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Abstract

:

A novel method and description of creating diversified complex original building forms roofed with a number of transformed folded shell units developed on the basis of a novel reference polyhedral network and arranged according to a reference surface with the negative Gaussian curvature is presented. For that purpose, specific reference polyhedral networks is are defined as a complex material deliberately composed of many regular tetrahedrons that are arranged regularly to obtain original attractive complex general building forms. The proposed method is a significant extension of the previous method for shaping roof structures with the positive Gaussian curvature and fills existing gaps in current scientific knowledge. The extended method enables the designer to significantly increase the variety of the created complex shell roof forms and plane-walled folded elevation forms of buildings and to define the shapes of their rod structural systems. It allows one to overcome the existing significant geometric and material limitations related to shape transformations of nominally flat rectangular folded steel sheets into different shell forms. The developed extension is based on formation of a set of properly connected tetrahedra as a material determining different (a) inclination of elevation walls to the vertical, and (b) distribution of many individual warped roof shells in accordance with the properties of a regular surface with negative Gaussian curvature. A number of the adopted specific sets of division coefficients (parameters) is used for determining the entire network and its complete tetrahedra. The presented description makes it possible to adopt appropriate assumptions and data and then employ the innovative method to obtain the expected characteristics of the unconventional building form shaped. The presented three different special forms created with the help of the novel method and the appropriately selected diversified values of the division coefficients of pairs of the vertices of a polyhedral reference network, a polygonal eaves network and points of a reference surface confirm the innovative scientific nature of the obtained results. The method has to be computationally aided due to the complexity of mathematical operations and the need to visualize the designed forms.
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1. Introduction


Nominally flat folded rectangular steel sheets are characterized by relatively low transverse bending and longitudinal torsional stiffness [1]. This property enables the designer to exploit their diversified elastic transformations to shape diversified ruled shell forms [2] (Figure 1). However, there are significant geometric and material limitations in the formation of the shells due to a significant influence of these and other stiffnesses on the final shape of the transformed shells [3]. The limitations very often result in significant values of stresses and, for the cases of high transformation degrees, significant values of strains. The intentional spatial shape deformations are called initial transformations [2].



Further limitations are the straightness of all transformed shell folds and the rectangular shape of the sheets before transformation. On the one hand, these limitations simplify the process of designing and assembling the transformed roof shells. On the other hand, they induce the edge lines of the developed building models to be shaped in the form of various ruled surface sectors [4] each of which is limited by a closed spatial quadrangle with vertex angles close to right [2]. Due to the limited length of complete folded sheets used for roofing, single shell sheeting, being the result of joining the individual sheets with their adjacent longitudinal edges, can cover buildings with a span of up to 15–17 m. Therefore, for medium and long span roofs, edge roof structures composed of a few single folded transformed shells must be accomplished. The simplest way to shape the complex building structures is to determine special sums of many single shells transformed into parabolic-hyperbolic folded sectors, the edge lines of which are closed spatial quadrangles [4,5]. Moreover, all facade wall pieces of the structures have to be flat polygons (Figure 2). In order to obtain a large variety of the designed building forms, the façade walls are inclined to the vertical.



Bearing in mind the above-mentioned assumptions and limitations, a novel polyhedral network called a reference network was developed [6]. The network is used as a geometric material for modeling various unconventional forms of buildings characterized by plane-walled folded facades and edge roof structures composed of many transformed single folded shells. The structure of the layers used in the corrugated sheeting and their temperature affect the mechanical and geometrical properties of these coating segments [7,8].



Each configuration of the network is defined by an appropriate arrangement of many tetrads of vertices defining typical tetrahedral meshes connected by common triangular walls and adequately filling the three-dimensional space. These vertices, planes and side edges of the tetrahedra define the planes and edges of all facade walls of each modeled building. In the above planes, straight segments forming closed spatial quadrangles defining single shell roof are determined. The quadrangles constitute a polygonal network of the roof eaves structure and delimit all individual single roof shells. By varying the geometric properties of the polyhedral reference network and the polygonal network, in particular their subsequent meshes, some variety of building forms can be obtained, including multi-wall folded facades and multi-shell ribbed roofs [9].




2. Critical Analysis of the Present Knowledge


Many diversified unconventional building forms and structural system intended for these forms are presented by Abdel and Mungan [10]. The comprehensive classification of different types of a large number of unconventional structural systems is published by Saitoh [11]. Most of these systems can be employed for structural systems supporting complex building forms characterized by folded elevation walls and multi-segment shell structures [9].



Great theoretical possibilities in the field of shaping various ruled forms made up of the transformed folded sheets with an open profiles have resulted in extensive research development in the field of single shell sheeting transformations and creation of multi-segment shell structures [2]. On the basis of the tests and analysis carried out, Bryan and Davis found that some significant material and technological limitations drastically reduce the diversification of the shell forms made up of transformed sheeting to a basic type of shallow hyperbolic paraboloids called hypars [12].



However, the developed novel Reichhart’s method enables one to increase the diversity of shaping the unconventional roof shells and their structures composed of the nominally flat single-layer sheeting transformed into the position of the rigid skew directrices generating folded shell shapes [3].



The results of the tests performed by Abramczyk [13] indicate an important role played by a contraction of each transformed shell sheeting in shaping unconventional forms of buildings roofed with thin-walled folded sheeting transformed elastically into different ruled surfaces [4]. Abramczyk has added the condition related to the central location of the contraction in all effectively transformed folded shells to the Reichhart’s algorithm.



The contraction of a roof shell can be modeled with a line of striction of a ruled surface. Thus, the Reichhart’s method was extended with the boundary condition related to the line of striction. This action should result in a rational shaping of the shell roof forms so that they could be characterized by the relatively high visual attractiveness and the minimum effort [14]. If athe central location of the contraction, halfway along the length of each shell fold, is achieved by means of the arbitrary roof directrices, then the static-strength work of the transformed sheeting is stabilized and rationalized [4]. In this way, a freedom of designing of free-form roof and elevation structures should be achieved [2].



Biswas and Iffland [15] elaborated two trivial systems of many congruent rectilinear shell units distributed over a sphere with the help of bundles of planes, where the complete transformed shells are made of revolved hyperboloids or right hyperbolic paraboloids restricted by spatial straight quadrangles. The proposed method for shaping ribbed structures composed of many congruent shells can be extended to create complex systems of many complete ruled shells separated by sets of planes containing their edge lines.



Prokopska and Abramczyk have carried out some simple systems of reference tetrahedrons to model complete free forms with oblique and folded plane elevations, and roofed with many transformed complete shell sectors [16,17]. The presented building structures are often composed of quarters of hyperbolic paraboloids arranged symmetrically in different configurations. The proposed diversified free form building structures roofed with complex corrugated shells are characterized by medium spans.



For the engineering developments, Abramczyk has proposed that each single shell segment is to be modeled with a sector of a warped surface [2] limited by a closed spatial line composed of four straight segments contained in four planes of a polyhedral reference network [6]. The planes of the reference network are a specific system dividing the designed roof structure into many complete shell segments arranged regularly in the three-dimensional space. In this way, all directrices of the shell sectors can be easily defined in these planes [9].



Pottman has proposed a few comprehensive methods for shaping the systems of planes separating subsequent plane and smooth shell sectors arranged on different regular surfaces [18]. If we want to shape transformed folded shell sheeting by means of the methods, their significant modifications taking into account the geometric and material constraints of the folded sheets must be performed. A few methods carried out by Attard [19], Vlasow [20] or Vasiri [21] can also be implemented to design thin-walled sheeting subjected to large displacements. Samyn has described a method for creating the transformed folded shells made up of aluminum or PVC [22].



The procedure for shaping complex building structures covered with transformed shell roof structures, the general form of which is characterized by a positive Gaussian curvature (Figure 3), has been described by Abramczyk [6] in a fairly accurate manner. This procedure has also been implemented in computer procedures [23]. However, there is no analogous procedure and implementation where the overall form of the shell roof structure complies with the negative Gaussian curvature. This issue is analyzed in detail in this article.



The analogous universal systems of planes called polyhedral reference networks are utilized in this article. On the basis of these systems, some derivative systems, including polygonal or shell sector networks can be defined to achieve different free-form buildings characterized by complex folded elevation walls and multi-sector shell roof structures (Figure 4) [24].



To increase the attractiveness of the building edge shell structures and the whole urban system, Prokopska has proposed green plant gardens located on the shell roof segments and specific communication routes between the segments [25]. The space around the designed building form, its physical form, urban greenways and cultural patterns of a whole spatial system have to be investigated. Sharma has described [26] the relation appearing between the formation of the urban space and the social experience of the human self. Hasgül [27] presents very important and interesting mathematics-based graph studies of patterns and shapes, thermal based photography and morphology related to the design syntax. Eekhout [28] provides the results of his research in the field of forms taking account of the relationships occurring between the function, structure, internal and external texture, static-strength work and comfort conditions. The systematic morphology leads to the rationalization of each design process.



A very interesting approach to exploit the mechanical properties of new materials making it possible to shape original forms of elevation and roof structures is used by Marin et al. [29], where the classical theory of elasticity developed by Green and Lindsay is extended in terms of the thermo-elasticity theory for dipolar bodies. The proposed novel method is based on a reciprocal theorem and not restrictive boundary conditions [30].



A method for designing complex architectonic forms and engineering rational systems has been developed by Ręebielak [31]. A number of attractive and effective structures adapted to human needs and the built environment has been provided by Tarczewski at al. [32].



The methods for shaping single and complex shell roofs presented in the above literature should be directed towards making each roof from many nominally flat rectangular thin-walled corrugated steel sheets. In order to use these sheets for shell roof covering, shape transformations are required. It is advisable to shape the edge line of each shell segment in the form of a spatial quadrangle with corner angles close to straight and take into account the shape changes and limitations resulting from the shape transformations.



The given references refer to single shells or simple ribbed structures composed of several single shells. The innovative method developed by Abramczyk allows one for a significant increase in the variety of general building forms. However, the method is limited only to structures, where the arrangement of all individual shell segments is consistent with the properties of surfaces characterized by the positive Gaussian curvature (saddle surfaces). In some articles published by the researcher, the possibility of using various structures composed of many single shells distributed on regular surfaces with the negative Gaussian curvature (saddle surfaces) is identified.



However, a comprehensive novel method is presented in the present article and fills the gap in the current knowledge. This area is also important because torsional transformations of a single folded sheet lead to its various shell forms with the negative Gaussian curvature (saddle surfaces). After filling this gap, the authors intend to propose some innovative structural systems supporting the transformed folded shells and extend laboratory tests in the field of thin-walled folded sheeting transformed elastically into various forms of saddle surfaces.




3. The Aim


The aim is to present an innovative procedure leading to the creation of some building models characterized by unconventional folded forms of their façades and roofs, where the façade walls are inclined both inside and outside the designed building, and individual roof whose shell sectors are arranged in a three-dimensional space according to the properties of a surface with the negative Gaussian curvature. In order to achieve the above-mentioned goal, a novel algorithm for creating a specific type of the polyhedral reference networks has to be used. The algorithm is implemented into a new procedure for shaping complex building forms in such a way that the created models are located between the vertices of the reference network. However, for the case of the previous building structures with the positive Gaussian curvature, the vertices are positioned on the same side of a reference surface.



The presented procedure allows for arranging the facade and roof elements in relation to the vertices of a reference network using appropriate coefficients expressing some proportions between the distances of the appropriate pairs of the adjacent vertices, and the distances of the characteristic points of the created models from the respective vertices of the reference network. The differentiation of the values of the coefficients adopted as independent variables leads to the differentiation of the obtained building forms. The degree of differentiation of the created models depends on the number of the assumed independent variables. In particular, all the coefficients used may depend on one parameter, which leads to adopting one independent variable and obtaining a single set of building forms with little differentiation.



It is decided that a detailed presentation of the proposed procedure is going to be made using some specific examples. A few different forms obtainable by the procedure are given to observe the possibilities of the procedure. A detailed description of the whole set of the examined diversified complex building forms goes beyond the scope of this article. There are only presented the main relationships governing the position of each mesh Bvij (each shell unit Ωij) in the eaves network Bv (the shell structure Ω) and three sets of the values of the partition coefficients assigned to the vertices of the same basic reference polyhedral network to analyze three specific types of the general building forms that are different to each other.




4. The Method’s Concept


At first, a network Γ composed of a number appropriately arranged tetrahedra Γij must be defined. On the basis Γ, a model Σ of a complex folded building form can be created s as follows (Figure 3). The walls of Σ should be included in the planes of Γ. The elevation edges of Σ should be included in the side edges of Γ. The eaves lines of each single shell of the roof structure must be contained in the planes of Γ. The vertices of each eaves line must belong to the respective side edges of Γ. In the presented procedure, these vertices have to be located between the vertices of Γ.



The horizontal base plane Pb of the whole structure Σ must intersect all side edges of Γ. The intersecting points should also belong to the side edges and lie between the vertices of Γ. The division coefficients of the side edges of Γ by the vertices of the base and Σ must ensure appropriate positions of these vertices.



Construction of Σ begins with the determination of the first central tetrahedral mesh Γ11 of Γ. Γ11 is created on the basis of two arbitrary skew straight lines u11 and v11 perpendicular to each other, called the axes of Γ11 (Figure 5a). An arbitrary distance duv11 between u11 and v11 has to be adopted. It is measured along the straight line n11 perpendicular to u11 and v11 between the points Ou11 and Ov11 of intersecting n11 with u11 and v11.



In order to determine the positions of four vertices WAB11, WCD11, WAD11 and WBC11 of Γ11, it is necessary to adopt the distance duv11 between the above skew axes, the distance du11 between WBC11 and WAD11 and the distance dv11 between WAB11 and WCD11. Based on the above assumptions, it is possible to calculate the coordinates of the above vertices in the orthogonal coordinate system [x,y,z] and define four sides of Γ11 (Figure 5a).



A few subsequent meshes are located in orthogonal and diagonal directions of Γ11 (Figure 6) as follows. For the case of the mesh Γ12, three vertices WAB12, WCD12 and WAD12 are adopted to be identical to the vertices WAB11, WCD11 and WBC11 of Γ11, respectively. The axis u12 of Γ12 is assumed to be identical to u11.



The location of the vertex WBC12 is determined so that it is contained in the plane (y, z), distant from WBC11 by the adopted value of dv12 and distant from the axis u11 by the height dBC12 of the triangle WBC12WCD12WAB12 measured from WBC12, where WBC12WCD12WAB12 should be congruent to WBC11WCD11WAB11. The above activities lead to the creation of the form presented in Figure 7a.



It is more convenient to control the shape of Σ when the proportions ddBC12 = dv12/dv11 and ddBC12 = dBC12/dBC11 are used instead of the above-mentioned distances. DBC12 is the distance of WBC12 from u12. Similarly, dBC11 is the distance of WBC11 from u11. However, the distances can be calculated with the help of these coefficients. Adoption of the proportions between all meshes makes it possible to parametrize and control the shape of Σ, and, consequently, create diversified forms Γ and Σ. For the mesh Γ12 presented in Figure 7a, ddv12 = 1 and ddBC12 = 1. The parametrization should lead to a division of the forms Σ into different groups having similar geometric properties to predict the expected properties of the designed forms Σ. The subsequent tetrahedra Γ1j (j = 1 to N, where N—the arbitrary natural number) belonging to the first orthogonal strip of Γ are constructed similar to Γ12.



All tetrahedra Γi1 of the second orthogonal strip are formed in the same way as Γ1j belonging to the first strip. The vertices WAD21, WBC21 and WAB21 of the first Γ21 tetrahedron, Figure 6, are assumed to be identical to the vertices of WAD11, WBC11 and WCD11 of Γ11, respectively, when creating the network Γ.



The fourth WCD21 vertex of Γ21 is constructed in the (x, z) plane in two arbitrary distances du21 from WCD11 and dCD21 from v11. The method employed for parameterizing Γ consists in defining a certain number of coefficients expressing the proportions between the distances of the vertices of the subsequently created Γij’s axes. In the case of the Γ21 tetrahedron, these proportions can be given as follows: ddu21 = du21/du11 and ddCD21 = dCD21/dCD11. The above activities lead to the construction of the form presented in Figure 7b for which ddu21 = ddCD21 = 1.



In the presented algorithm, there is no freedom in determining the vertices of Γ22 and other Γij tetrahedra arranged in diagonal strips (for i ≠ 1 or j ≠ 1). For the Γ22 tetrahedron, it is assumed that WAD22 = WBC11, WBC22 = WAD12, WCD22 = WCD21, WAB22 = WCD11. The above activities lead to the creation of the form presented in Figure 8.



Generally, for diagonal tetrahedra, WADij = WBCi−1j−1, WBCij = WAD i−1j, WCDij = WCDij−1, WABij = WCDi−1j−1. A slight modification of the described procedure allows one to set WADij, WBCij, WCDij and WABij at any points of the respective network side edges, not only at the vertices of the previously created tetrahedra. This reduction of the limitations in relation to the Γ network leads to fundamental changes in the proportions between the overall dimensions and the size of the elements of the building model shaped. The description of the modified procedure for shaping the Γ network goes beyond the scope of this work.



Each network Γ1 (Figure 8) formed according to the proposed algorithm is composed of four tetrahedra Γij (i, j = 1, 2) and can be extended to a symmetrical forms Γ (Figure 9a,b) for which (x, z) and (y, z) are the planes of symmetry. Thus, Γ consists of four symmetrical parts Γi (i = 1 to 4). Based on the symmetrical reference network Γ, a polygonal Bv network is created to define a multi-shell roof structure. Bv is created so that some respective relationships between the location of the vertices of the roof structure and the vertices of Γ are adopted. The relationships are defined by means of the division coefficients of the pairs {WABij, WADij}, {WABij, WBCij}, {WADij, WCDij}, {WADij, WBCij} of each Γij tetrahedron by the vertices of the eaves polygonal network Bv, reference surface and the base of the form Σ.



The first group {ddSAij, ddSBij, ddSCij and ddSDij} of the division coefficients is used to determine the points SAij, SBij, SCij and SDij on the side edges of Γ defining the reference surface ωr to search for the network Bv. The second group {ddAij, ddBij, ddCij and ddDij} of the division coefficients is used to determine the points Aij, Bij, Cij and Dij constituting the vertices of the polygonal network Bv. For the networks under consideration: (a) all acceptable values of the above-mentioned two types of the coefficients are in the range (0, 1), (b) the reference surfaces defined by the points SAij, SBij, SCij and SDij have negative Gaussian curvature. These limitations results from the geometric properties of the network Γ made. They proves the innovative nature of the performed analysis and the proposed procedure. In the case of the topics discussed so far in other articles, the values of these coefficients are within the range (1, +∞), and the reference surface is characterized by the positive Gaussian curvature. The case in which the values of the above-mentioned coefficients are within the range (−∞, 0) is similar to that with the range (1, +∞) but requires some modifications.



As it is convenient to define the positions of the vertices Aij, Bij, Cij and Dij with respect to the reference surface ωr, it is rational to use coefficients taking account of the difference in the levels of the vertices belonging to ωr and Bv. For this purpose, the quotient of: (a) the respective values of the division coefficients of pairs {WABij, WADij}, {WABij, WBCij}, {WADij, WCDij} and {WADij, WBCij} by: (a) points SAij, SBij, SCij and SDij, and (b) points Aij, Bij, Cij and Dij can be calculated. However, the exact description of this problem is presented by Abramczyk [24] and goes beyond the scope of the present article.



In the considered examples, the values of the partition coefficients used for the meshes Bvij lead to small or big folding of the examined roof structure covered with complete transformed shells separated by ribs. On the other hand, the base of the modeled building is flat and horizontal, so the z-coordinates of all base points, belonging to the Pb plane, are the same. The arbitrary level of the Pb plane is adopted as constant zP from the interval <0, dduv11>. The coordinates of all points PAij, PBij, PCij and PDij of the base belonging to the edges of the facade walls are obtained as a result of the intersection of the plane Pb with all Γ’s side edges.



The proportions taken into account, inter alia, the length, width and height of the entire Σ model and its fragments depend on the mutual position of the vertices of the reference polyhedral Γ network, the vertices of the polygonal Bv network, the base plane Pb and the reference surface used. These proportions are determined by the assumed values of the independent variables and the relationships between the values of the dependent and independent variables. In order to illustrate the impact of adopting different sets of values of the above-mentioned variables on the form of the Γ model, three examples of complex folded building forms covered with different shell roof structures characterized by the negative Gaussian curvature are presented in the next section.




5. Results


There are presented three examples showing the way of using the developed procedure in the process of shaping various unconventional complex forms of buildings, including the possibility of parameterizing these forms. In order to create the first tetrahedron Γ11 of a polyhedral network Γ, the values of the following parameters have to be adopted: (1) the distances dv11 of two vertices WBC11 and WAD11 belonging to the first axis v11 (Figure 6), (2) the ratio dduv11 of the above distance duv11 to the distance dv11 between the oblique axes u11 and v11, (3) the ratio ddu11 of the distance du11 of two vertices WAB12 and WCD12 belonging to the second axis u11 to dv11. The values employed are given in Table 1.



Identical values are adopted for the remaining congruent tetrahedra located in the orthogonal directions of the developed Γ1 reference network. As a result of the respective composing of Γ11, Γ21 and Γ12 a network Γ1 can be created. The vertices of Γ22 are lain at four vertices of the above tetrahedrons obtained previously. The co-ordinates of these vertices are given in Table A1 in Appendix.



Then, to determine the positions of the vertices SA11, SB11, SC11 and SD11 of the first mesh of the reference surface ωr lying in the side edges of Γ11, the coefficients ddSA11, ddSB11, ddSC11 and ddSD11 constituting the division coefficients of the vertices of the Γ11 tetrahedron by SA11, SB11, SC11 and SD11 should be adopted. The arbitrary values of these coefficients are presented in Table A2 in the Appendix. The calculated values of the coordinates of these vertices are presented in Table A3 in the Appendix.



Another operation provided for in the algorithm of the procedure is to determine the positions of the vertices A11, B11, C11 and D11 of the first mesh Bv11 of the polygonal net Bv1. For the form shaped (Figure 10) the appropriate values of the coefficients ddA11, ddB11, ddC11 and ddD11 of the vertices of the Γ11 mesh by A11, B11, C11 and D11 are adopted. These values are given in Table A4 in Appendix. The pz level of the base plane of the considered form is equal to 15,920 mm in [x,y,z]. The individual vertices PA11, PB11, PC11 and PD11 of this base can be constructed as the points of intersection of the horizontal plane pz with the side edges of Γ1.



The following meshes of the Γ1, Bv1 nets and the reference surface are created in the same way. Alternatively, some vertices must be adopted at the positions of the corresponding vertices belonging to the previously constructed meshes.



A characteristic feature of the folded forms created by the procedure is the different inclination of the adjacent facade walls to the vertical. The form presented in Figure 10a–c is characterized by two opposite façade walls directed in the x-axis direction and inclined with their bases inwards, while the other two façade walls are inclined with their bases outwards.



On the other hand, a specific feature distinguishing this form from two following forms is the fact that its elevation walls with their bases inwards are much longer than two other elevation walls with bases inclined outwards. As a result, the form has an elongated elliptical shape when projected onto a horizontal plane, and the x axis can be considered as the principal axis of the imaginary ellipse (Figure 10c).



Three exemplary forms Σ were created based on the same reference network Γ. For these forms, appropriate and different values of three sets of the partition coefficients related to the points of the created reference surfaces, eaves networks and the bases were adopted. The first set was adopted so that the form Σ has an elongated form in the direction of the axis x in the projection on the plane (x, y) and the base plane is closer to the lower vertices of the reference network Γ (Figure 10).



The second set of the partition coefficients was adopted so that the second form Σ has an elongated form in the direction of the y axis in the projection on the (x, y) plane, the plane of the base is halfway between the upper and lower vertices of the network Γ, and the points of the reference surface ωr lie close to the base (Figure 11). The third set of the partition coefficients was adopted so that the third form Σ has a square form when projected onto the (x, y) plane, the base plane is halfway between the upper and lower vertices of the network Γ, and the points of the reference surface ωr lie further from the base than in the previous case (Figure 12). The differences between the essential dimensions of the above forms are noticeable when comparing the respective views of each of the above-mentioned three forms.



The values of the relevant parameters and coordinates of these forms are given in Table A2, Table A3, Table A4, Table A5, Table A6, Table A7, Table A8, Table A9 and Table A10. It is worth noticing that some geometric properties of two new forms, distinguishing them from the previously presented form are as follows. Two elevation walls of the form shown in Figure 11, whose direction is in line with the y-axis and the bases are tilted outwards, are much longer than the elevation walls titled with their bases inwards and running along the x-axis. The pz level of the base plane of the considered form is equal to 31,010 mm in [x,y,z].



On the other hand, all façade walls of the form shown in Figure 12 are of similar length regardless of whether their bases are tilted outwards or inwards. As a result, the projection of the third form onto a horizontal plane has a shape similar to a circle or a square. The differentiation of three above-mentioned general forms is generated by the deliberate differentiation of the values of the single division coefficients used. A discussion on this subject is presented in the next section. The pz level of the base plane of the considered form is equal to 23,194 mm in [x,y,z].




6. Discussion


The following relationships can be noticed from the observation of geometric properties of the orthogonal projections of three different structures presented in the previous section.



The inclination of the facade walls with their bases towards the inside or outside of a considered building form depends on the orthogonal directions of two types of axes vij and uij of a polyhedral reference network Γ. For example, such a network is presented in Figure 10, Figure 11 and Figure 12. If the considered dimension of the building form is consistent with the axis v11 of the Γ network, located above the base (x, y) of the form, as can be seen in Figure 10a, Figure 11a, Figure 12a the projections show facade walls inclined towards the inside of the form. However, if the dimension of the form is considered orthogonal to the axis v11 located above the base of the building, as it is shown in Figure 10b, Figure 11b, Figure 12b, then the elevation walls tilted with their bases outside the considered form are visible.



The overall dimensions of a building form in all three directions of the axes of its local system [x,y,z] are determined by the shape of the base edge line, the eaves line and their mutual position in the horizontal and vertical directions (Figure 10, Figure 11 and Figure 12).



The locations of the edge lines of the base and the eaves of the created form depends on the position of their vertices in the side edges of the polyhedral reference network Γ. The more the levels of the eaves line vertices are closer to the level of the axis u11, the more the base is stretched along the axis x and compressed along the axis y. However, in order to obtain similar dimensions of the form (dimensions of the edge lines of the base and the eaves) in two orthogonal horizontal directions, the vertices of the eaves edge and the vertices of the base edge should be placed at levels equidistant (or close to such) from the level of the horizontal plane passing through the midpoint of the straight line normal to u11 and v11, on both sides of this middle plane. All levels are defined by horizontal planes and their distances from the principal plane (x, y).



The shape of the eaves line Bv of a building form may be generated by the division coefficients of the respective pairs of vertices belonging to the polyhedral reference network Γ by the vertices of Bv. On the other hand, the shape of the base edge line can be determined by the coefficient defining their plane level. Control of the mutual position of the eaves line Bv and the base edges can be done by double division coefficients of the vertices of Γ by the eaves vertices and the base vertices. This issue goes beyond the scope of the paper.



To obtain an elongated horizontal projection of a building base along the axis x, the base level coefficient ddP should be taken significantly lower than 0.5 (Figure 10). To generate a horizontal projection of the building base elongated along the axis y, the coefficient ddP should be assumed significantly greater than 0.5. However, in order to obtain a horizontal projection of the building base with a comparable length of two overall dimensions measured in the x and y directions, the ddP coefficient should be adopted close to 0.5.



If the examined polyhedral reference network Γ has properties analogous to the networks presented in Figure 11 and Figure 12, i.e., u11 is identical to x of [x,y,z], v11 is perpendicular to u11 and distant by duv11 from z, then the following are true. To obtain an elongated plan view of the designed eaves line along the axis x, the coefficients ddAij, ddBij, ddCij and ddDij should be taken significantly less than 0.5. To obtain an elongated plan view of the eaves line along the axis y, the coefficients ddAij, ddBij, ddCij and ddDij should be significantly greater than 0.5. To generate a horizontal projection of roof eaves line characterized by comparable overall dimensions measured in the x and y directions, the arbitrary division coefficients close to 0.5 should be taken.



In order to generate an innovative form of a building having two façade walls inclined inwards and another two outwards of the form, and being close to a circle when projected onto a horizontal plane, the absolute values of the differences ddAij—0.5, ddBij—0.5, ddCij—0.5 and ddDij—0.5 should be adopted equal or close to an absolute value of the difference ddP—0.5, especially for all central meshes of the net Γ.



The examined general forms are to be influenced by corrugation of the polygonal eaves network Bv generated by the size of the differences between: (a) the division coefficients of the vertices of polyhedral reference network Γ by the vertices Aij, Bij, Cij and Dij of Bv, and (b) the division coefficients of the same vertices of Γ by the corresponding points SAij, SBij, SCij and SDij of a reference surface. In addition, these forms are to be influenced by the ratio between the size of this corrugation and the height of the entire form, which depends on the division coefficients of the vertices of the polyhedral reference network by points belonging to three groups: (a) base vertex group, (b) reference surface point group, and (c) eaves vertex group. The discussion about the influence of some important proportions between the values of the above-mentioned coefficients and the geometrical properties of the building forms shaped goes beyond the scope of the article and requires definition of the so-called multiple division coefficients.




7. Conclusions


An innovative procedure significantly extending the method for modeling unconventional building forms with complex folded elevations and multi-segment transformed shell roof structure was developed. The specific features of the elaborated procedure is are: (a) an arrangement of many complete transformed shells of a roof structure in the three-dimensional space in accordance with the properties of a regular saddle surface with negative Gaussian curvature, (b) achievement of different inclinations of elevation walls to the vertical, including outside and inside of the same building. Thus, the final innovative method presented in the article fills the important gap existing in the current knowledge.



The algorithm of the procedure was presented on three specific examples of creating complex building forms using appropriate proportions between the distances of all characteristic vertices of their elevation walls and roofs. The procedure enables the designer to take some dependencies determining the respective interrelationships between the distances of the subsequent vertices of the designed reference network deciding on the complex shape of elevation walls. On the basis of the created reference network, the vertices of the polygonal eaves network determining the arrangement and forms of all multi-segment shells of the determined roof structures are defined by means of the division coefficients. The ranges of variability of the above coefficients are also defined so that it is possible to create a few specific types of the building forms under consideration.



A characteristic feature of the presented procedure is that the vertices of each polyhedral reference network are divided into two groups such that the vertices belonging to these groups define two families of the orthogonal axes lying on both sides of the reference surface employed. This leads to a complex shell roof structure the overall shape of which is characterized by the negative Gaussian curvature. This property of the designed roof form is generated by a model whose division coefficients of the vertices belonging to the reference polyhedral network by the roof eaves vertices are in the range (0, 1).



There is a need for searching for further unconventional forms of roofs and elevations as well as their innovative structural systems supporting the transformed folded shell roof sheeting. Some extend laboratory tests in the field of thin-walled folded sheeting transformed elastically into various forms of saddle surfaces are also going to be performed.
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Nomenclature




	Γ
	the polyhedral reference network



	Bv
	the polygonal eaves network



	Ω
	the complex shell roof structure



	Σ
	the whole complex free form building structure



	ωr
	the reference regular surface



	Pb
	the horizontal base plane



	Ωij
	the individual mesh of Ω



	Γij
	the individual mesh of Γ



	WABij, WADij
	the vertices of Γij



	Bvij
	the single mesh of Bv



	Aij, Bij,
	the vertices of Bvij



	SAij, SBij
	the points of ωr



	uij, vij
	the axes of Γij



	aij, bij
	the side edges of Γij



	ddSAij, ddSBij
	division coefficients related to the points of ωr



	ddAij, ddBij
	division coefficients related to the points of Bv



	[x,y,z]
	the orthogonal coordinate system



	(x, y)
	principal plane of [x,y,z]
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Table A1. The coordinates of the vertices WABij, WCDij, WADij, WBCij (for i, j = 1, 2) of the basic polyhedral reference network Γ1.






Table A1. The coordinates of the vertices WABij, WCDij, WADij, WBCij (for i, j = 1, 2) of the basic polyhedral reference network Γ1.





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	WAB11
	−10,000
	0
	0



	WCD11
	10,000
	0
	0



	WAD11
	0
	10,000
	50,000



	WBC11
	0
	−10,000
	50,000



	WAB12
	−10,000
	0
	0



	WCD12
	28,793
	0
	6840



	WAD12
	0
	10,000
	50,000



	WBC12
	0
	−10,000
	50,000



	WAB21
	0
	−28,793
	43,160



	WCD21
	0
	−10,000
	50,000



	WAD21
	−10,000
	0
	0



	WBC21
	10,000
	0
	0



	WAB22
	28,793
	0
	6840



	WCD22
	10,000
	0
	0



	WAD22
	0
	−28,793
	43,160



	WBC21
	0
	−10,000
	50,000
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Table A2. The initial division coefficients defining the positions of the points SAij, SBij, SCij, SDij and the Bv’s vertices of the first structure Σ1 for i, j = 1, 2.






Table A2. The initial division coefficients defining the positions of the points SAij, SBij, SCij, SDij and the Bv’s vertices of the first structure Σ1 for i, j = 1, 2.





	Ratio
	Value





	ddSA11
	0.465



	ddSB11
	0.478



	ddSC11
	0.489



	ddSD11
	0.489



	ddSA12
	0.478



	ddSB12
	0.600



	ddSC12
	0.617



	ddSD12
	0.489



	ddSA22
	0.327



	ddSB22
	0.450



	ddSC22
	0.600



	ddSD22
	0.478



	ddA11
	0.480



	ddB11
	0.462



	ddC11
	0.500



	ddD11
	0.474



	ddA12
	0.462



	ddB12
	0.600



	ddC12
	0.600



	ddD12
	0.500



	ddA22
	0.343



	ddB22
	0.435



	ddC22
	0.600



	ddD22
	0.462
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Table A3. The coordinates of the points defining the reference surface ω1 of the first structure Σ1.






Table A3. The coordinates of the points defining the reference surface ω1 of the first structure Σ1.





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	SA11
	−5354.1
	4645.9
	23,228.7



	SB11
	−5221.6
	−4778.5
	23,892.5



	SC11
	5107.3
	−4892.7
	24,463.6



	SD11
	5107.3
	4892.7
	24,463.6



	SA12
	−5221.6
	−4778.5
	23,892.5



	SB12
	−3748.6
	−18,000.2
	26,980.8



	SC12
	3826.3
	−17,776.5
	26,645.6



	SD12
	5107.3
	−4892.7
	24,463.6



	SA21
	−19,413.7
	3257.6
	20,899.9



	SB21
	−19,366.8
	−3273.9
	20,970.3



	SC21
	−5221.6
	−4778.5
	23,892.5



	SD21
	−5354.1
	4645.9
	23,228.7



	SA22
	−19,366.8
	−3273.9
	20,970.3



	SB22
	−15,836.3
	−12,957.2
	23,184.0



	SC22
	−3748.6
	−18,000.2
	26,980.8



	SD22
	−5221.6
	−4778.5
	23,892
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Table A4. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2) of the eaves edge net Bv1 (and the first structure Σ1).






Table A4. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2) of the eaves edge net Bv1 (and the first structure Σ1).





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	A11
	−5200.3
	4799.7
	23,998.5



	B11
	−5375.4
	−4624.6
	23,122.8



	C11
	5000
	−5000
	25,000



	D11
	5261.2
	4738.8
	23,693.8



	A12
	xB11
	yB11
	zB11



	B12
	−3748.6
	−18,000.2
	26,980.8



	C12
	4002.5
	−17,2693
	25,885.2



	D12
	xC11
	yC11
	zC11



	A21
	−19,849.7
	3106.2
	20,246.4



	B21
	−18,930.8
	−3425.3
	21,623.8



	C21
	xB11
	yB11
	zB11



	D21
	xA11
	yA11
	zA11



	A22
	xB21
	yB21
	zB21



	B22
	−16,258.5
	−12,535.1
	22,651.6



	C22
	xB12
	yB12
	zB12



	D22
	xB11
	yB11
	zB11










[image: Table] 





Table A5. The initial division coefficients defining the positions of the points SAij, SBij, SCij, SDij and the Bv’s vertices of the second structure Σ2 for i, j = 1, 2.






Table A5. The initial division coefficients defining the positions of the points SAij, SBij, SCij, SDij and the Bv’s vertices of the second structure Σ2 for i, j = 1, 2.





	Ratio
	Value





	ddSA11
	0.682



	ddSB11
	0.682



	ddSC11
	0.682



	ddSD11
	0.682



	ddSA12
	0.682



	ddSB12
	0.869



	ddSC12
	0.882



	ddSD12
	0.682



	ddSA22
	0.564



	ddSB22
	0.750



	ddSC22
	0.869



	ddSD22
	0.682



	ddA11
	0.624



	ddB11
	0.739



	ddC11
	0.624



	ddD11
	0.739



	ddA12
	0.739



	ddB12
	0.819



	ddC12
	0.919



	ddD12
	0.624



	ddA22
	0.510



	ddB22
	0.805



	ddC22
	0.819



	ddD22
	0.739
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Table A6. The coordinates of the points defining the reference surface ω2 of the second structure Σ2.






Table A6. The coordinates of the points defining the reference surface ω2 of the second structure Σ2.





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	SA11
	−3184
	6816
	34,080



	SB11
	−3184
	−6816
	34,080



	SC11
	3184
	−6816
	34,080



	SD11
	3184
	6816
	34,080



	SA12
	−3184
	−6816
	34,080



	SB12
	−1814.9
	−24,600.6
	37,870.4



	SC12
	1868.1
	−24,539.6
	37,793.5



	SD12
	3184
	−6816
	34,080



	SA21
	−12,549.5
	56,415
	31,189



	SB21
	−12,546.6
	−5642.5
	31,193.4



	SC21
	−3184
	−6816
	34,080



	SD21
	−3184
	6816
	34,080



	SA22
	−12,546.6
	−5642.5
	31,193.4



	SB22
	−71,984
	−21,595.4
	34,080



	SC22
	−1814.9
	−24,600.6
	37,870.4



	SD22
	−3184
	−6816
	34,080
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Table A7. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2) of the eaves edge net Bv1 (and the second structure Σ2).






Table A7. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2) of the eaves edge net Bv1 (and the second structure Σ2).





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	A11
	−3761.4
	6238.6
	31,193



	B11
	−2606.7
	−7393.3
	36,966.7



	C11
	3761.4
	−6238.6
	31,193



	D11
	2606.7
	7393.3
	36,966.7



	A12
	xB11
	yB11
	zB11



	B12
	−1811.7
	−23,577.4
	35,340.5



	C12
	757.6
	−26,612.6
	39,890



	D12
	xC11
	yC11
	zC11



	A21
	−914.7
	6209.3
	33,639.4



	B21
	−14,114.4
	−5098
	28,843.3



	C21
	xB11
	yB11
	zB11



	D21
	xA11
	yA11
	zB11



	A22
	xB21
	yB21
	zB21



	B22
	−1811.7
	−23,577.4
	35,340.5



	C22
	xB12
	yB12
	zB12



	D22
	xB11
	yB11
	zB11










[image: Table] 





Table A8. The initial division coefficients defining the positions of the points SAij, SBij, SCij, SDij and the Bv’s vertices of the third structure Σ3 for i, j = 1, 2.






Table A8. The initial division coefficients defining the positions of the points SAij, SBij, SCij, SDij and the Bv’s vertices of the third structure Σ3 for i, j = 1, 2.





	Ratio
	Value





	ddSA11
	0.544



	ddSB11
	0.544



	ddSC11
	0.552



	ddSD11
	0.552



	ddSA12
	0.544



	ddSB12
	0.715



	ddSC12
	0.721



	ddSD12
	0.552



	ddSA22
	0.460



	ddSB22
	0.600



	ddSC22
	0.715



	ddSD22
	0.544



	ddA11
	0.545



	ddB11
	0.531



	ddC11
	0.567



	ddD11
	0.536



	ddA12
	0.531



	ddB12
	0.730



	ddC12
	0.706



	ddD12
	0.567



	ddA22
	0.475



	ddB22
	0.585



	ddC22
	0.730



	ddD22
	0.531
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Table A9. The coordinates of the points defining the reference surface ω3 of the third structure Σ3.






Table A9. The coordinates of the points defining the reference surface ω3 of the third structure Σ3.





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	SA11
	−4549.4
	5450.6
	27,252.8



	SB11
	−4416.7
	−5577.5
	27,228.5



	SC11
	4484.2
	−5515.9
	27,577.8



	SD11
	4484.2
	5515.9
	27,577.8



	SA12
	−4416.7
	−5577.5
	27,228.5



	SB12
	−2847.1
	−20,596
	30,871.7



	SC12
	2790.6
	−20,758.7
	31,115.5



	SD12
	4484.2
	−5515.9
	27,577.8



	SA21
	−15,814.4
	45,076
	26,295.0



	SB21
	−15,544.2
	−4601.5
	26,700.1



	SC21
	−4416.7
	−5577.5
	27,228.5



	SD21
	−4549.4
	5450.6
	27,252.8



	SA22
	−15,544.2
	−4601.5
	26,700.1



	SB22
	−11,517.3
	−17,276.3
	28,631.9



	SC22
	−2847.1
	−20,596
	30,871.7



	SD22
	4484.2
	−5515.9
	27,577.8
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Table A10. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2) of the eaves edge net Bv1 (and the third structure Σ3).






Table A10. The coordinates of the vertices Aij, Bij, Cij, Dij (for i, j = 1, 2) of the eaves edge net Bv1 (and the third structure Σ3).





	Point
	x-Coordinate [mm]
	y-Coordinate [mm]
	z-Coordinate [mm]





	A11
	−4401.7
	5598.3
	27,991.6



	B11
	−4694.9
	−5305.1
	26,525.3



	C11
	4330.5
	−5669.5
	28,347.7



	D11
	4638.4
	5361.6
	26,808.1



	A12
	xB11
	yB11
	zB11



	B12
	−2695.7
	−21,031.9
	31,525.1



	C12
	2942
	−20,322.7
	30,462.1



	D12
	xC11
	yC11
	zC11



	A21
	−16,250.4
	4356.2
	25,641.5



	B21
	−15,101.8
	−4743.8
	27,344.6



	C21
	xB11
	yB11
	zB11



	D21
	xA11
	yA11
	zA11



	A22
	xB21
	yB21
	zB21



	B22
	−11,939.5
	−16,854.1
	28,009.4



	C22
	xB12
	yB12
	zB12



	D22
	xB11
	yB11
	zB11
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Figure 1. Transformed folded shell sheeting twisted with two skew directrices. 






Figure 1. Transformed folded shell sheeting twisted with two skew directrices.
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Figure 2. An experimental hall roofed with a regular shell structure. 






Figure 2. An experimental hall roofed with a regular shell structure.
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Figure 3. A free-form building structure roofed with a regular continuous shell structure characterized by the positive Gaussian curvature. 






Figure 3. A free-form building structure roofed with a regular continuous shell structure characterized by the positive Gaussian curvature.
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Figure 4. A free-form building structure roofed with a regular discontinuous shell structure characterized by the positive Gaussian curvature. 






Figure 4. A free-form building structure roofed with a regular discontinuous shell structure characterized by the positive Gaussian curvature.
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Figure 5. Geometric elements and their denotation used for shaping the first mesh Γ11 of a polyhedral reference network Γ, the first mesh Bv11 of a quadrilateral eaves network, and the first mesh of the model Σ shaped: (a) the essential elements of these networks, (b) the obtained first mesh of the model Σ. 






Figure 5. Geometric elements and their denotation used for shaping the first mesh Γ11 of a polyhedral reference network Γ, the first mesh Bv11 of a quadrilateral eaves network, and the first mesh of the model Σ shaped: (a) the essential elements of these networks, (b) the obtained first mesh of the model Σ.
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Figure 6. Four subsequent meshes of the designed reference network Γ, the eaves network Bv, and the model Σ. 
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Figure 7. Subsequent meshes positioned in two orthogonal directions of the designed reference network Γ, the eaves network Bv, and the complex structure Σ: (a) the first orthogonal direction, and (b) two orthogonal directions. 
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Figure 8. Four subsequent meshes of the designed reference network Γ, the eaves network Bv, and the model Σ. 
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Figure 9. The designed reference network Γ, the eaves network Bv, and the complex building structure Σ as well as their elements: (a) structure Σ roofed with continuous shell structure, (b) structure Σ roofed with discontinuous shell structure. 
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Figure 10. The designed reference network Γ, the first eaves network Bv, and the first complex building structure Σ: (a) the front view, (b) the back view, (c) the top view. 
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Figure 11. The designed reference network Γ, the second eaves network Bv, and the second complex building structure Σ: (a) the front view, (b) the back view, (c) the top view. 
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Figure 12. The designed reference network Γ, the third eaves network Bv, and the third complex building structure Σ: (a) the front view, (b) the back view, (c) the top view. 
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Table 1. The values of the initial parameters of Γ1.
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	Initial Parameter
	dv11 [mm]
	dduv11
	ddu11





	
	20,000
	5
	1
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