferdynus, M. Experimental Study on the Effect of Eccentric Compressive Load on the Stability and Load-Carrying Capacity of Thin-Walled Composite Profiles. Compos. Part B Eng. 2021, 226, 109346. [Google Scholar] [CrossRef]
- Chróścielewski, J.; Miśkiewicz, M.; Pyrzowski, Ł.; Rucka, M.; Sobczyk, B.; Wilde, K. Modal Properties Identification of a Novel Sandwich Footbridge–Comparison of Measured Dynamic Response and FEA. Compos. Part B Eng. 2018, 151, 245–255. [Google Scholar] [CrossRef]
- Chróścielewski, J.; Miśkiewicz, M.; Pyrzowski, Ł.; Sobczyk, B.; Wilde, K. A Novel Sandwich Footbridge-Practical Application of Laminated Composites in Bridge Design and in Situ Measurements of Static Response. Compos. Part B Eng. 2017, 126, 153–161. [Google Scholar] [CrossRef]
- Falkowicz, K. Experimental and Numerical Analysis of Compression Thin-Walled Composite Plates Weakened by Cut-Outs. Arch. Civ. Eng. 2017, 63, 161–172. [Google Scholar] [CrossRef]
- Falkowicz, K.; Debski, H.; Teter, A. Design Solutions for Improving the Lowest Buckling Loads of a Thin Laminate Plate with Notch. In AIP Conference Proceedings; AIP Publishing LLC: Lublin, Poland, 2018; p. 080004. [Google Scholar]
- Wysmulski, P.; Debski, H. Post-Buckling and Limit States of Composite Channel-Section Profiles under Eccentric Compression. Compos. Struct. 2020, 245, 112356. [Google Scholar] [CrossRef]
- Rozylo, P.; Wysmulski, P. Failure Analysis of Thin-Walled Composite Profiles Subjected to Axial Compression Using Progressive Failure Analysis (PFA) and Cohesive Zone Model (CZM). Compos. Struct. 2021, 262, 113597. [Google Scholar] [CrossRef]
- Banat, D.; Mania, R.J. Damage Analysis of Thin-Walled GLARE Members under Axial Compression–Numerical and Experiment Investigations. Compos. Struct. 2020, 241, 112102. [Google Scholar] [CrossRef]
- Falkowicz, K.; Debski, H. The Post-Critical Behaviour of Compressed Plate with Non-Standard Play Orientation. Compos. Struct. 2020, 252, 112701. [Google Scholar] [CrossRef]
- Kubiak, T.; Samborski, S.; Teter, A. Experimental Investigation of Failure Process in Compressed Channel-Section GFRP Laminate Columns Assisted with the Acoustic Emission Method. Compos. Struct. 2015, 133, 921–929. [Google Scholar] [CrossRef]
- Madukauwa-David, I.D.; Drissi-Habti, M. Numerical Simulation of the Mechanical Behavior of a Large Smart Composite Platform under Static Loads. Compos. Part B Eng. 2016, 88, 19–25. [Google Scholar] [CrossRef]
- Rozylo, P. Experimental-Numerical Study into the Stability and Failure of Compressed Thin-Walled Composite Profiles Using Progressive Failure Analysis and Cohesive Zone Model. Compos. Struct. 2021, 257, 113303. [Google Scholar] [CrossRef]
- Ribeiro, M.L.; Vandepitte, D.; Tita, V. Damage Model and Progressive Failure Analyses for Filament Wound Composite Laminates. Appl. Compos. Mater. 2013, 20, 975–992. [Google Scholar] [CrossRef]
- Ovesy, H.R.; Loughlan, J.; GhannadPour, S.A.M. Geometric Non-Linear Analysis of Channel Sections under End Shortening, Using Different Versions of the Finite Strip Method. Comput. Struct. 2006, 84, 855–872. [Google Scholar] [CrossRef]
- Einafshar, N.; Lezgy-Nazargah, M.; Beheshti-Aval, S.B. Buckling, Post-Buckling and Geometrically Nonlinear Analysis of Thin-Walled Beams Using a Hypothetical Layered Composite Cross-Sectional Model. Acta Mech. 2021, 232, 2733–2750. [Google Scholar] [CrossRef]
- Rozylo, P.; Falkowicz, K. Stability and Failure Analysis of Compressed Thin-Walled Composite Structures with Central Cut-out, Using Three Advanced Independent Damage Models. Compos. Struct. 2021, 273, 114298. [Google Scholar] [CrossRef]
- Falkowicz, K.; Debski, H. The Work of a Compressed, Composite Plate in Asymmetrical Arrangement of Layers. In AIP Conference Proceedings; AIP Publishing LLC: Depok, Indonesia, 2019; p. 020005. [Google Scholar]
- Falkowicz, K.; Debski, H. Stability Analysis of Thin-Walled Composite Plate in Unsymmetrical Configuration Subjected to Axial Load. Thin-Walled Struct. 2021, 158, 107203. [Google Scholar] [CrossRef]
- Falkowicz, K. Composite Plate Analysis Made in an Unsymmetric Configuartion. J. Phys. Conf. Ser. 2021, 2130, 012014. [Google Scholar] [CrossRef]
- Falkowicz, K.; Ferdynus, M.; Rozylo, P. Experimental and Numerical Analysis of Stability and Failure of Compressed Composite Plates. Compos. Struct. 2021, 263, 113657. [Google Scholar] [CrossRef]
- Falkowicz, K. Experimental and Numerical Failure Analysis of Thin-Walled Composite Plates Using Progressive Failure Analysis. Compos. Struct. 2023, 305, 116474. [Google Scholar] [CrossRef]
- Falkowicz, K. Numerical Investigations of Perforated CFRP Z-Cross-Section Profiles, under Axial Compression. Materials 2022, 15, 6874. [Google Scholar] [CrossRef] [PubMed]
- Wysmulski, P. The Effect of Load Eccentricity on the Compressed CFRP Z-Shaped Columns in the Weak Post-Critical State. Compos. Struct. 2022, 301, 116184. [Google Scholar] [CrossRef]
- Yuan, H.X.; Wang, Y.Q.; Chang, T.; Du, X.X.; Bu, Y.D.; Shi, Y.J. Local Buckling and Postbuckling Strength of Extruded Aluminium Alloy Stub Columns with Slender I-Sections. Thin-Walled Struct. 2015, 90, 140–149. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, X.; Sun, L. Test and Design Method for the Buckling Behaviors of 6082-T6 Aluminum Alloy Columns with Box-Type and L-Type Sections under Eccentric Compression. Thin-Walled Struct. 2016, 100, 62–80. [Google Scholar] [CrossRef]
- Akbulut, H.; Sayman, O. An Investigation on Buckling of Laminated Plates with Central Square Hole. J. Reinf. Plast. Compos. 2001, 20, 1112–1124. [Google Scholar] [CrossRef]
- Aydin Komur, M.; Sen, F.; Ataş, A.; Arslan, N. Buckling Analysis of Laminated Composite Plates with an Elliptical/Circular Cutout Using FEM. Adv. Eng. Softw. 2010, 41, 161–164. [Google Scholar] [CrossRef]
- Ouinas, D.; Achour, B. Buckling Analysis of Laminated Composite Plates [(θ/−θ)] Containing an Elliptical Notch. Compos. Part B Eng. 2013, 55, 575–579. [Google Scholar] [CrossRef]
- Khazaal, D.S.; AL-khafaji, H.M.; Abdulsahib, I.A. Buckling Behavior of Aluminum Alloy Thin-Walled Beam with Holes under Compression Loading. Jcoeng 2020, 26, 137–154. [Google Scholar] [CrossRef]
- Bin Kamarudin, M.N.; Mohamed Ali, J.S.; Aabid, A.; Ibrahim, Y.E. Buckling Analysis of a Thin-Walled Structure Using Finite Element Method and Design of Experiments. Aerospace 2022, 9, 541. [Google Scholar] [CrossRef]
- Wysmulski, P.; Debski, H.; Falkowicz, K. Sensitivity of Compressed Composite Channel Columns to Eccentric Loading. Materials 2022, 15, 6938. [Google Scholar] [CrossRef] [PubMed]
- Rozylo, P.; Falkowicz, K.; Wysmulski, P.; Debski, H.; Pasnik, J.; Kral, J. Experimental-Numerical Failure Analysis of Thin-Walled Composite Columns Using Advanced Damage Models. Materials 2021, 14, 1506. [Google Scholar] [CrossRef] [PubMed]
- Wysmulski, P.; Falkowicz, K.; Filipek, P. Buckling State Analysis of Compressed Composite Plates with Cut-Out. Compos. Struct. 2021, 274, 114345. [Google Scholar] [CrossRef]
- Wysmulski, P.; Debski, H.; Falkowicz, K. Stability Analysis of Laminate Profiles under Eccentric Load. Compos. Struct. 2020, 238, 111944. [Google Scholar] [CrossRef]
- Wysmulski, P.; Debski, H.; Falkowicz, K.; Rozylo, P. The Influence of Load Eccentricity on the Behavior of Thin-Walled Compressed Composite Structures. Compos. Struct. 2019, 213, 98–107. [Google Scholar] [CrossRef]
- Jonak, J.; Karpiński, R.; Wójcik, A. Influence of the Undercut Anchor Head Angle on the Propagation of the Failure Zone of the Rock Medium. Materials 2021, 14, 2371. [Google Scholar] [CrossRef] [PubMed]
- Jonak, J.; Karpiński, R.; Siegmund, M.; Wójcik, A.; Jonak, K. Analysis of the Rock Failure Cone Size Relative to the Group Effect from a Triangular Anchorage System. Materials 2020, 13, 4657. [Google Scholar] [CrossRef]
- Tsai, S.W.; Wu, E.M. A General Theory of Strength for Anisotropic Materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Jonak, J.; Karpiński, R.; Wójcik, A.; Siegmund, M. The Influence of the Physical-Mechanical Parameters of Rock on the Extent of the Initial Failure Zone under the Action of an Undercut Anchor. Materials 2021, 14, 1841. [Google Scholar] [CrossRef]
- Falkowicz, K.; Debski, H.; Wysmulski, P. Effect of Extension-Twisting and Extension-Bending Coupling on a Compressed Plate with a Cut-Out. Compos. Struct. 2020, 238, 111941. [Google Scholar] [CrossRef]
- Wysmulski, P. Load Eccentricity of Compressed Composite Z-Columns in Non-Linear State. Materials 2022, 15, 7631. [Google Scholar] [CrossRef] [PubMed]
Young’s Modulus [MPa] | Shear Modulus [MPa] | Poisson’s Ratio | Tensile Strength [MPa] | Shear Strength [MPa] | Compression Strength [MPa] | |||
---|---|---|---|---|---|---|---|---|
E1 0° | E2 90° | G1,2 | V12 | FTU1 0° | FTU2 90° | FSU 45° | FCU1 0° | FCU2 90° |
143,530 | 5826 | 3845 | 0.36 | 2221 | 49 | 83.5 | 641 | 114 |
Parameter | Levels | ||
---|---|---|---|
1 | 2 | 3 | |
Shapes of holes | Circular | Square | Hexagonal |
D/D0(S = const) | 2 | 1.67 | 1.5 |
S/D0(D0 = const) | 1.25 | 1.45 | 1.6 |
No. | Hole Shape | Opening Ratio D/D0 | Spacing Ratio S/D0 | Pcr [N] | Difference [%] |
---|---|---|---|---|---|
1 | Without holes | --- | --- | 2172.4 | - |
2 | Circular | 2 | 1.67 | 1802.3 | 17.04 |
3 | Square | 1709.6 | 21.30 | ||
4 | Hexagonal | 1764.8 | 18.76 | ||
5 | Circular | 1.67 | 1.39 | 1667.3 | 23.25 |
6 | Square | 1541 | 29.06 | ||
7 | Hexagonal | 1612.9 | 25.75 | ||
8 | Circular | 1.5 | 1.25 | 1561.3 | 28.13 |
9 | Square | 1415.2 | 34.85 | ||
10 | Hexagonal | 1492.1 | 31.32 | ||
11 | Circular | 1.5 | 1.45 | 1551.3 | 28.59 |
12 | Square | 1410.8 | 35.06 | ||
13 | Hexagonal | 1487.3 | 31.54 | ||
14 | Circular | 1.5 | 1.6 | 1553.8 | 28.48 |
15 | Square | 1422.9 | 34,50 | ||
16 | Hexagonal | 1493.2 | 31.26 |
Laminate Lay-Up | Symbol | Pcr [N] | Difference [%] | |
---|---|---|---|---|
Unperforated Profile | Perforated Profile | |||
[0/45/−45/90/0]s | P1 | 2172.4 | 1802.3 | 17.04 |
[45/−45/90/0]s | P2 | 3259.3 | 2761.5 | 15.27 |
[90/−45/45/0]s | P3 | 2183.3 | 1788.5 | 18.08 |
[90/0/90/0]s | P4 | 1590.6 | 1124.2 | 29.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkowicz, K. Stability Analysis of Thin-Walled Perforated Composite Columns Using Finite Element Method. Materials 2022, 15, 8919. https://doi.org/10.3390/ma15248919
Falkowicz K. Stability Analysis of Thin-Walled Perforated Composite Columns Using Finite Element Method. Materials. 2022; 15(24):8919. https://doi.org/10.3390/ma15248919
Chicago/Turabian StyleFalkowicz, Katarzyna. 2022. "Stability Analysis of Thin-Walled Perforated Composite Columns Using Finite Element Method" Materials 15, no. 24: 8919. https://doi.org/10.3390/ma15248919
APA StyleFalkowicz, K. (2022). Stability Analysis of Thin-Walled Perforated Composite Columns Using Finite Element Method. Materials, 15(24), 8919. https://doi.org/10.3390/ma15248919