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Abstract: Bioactive glasses (BGs), also known as bioglasses, are very attractive and versatile materials
that are increasingly being used in dentistry. For this study, two new bioglasses—one with boron
(BG1) and another with boron and vanadium (BG2)—were synthesized, characterized, and tested
on human dysplastic keratinocytes. The in vitro biological properties were evaluated through pH
and zeta potential measurement, weight loss, Ca2+ ions released after immersion in phosphate-
buffered saline (PBS), and scanning electron microscopy (SEM) coupled with energy dispersive
spectroscopy (EDS) analysis. Furthermore, biocompatibility was evaluated through quantification
of lactate dehydrogenase activity, oxidative stress, transcription factors, and DNA lesions. The
results indicate that both BGs presented the same behavior in simulated fluids, characterized by
high degradation, fast release of calcium and boron in the environment (especially from BG1), and
increased pH and zeta potential. Both BGs reacted with the fluid, particularly BG2, with irregular
deposits covering the glass surface. In vitro studies demonstrated that normal doses of the BGs were
not cytotoxic to DOK, while high doses reduced cell viability. Both BGs induced oxidative stress and
cell membrane damage and enhanced NFkB activation, especially BG1. The BGs down-regulated the
expression of NFkB and diminished the DNA damage, suggesting the protective effects of the BGs
on cell death and efficacy of DNA repair mechanisms.

Keywords: bioglasses; biocompatibility; human dysplastic keratinocytes; oxidative stress; DNA
lesions

1. Introduction

Bioactive glasses are modern materials with extensive use in regenerative medicine,
including in dental medicine. In dentistry, bioactive glasses have been considered for bone
grafts—to substitute bone and to promote osteogenesis—and for bone regeneration, as well
as for soft tissue substitutes, drug delivery systems, antimicrobial agents for endodontic
and periodontic treatment, and topical disinfectants during endodontic procedures [1,2].
The bioglasses (BGs) used for coating dental implants can enhance osseointegration into
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alveolar bone. Additionally, BGs can be used in dentifrices or topical applications to treat
gingivitis, to improve dentin hypersensitivity, and as abrasive materials in dental air abra-
sion machines [3]. In 1969, Larry Hench designed the first bioglass composition called
45S5 Bioglass, which is considered a biocompatible product that is capable of bonding to
living tissues and stimulating osteogenesis through the release of active ions [3]. However,
45S5 Bioglass is not an ideal bioglass. Although 45S5 Bioglass can form a bone-like hy-
droxyapatite layer in contact with living tissues, it has drawbacks, such as the cytotoxicity
induced by the high sodium content and elevated pH environment. It also has a decreased
sintering ability, making the creation of porous 3D scaffolds difficult. In fact, this first
bioglass presents a high dissolution rate, poor sintering ability, and a cytotoxic effect [4].

For our study, we started from the well-known concept that modifying the BG compo-
sition can affect the biocompatibility and degradation rate, as well as the ease of material
processing [5]. By adding ions, the BG structure can be modified, improving the properties
of such materials for their use in biomedical applications, especially in dentistry. Metal
ions, such as magnesium, strontium, manganese, iron, zinc, and silver, have been shown to
increase the mechanical and biological properties of bioactive glasses, facilitating healing
and tissue regeneration processes [6]. Resin composites with fluoride-containing bioactive
glass (BAG) have been shown to enhance dentin re-mineralization and eliminate enzymatic
degradation at the dentin interface [7].

The novelty of this study comes from the fact that we synthetized two new BGs—
one containing boron (BG1) and another containing boron and vanadium (BG2)—which
were characterized and tested regarding their biocompatibility. We chose boron due to its
important role in structural integrity preservation through maintaining normal cell function,
stimulating the release of cytokines and growth factors and promoting regeneration of the
extracellular matrix. It also has been shown to possess anti-inflammatory, antibacterial, and
antiviral effects in various in vitro and in vivo models [8], and has presented positive effects
regarding wound-healing, healthy bone development, regeneration, and angiogenesis [9].
As for vanadium, we chose it because it is present in the bones and vanadate groups possess
phosphate-like functions in the regulation of physiological processes [10]. In experimental
studies, the addition of vanadium to a collagen matrix increased biocompatibility as well
as the adhesiveness of the product, and induced the differentiation of osteoblasts [11].

Considering the above, we started from the premise that the addition of boron and
vanadium into the BG composition could increase the biocompatibility and improve their
effects in biological systems. Studying the possible toxicity of these products is a mandatory
step in the evaluation of their effects, taking into account the fact that the response of a tissue
depends on the type of material and the dose used. Their use in dentin re-mineralization
and restorations, due to their remarkable antibacterial properties and/or ability to stimulate
angiogenesis and bone regeneration, represent innovative qualities of these materials which
are important in the context of dentistry. Therefore, we aimed to characterize the two new
synthesized BGs and evaluate their biocompatibility in order to assess their suitability
for further biomedical applications in dentistry. The null hypothesis was that there is no
difference between the two BGs, based on their composition, with respect to bioactivity
and in vitro toxicity.

For this purpose, the BGs were characterized by X-ray photoelectron spectroscopy
(XPS) and X-ray diffraction (XRD); furthermore, after immersion in simulated fluids and
phosphate-buffered saline (PBS), their pH, zeta potential, and weight loss were measured, as
well as the concentration of Ca2+ ions released, followed by scanning electron microscopy
(SEM) coupled with EDS analysis. The in vitro biocompatibility of the BGs was evalu-
ated according to lactate dehydrogenase (LDH) activity, an oxidative stress assessment,
transcription factor expression, and DNA lesion quantification.
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2. Materials and Methods
2.1. Reagents

The substances used for synthesizing the bioactive glasses (H3BO3, CaF2, and V2O5),
along with the Bradford reagent, 2-thiobarbituric acid, glutamine, DMEM, 10% fetal bovine
serum (FBS), hydrocortisone, antibiotics, and antifungals were purchased from Sigma
Aldrich, GmbH (Darmstadt, Germany). PBS buffer was acquired from Lonza (Brussels,
Belgium) and standard Ca2+ solutions from Fluka (Frankfurt, Germany). Phosphorylated
histone H2AX (pS139; γH2AX) was purchased from Stressgen Bioreagents Corporation
(Victoria, BC, Canada). Antibodies against nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) and pNF-KB were obtained from Cell Signaling Technology, Inc.
(Danvers, MA, USA) and glyceraldehyde 3-dehydrogenase (GAPDH) was acquired from
Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.2. Preparation and Characterizations of the BGs

For this study, two bioactive glasses—BG1: 100 [2B2O3·CaF2] and BG2: 0.5V2O5·99.5
[2B2O3·CaF2]—were developed using fundamental materials of high purity (H3BO3, CaF2,
and V2O5). The materials were weighed in certain proportions, mixed in an agate pestle
for homogenization for 15 min, and then placed in a melting furnace at a melting point of
1150 ◦C in air. The melts were brought rapidly below the crystallization temperature and
pressed between stainless steel plates, obtaining cylindrical sample pieces. The samples
were then ground into agate crucibles and passed through a 2.0–4.0 mm sieve, in order to
obtain controlled sized powders. The composition analysis of the solid BGs composition
was performed by XPS analysis and X-Ray diffractometry. In order to investigate the
in vitro bioactivity, the two BGs were immersed in simulated fluids (PBS) for different
periods of time (1/4, 1, 3, 7, and 14 days). The pH and zeta potential were assessed up to
10 days, while the weight loss measurements and the concentration of Ca2+ ions released
after immersion in PBS, followed by scanning electron microscopy (SEM) coupled with
EDS analysis, were performed up to 14 days. The in vitro biocompatibility of the tested
materials was evaluated according to LDH activity, oxidative stress, transcription factor
expression, and DNA lesion quantification.

2.3. In Vitro Evaluation of Bioactivity

For this study, fragments of BG1: 100 [2B2O3·CaF2] and BG2: 0.5V2O5·99.5 [2B2O3·CaF2]
with a diameter of 2–4 mm were used. During the in vitro evaluation of bioactivity, the
BG samples immersed in PBS were maintained at 37 ◦C in a climate chamber (Binder,
Germany). A calibrated pH meter (Mettler Toledo, Columbus, OH, USA) and a Zetasizer
Nano ZS90 (Malvern, UK) were used for measurement of the pH and the zeta potential,
respectively.

3. pH and Zeta Potential Measurement

The BG samples were immersed in PBS 0.0067M phosphate (pH 7.27, zeta potential
0.963 mV) at a ratio of 0.2 g per 100 mL PBS (Ohaus Analytical balance). Both the pH and
zeta potential were measured at different time intervals up to 10 days (1, 2, 3, 6 h; 1, 2, 4, 7
and 10 days), directly from samples containing BG fragments. [12].

3.1. Weight Loss and In Vitro Release of Calcium Ions

For weight loss and in vitro release of calcium ions, 0.2 g of BG samples were immersed
into 100 mL PBS and maintained at 37 ◦C. At certain time intervals (6 h; 1, 3, 7, and
14 days), the dispersions were centrifuged at 5000 rpm and the Ca2+ ion concentration was
determined in the supernatant. The BG samples were washed with distilled water, dried
for 4 h in an oven at 90 ◦C, and then weighed. The cumulative weight loss (∆M/Mo) was
calculated as a function of immersion time (∆M = Mo − M, where Mo represents the initial
mass and M is the mass at time t). All tests were performed in triplicate [12].
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3.2. Calcium Ion Detection by a Potentiometric Method

Ca2+ ions were determined by a potentiometric method using a combined electrode
HI4104 from Hanna Instruments (Rome, Italy), consisting of a Ca2+ ion-selective elec-
trode (ISE), an Ag/AgCl reference electrode, and a Consort C830 potentiometer (Brussels,
Belgium). The tests were performed in volumes of 10 mL under continuous stirring us-
ing an Arex magnetic stirrer (Velp Scientifica, Usmate Velate, Italy) at room temperature.
The first step was to draw a calibration plot using Ca2+ standard solution in the range
0.25–20 µg mL−1 (6.238−499 µM) in 0.1 M KCl starting from a standard solution of 10 g L−1

(Fluka, Frankfurt, Germany), obtaining the calibration plot considering the potential (E)
of the solution as a function of −log10 molar concentration of Ca2+ : y (mV) = −26,275 ×
(−log10 [Ca2+]) + 56,052, with a correlation coefficient of R2 = 0.992. The sample solutions
were diluted 1:1 with a solution of 0.2 M KCl, obtaining sample solutions containing 0.1 M
KCl in the end in order to keep the ionic forces of the standard solutions used for the
calibration plot constant. All samples were potentiometrically analyzed, performing three
measurements for each sample, and the average concentrations (µg/mL) of Ca2+ for each
moment were calculated. The variation in time of Ca2+ concentration was followed after
6 h (1/4 day) and on days 1, 3, 7, and 14.

3.3. SEM Analysis of BGs

For characterization by SEM, the BG samples were immobilized on aluminum rods
using double-sided adhesive sheets (Electron Microscopy Sciences, Hatfield, MA, USA).
The samples were then spray-coated with a 10-nm gold layer in a Polaron E-5100 sprayer
(Polaron Equipment Ltd., Watford, UK) in the presence of argon (45 s at 2 kV and 20 mA).
Ultrastructural images were obtained at 10 kV with different magnifications using a Hitachi
SU8230 electron microscope (Hitachi, Japan).

4. In Vitro Evaluation of BGs Toxicity
4.1. Cell Cultures and Preparation of Sample BGs Extract

Human dysplastic oral keratinocytes (DOK) (ECCAC 94122104) were purchased from
Sigma Aldrich (Heidelberg, Germany), and were used in passage 31–32. The culture
medium was DMEM, supplemented with 2 mM glutamine, 10% FBS (fetal bovine serum),
5 pg/mL hydrocortisone, antibiotics, and antifungals; all reagents were purchased from
Sigma Aldrich, Co (Heidelberg, Germany). Samples of the experimental biomaterials were
incubated in the culture medium at a concentration of 2 g/mL and at a temperature of
37 ◦C for 24 h, following the procedures detailed in ISO 10993-12/2012 [13]. Then, the
extract obtained was sterile filtered and used immediately for in vitro experiments. The
sample, prepared as indicated by the producer, was incubated with medium in the same
conditions as the experimental biomaterials.

4.2. Cell Viability Assay

To assess cell viability, the CellTiter 96® AQueous Non-Radioactive Cell Proliferation
Assay (Promega Corporation, Madison, WI, USA) was used. Dysplastic keratinocytes were
cultured for 24 h at a density of 104/well in 96-well plates (TPP, Trasadingen, Switzerland).
Then, the cells were exposed for 24 h to the extracts in different concentrations (1, 0.5,
0.25, and 0.125). The experiments were performed in triplicate, and untreated cell cultures
were used as controls. Formazan, a compound synthesized by viable cells, was measured
with a colorimetric method at 540 nm, using an ELISA plate reader (Tecan, Männedorf,
Switzerland). The results are expressed as % of untreated control, where a decrease in cell
viability below 70% was considered to indicate cytotoxic effects.
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4.3. Preparation of Cell Lysates

For the preparation of cell lysates, DOK cells were inoculated on Petri dishes at a
density of 104/cm2 for 24 h, then exposed for 24 h to undiluted sample extracts. Untreated
cells were used as controls. After exposure, the cells were washed and lysed according to a
previously described method [14]. The Bradford method [15] was used to determine the
protein concentration in the lysate, according to the manufacturer’s specifications (Biorad,
Hercules, CA, USA), using bovine albumin serum as a standard.

4.4. Lactate Dehydrogenase (LDH) and Oxidative Stress Assessment

In order to assess the toxicity of the tested compounds, lactate dehydrogenase (LDH)
activity and oxidative stress were evaluated. LDH activity, which can quantify cell mem-
brane damage, was evaluated in culture media using a spectrophotometric method, ac-
cording to a previously reported technique [13]. LDH is expressed in units of enzymatic
activity (nMol NAD/mL/min). Malondialdehyde (MDA), a marker of lipid peroxidation,
was evaluated using a fluorometric method with 2-thiobarbituric acid [16]. The results are
expressed as nmole/mg protein.

4.5. Evaluation of Transcription Factors and DNA Lesions

For the evaluation of mechanisms involved in the toxicity of the BGs, the transcription
factor NFkB and its activated form pNFkB, as well as γH2AX, a marker of DNA double-
strand breaks, were assessed by Western blotting. Briefly, cell lysates (20 µg protein/lane)
were separated by electrophoresis on SDS PAGE gels and transferred to polyvinylidenedi-
fluoride membranes using a Biorad Miniprotean system (BioRad, Hercules, CA, USA). Blots
were blocked and then incubated with antibodies against NFkB, pNFkB, and γH2AX, then
further washed and incubated with corresponding secondary peroxidase-linked antibodies.
The amount of protein was measured by the Bradford method [15]. The proteins were de-
tected using Supersignal West Femto Chemiluminiscent substrate (Thermo Fisher Scientific,
Rockford, IL, USA), and a Gel Doc Imaging system equipped with an XRS camera and the
Quantity One analysis software (Biorad, Hercules, CA, USA). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH; Trevigen Biotechnology Gaithersburg, MD, USA) was used as a
protein loading control.

5. Statistical Analysis

The statistical significance regarding the differences between treated and control (un-
treated) cells was evaluated by a two-way ANOVA and paired Student’s t-test, followed by
the Bonferroni post-hoc test using the GraphPad Prism version 5.00 software for Windows
(GraphPad Software, San Diego, CA, USA, www.graphpad.com, accessed on 20 October
2022). A p-value <0.05 was considered to indicate statistical significance. All reported data
are expressed as the mean of triplicate measurements ± standard deviation (SD).

6. Results
6.1. XPS Measurements and X-ray Diffraction

In order to obtain information about the chemical compositions before immersion, X-
ray photoelectron spectroscopy (XPS) measurements were performed on powdered samples
of the two BGs. As an example, the XPS spectra of Ca 2p, F 1s, B 1s, and V 2s core-level lines
corresponding to the sample with vanadium (BG2) are illustrated in Figure 1. The observed
chemical states, according to the NIST X-ray Photoelectron Spectroscopy Database [NIST
Standard Reference Database Number 20, National Institute of Standards and Technology,
Gaithersburg, MD, USA, 20,899 (2000), doi:10.18434/T4T88K] were that B 1s indicated B2O3,
while F 1s indicated metal fluorides. In the case of V 2s, the peak observed at 632.67 eV
may originate from V2O5. The Ca 2p line has limited use in determining chemistry, while
the 2p (3/2) line positioned at 349.5 eV can be attributed to CaF2, but the shift to higher BE
energy indicates the presence of Ca–OH bonds, which may be present in the sample near
the surface [17]. As XPS is a surface analysis technique, the calculated sample stoichiometry

www.graphpad.com
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cannot be fully expected due to surface defects. As in our previous studies [18], Ar
sputtering was performed for 1 h at 3000 V, equivalent to a depth of approximately 5.3 nm
below the surface. The line positions, FWHM, normalized areas, and At. % composition at
~5.3 nm depth are listed in Table 1, for both BG1 and BG2.
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Table 1. The XPS line positions, FWHM, normalized areas, and At. % composition at ~5.3 nm depth
for samples BG1 and BG2. The value marked by * was at the limit of detection and was thus ruled
out.

Element

Position
(eV)

FWHM
(eV)

Area/(RSF*T*MFP)
(eV s−1) At. %

BG1 BG2 BG1 BG2 BG1 BG2 BG1 BG2

B 1s 194.25 194.19 2.63 2.66 6391.50 6688.22 31.41 31.13
Ca 2p (3/2) 349.45 349.47 2.45 2.46 2737.79 2831.42 13.45 13.17

F 1s 687.04 687.05 3.17 2.97 938.84 667.07 4.61 3.10
O 1s 533.65 533.65 3.01 3.03 10260.40 11268.50 50.43 52.44
V 2s 633.04 632.67 2.08 3.17 ~3.5 * 29.57 0.07 0.13
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For a better correlation between sample composition and their behavior in biological
fluids, the ratio of atom pairs was calculated, as listed in Table S1 (Supplementary Files).
Through X-ray diffraction (XRD), no crystalline phases were detected; the diffraction
patterns being large and noisy is characteristic of vitreous and homogeneous samples
(Supplementary Materials, Figure S1).

6.2. Bioactivity Assay of BGs

In view of future applications in biology, the pH value and zeta potential of two
samples after immersion of the BGs in PBS were monitored for 10 days. The weight loss
and the concentration of Ca2+ ions released were measured at 1

4 , 1, 3, 7, and 14 days after
immersion and, at the same time intervals, SEM coupled with EDS analysis was performed.

Generally, BGs immersed in biological fluids undergo a biodegradation process, as a
result of which ion exchange with the environment takes place and a hydroxyapatite (HA)
layer [Ca11(PO4)6(OH)2] forms on solid surfaces [12]. This ion exchange process induces
changes in the pH and zeta potential in the environment, characteristics that reflect the
biodegradation of these materials and the extent of the transformation. The evolution of
the pH in the case of the studied BGs is shown in Figure 2.
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Figure 2. pH values of BGs immersed in PBS at 37 ◦C as a function of immersion time (BG1,
100[2B2O3·CaF2]; BG2, 0.5V2O5·99.5[2B2O3·CaF2]). Mean ± SD, n = 3.

According to Figure 2, immersion of BG1 and BG2 into PBS induced a slight increase
in pH values over the ten days of study, from 7.27 to 7.65. In the first two days, the
increase was more marked, reaching values around 7.52; then, the values grew slowly until
day 10. Under the indicated experimental conditions, between the two studied BGs, no
significantly different pH values were recorded, indicating that the presence of vanadium
oxide did not lead to noticeable changes in the concentration of hydrogen/hydroxyl ions.
Lower pH values were observed compared with other studies. In the case of borate BG
micro-fibers, the pH values reached up to 9.25, and for a silicate BG, they reached up to
8.65 [12]. This difference could be due to the lack of sodium ions in the studied BG, as
the sodium released into the environment can cause a significant increase in pH. The zeta
potential after immersion in PBS at 37 ◦C was also monitored for 10 days, and the results
are shown in Figure 3A,B.
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100[2B2O3·CaF2]; BG2, 0.5V2O5·99.5 [2B2O3·CaF2]). (A) Zeta potential for 10 days; (B) Zeta potential
for 2 days. Mean ± SD, n = 3.

The zeta potential increased very rapidly in the first hour after immersion, then
dropped slightly, with a minimum at 6 h (Figure 3B). A further increase was noticed, which
was faster until day 2, and then slowed down (Figure 3A). This evolution demonstrated
the existence of ion exchange between the BGs and the immersion medium. Based on the
composition of the two BGs, the main ions transferred could be Ca2+ and (BO3)3−, according
to other similar studies [19]. The sudden increase in zeta potential at the beginning of
the immersion could be explained by the rapid degradation of boric BGs. The presence
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of boron in the network of bioactive glasses determined a different structure from that
of silicate-based glasses, as boron has only three valences compared with Si (which has
four); this aspect leads to faster biodegradation [20]. The decrease in zeta-potential values
occurring between 2–6 h after immersion (Figure 3B) may be related to the formation of
hydroxyapatite. The presence of vanadium oxide did not lead to important differences in
the evolution of zeta potential of the two studied BGs.

For both studied BGs, the accumulative weight loss increased with the immersion
time in PBS, without significant differences between the two samples (Figure 4). In the first
6 h after immersion, there was a significant weight loss per day (5.32%/day), representing
10.5% of the total loss. In the next 18 h, the changes were very small. Following that, the
interval from 1–3 days registered the most accelerated rate of degradation (17.6%/day;
34.12% of the total weight loss). In the interval from 3–14 days, the intensity of the process
decreased, but evolved with almost constant speed, with a weight loss of 5.4%/day. At the
end of the study, after 14 days, the total weight loss was between 12.50–13%. According
to these data, the presence of vanadium oxide did not change the rate of weight loss and
biodegradation of the BGs. During the analyzed time interval, the concentration of Ca2+

ions registered an increasing evolution (Figure 5). Thus, in the first 6 h after immersion there
was a significant release of Ca2+ ions, representing between 45–55% of the total increase
recorded. For BG1, the calcium release was faster, reaching a maximum value after 3 days,
which remained constant even after 14 days. In the case of BG2, the release of Ca2+ ions was
slower, but an increasing trend was maintained over the 14 days. Based on these results, we
can state that vanadium oxide decreased the rate of Ca2+ ion release. Compared with other
studies performed on borate BGs [12], the Ca2+ ion concentrations were lower after 6 h
and after the first day, likely due to the fact that, in our study, the BG particles had a larger
diameter and a smaller surface area, which could explain their slower biodegradation.
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6.3. SEM Analysis of BGs

For better visualization of the interaction of the BG samples with PBS, images obtained
by SEM at the same magnification for all immersion time intervals (1/4, 1, 3, 7, and 14 days)
are shown in Figure 6. The SEM images indicate the presence of irregular formations
randomly arranged on the initially smooth surface of the glass (BG1 in 1d), while the
second sample analyzed under the same conditions (BG2 1d) showed a wavy surface
full of inhomogeneities. Analysis of the two samples at 3 days after immersion revealed
significant surface changes on both samples, which were similar in appearance, without
being able to accurately separate the shape and consistency of the layer deposited in either
case. As can be seen from Figure 6, the formed layer became more and more compact
as the immersion time increased. In Figure 6, it can be seen that BG2 reacted with the
fluid faster than BG1. In order to identify the composition of the structures formed on the
two sample surfaces, elemental X-ray analysis (EDS) was performed. From the elemental
analysis (Table 2) obtained from capturing the energy dispersed by surfaces at different
points, it was observed that elements were deposited on the surface of the two samples
from the immersion liquid. However, in the case of BG1, the quantity remained constant
over time for all the identified elements. In the case of BG2, the analyzed elements covered
the surface of the material better, with an observable increase of their quantity. At 14 days
the existing gaps in the surface were covered, suggesting the formation of a surface deposit.
Traces of aluminum (Al) and silicon (Si) were also found, indicating slight corrosion of the
crucibles during melting. The carbon (C) signal came from the surface on which the two
samples were fixed, which also dispersed the incident X-ray beam. No traces of vanadium
(V) were detected, as it was introduced into the starting substances in very small quantities
in order to reduce the toxicity of the samples, allowing for the possibility of their use in
biomedical applications.

The elemental analysis obtained by the combined SEM-EDS technique also revealed
elements from the biological fluid (e.g., Na and P) on the surface of the samples without
being able to state that their mass increased over time, as the surfaces under analysis were
different at the time of analysis.
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Table 2. Average elemental composition of the two BGs.

Immersion Time O B Ca F

BG1 43.8 42.2 6.2 3.7
BG2 1/4 d 46.4 52.2 6 4.4

BG1 49.47 50.2 6.2 2.6
BG2 1 d 48.3 50.4 2.9 3.4

BG1 47.5 48.9 4 4.3
BG2 3 d 42.1 46.5 5 3.4

BG1 47.77 45.9 7.23 4.6
BG2 7 d 47.7 44.2 6.8 3.9

BG1 50.4 60.9 3.7 4.3
BG2 14 d 48.1 32.6 7.9 4.5

7. In Vitro Toxicity
7.1. Cell Viability Tests

The viabilities of the DOK cells exposed to the sample extracts in increasing dilutions
are shown in Figure 7. The two experimental biomaterials were well-tolerated by the cells,
without decreasing their viability below the toxicity limit. BG2 presented the best viability
values. A decrease in cell viability was observed only after incubation with high doses of
the BGs. For LDH activity and oxidative stress assessments and for western blot analysis a
concentration of 2 µg/mL BGs was used.
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Figure 7. Cell viability of DOK cells exposed to different concentrations of BGs compared with
control untreated cells. DOK cells were exposed to dilutions of the sample extract ranging between
0.125–1 and compared with control untreated cells. Data are presented as a mean of OD540 ± SD, n =
3 for each sample.

7.2. LDH Activity and Oxidative Stress Assessment

In Figure 8, the LDH activities in the supernatant of DOK cells exposed to the two
studied BGs are shown (Figure 8A). LDH activity increased significantly in the supernatant
of DOK cells exposed to the two bioactive glasses, compared with the control untreated
cells (p < 0.001). No significant difference was observed in terms of LDH activities or cell
membrane integrity between the two BGs (p > 0.05).

As shown in Figure 8B, the MDA levels in cell lysates obtained after exposure to bioac-
tive glasses increased statistically significantly in cells exposed to the two BGs, compared
with untreated cells (p < 0.001). No statistically significant difference was found between
the two bioactive glasses tested (p > 0.05).
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Figure 8. LDH activity and MDA levels in the supernatant of DOK cells exposed to the two BGs
compared with untreated control cells: (A) LDH activity was significantly increased in the supernatant
of DOK after BG exposure, compared with the control (p < 0.001); and (B) MDA levels after 24 h of
exposure to 2 µg/mL BG1 and BG2 were enhanced, compared with control cells (p < 0.001). The
statistical significance of the difference between exposed and control groups was evaluated by two-
way ANOVA and paired Student’s t-test followed by the Bonferroni post-hoc test. Data are expressed
as the mean of triplicate measurements ± SD. *** p < 0.001 vs. control.

7.3. Evaluation of Transcription Factors and DNA Lesions

The Western blot analysis (Figure 9) demonstrated that expression of the constitutive
form of NFkB decreased in the presence of both BGs. The tested compounds induced
activation of NFkB, especially BG1 (p < 0.001), suggesting the presence of activators of
NFkB in the bioglass composition. The studied bioactive glasses did not induce DNA
damage, with the most protective of them being BG1 due to the lack of vanadium oxide in
its composition (p < 0.001).
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Figure 9. Expression of NF-kB, pNF-KB, and γH2AX in DOK cells exposed to BGs compared with
untreated cells: (A) image analysis of WB bands was performed by densitometry; the results were
normalized to GAPDH (B–D). The statistical significance between treated cells and the control group
was assessed with a two-way ANOVA and paired Student’s t-test, followed by the Bonferroni post-hoc
test. Each bar represents mean ± standard deviation (n = 3); * p < 0.05, *** p < 0.001 vs. control.
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8. Discussion

Bioactive glasses have a multitude of applications in medicine and dentistry; for ex-
ample, in the repair and regeneration processes of different types of tissue (especially bone
tissue), as well as re-mineralization of tooth surfaces in order to treat dental hypersensitiv-
ity [3,21]. These properties of BGs derive from their ability to stimulate the formation of
bone due to the release of ions capable of inducing osteogenic stem cell differentiation [21].
BGs have the ability to release ions and to modify their properties, depending on their
composition. Therefore, in recent years, the study of BGs has developed into an important
direction of research, taking as an objective the modification of their ionic composition in
order to improve their physical properties, mechanical properties, and chemical stability,
and thus improve their impact on living tissues [22].

In this study, the properties and biocompatibility of two bioactive glasses—both with
boron trioxide (B2O3) as a glass network former and one with vanadium pentoxide (V2O5)
as an impurity—were evaluated. The behavior of BG1 and BG2 in simulated fluids (PBS)
was assessed in terms of the ability to release calcium ions, measurement of weight loss,
pH and zeta potential, and evaluation of their appearance under SEM. XPS analysis before
immersion was also performed in order to identify the ions in the solid BG composition.
Their biocompatibility was estimated in vitro using DOK cells, according to cell viability,
ability to generate free radicals, and evaluation of the expression of transcription factors
and DNA damage. The results obtained indicated the good interaction of both BGs with
the simulated fluid, with faster release of calcium and boron in the medium and formation
of large irregular deposits on the glass surface, particularly after BG2 immersion in PBS.
The two BGs had no effect on cell viability and DNA, and down-regulated NFkB expression
in DOK but induced redox imbalance and cell membrane damage in parallel with NFkB
activation, especially BG1. These effects suggested that the BGs are not completely inert,
as they may induce lipid peroxidation of membrane lipids through NFkB activation and
proinflammatory state. However, their good behavior in simulated environments, lack
of cytotoxicity, and protective effect on DNA are important arguments for their use in
medical practice. The null hypothesis was accepted, as there was no difference between
the bioactivity and in vitro effects of both BGs. However, further studies are required to
decipher the mechanisms that lead to oxidative stress and, consequently, to membrane
damage, as well as the importance of these aspects regarding living organisms.

Through this study, we attempted to find answers to some questions. The first was:
what are the benefits of adding boron and/or vanadium into the composition of the newly
synthesized BGs? It is well-known that boron is a microelement that plays a significant role
in preserving structural integrity, thus maintaining normal cellular function due to its ability
to stimulate the release of cytokines and growth factors, as well as promoting regeneration
of the extracellular matrix. It also possesses anti-inflammatory, antibacterial, and antiviral
abilities [8]. These actions have been supported by numerous experimental evidence [23].
Vanadium is normally present in bones, and vanadate groups have phosphate-like functions
in regulating physiological processes [10]. In in vitro experiments, the addition of vanadium
to a collagen matrix increased the biocompatibility and adhesiveness of the product, and
induced the differentiation of osteoblasts [11].

In view of the above, we started from the premise that the presence of boron or
vanadium in the BG composition could increase the biocompatibility and improve the
effects of these compounds in biological systems. Therefore, the study of their possible
toxicity was considered a mandatory step in evaluating their biological effects, taking into
account that the response of a tissue depends both on material type and the dose used.
Second, the characterization and evaluation of the physico-chemical properties of the newly
synthesized BGs was conducted, as a required step in the evaluation of a new material.
Therefore, the behavior of the two BGs in simulated fluids, including measurement of pH
and zeta potential, weight loss, and in vitro release of Ca2+ ions, supplemented by SEM
examination, X-ray powder diffraction (XRD), and elemental analysis by X diffraction,
was evaluated. XPS was performed on the solid BGs in order to better identify their
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composition. The degradation of BGs immersed in simulated fluids, ion exchange with
the immersion fluid, the change in the pH of the medium over time, and the formation
of a hydroxyapatite layer on solid surfaces were quantified. The results obtained did
not show significantly different behavior between the two BGs tested. The pH changes
recorded after immersion in PBS showed no statistically significant differences, indicating
that the presence of vanadium oxide did not lead to noticeable changes in the concentration
of hydrogen or hydroxyl ions. In our experiment, the pH recorded was lower than in
studies carried out with boric BG, in the form of cotton wool (the pH was up to 9.25)
and a silica BG (the pH was up to 8.65) [12]. This difference could be due to the lack
of sodium ions in the tested BGs, as sodium released into the environment can cause a
significant increase in pH. In addition, although ion exchange between the BGs and the
immersion medium were highlighted, the presence of vanadium oxide did not lead to
important differences between the studied BGs. However, the decrease in value of the zeta
potential within 2–6 h after immersion suggested hydroxyapatite formation on the solid
surfaces. For both BGs, the cumulative mass loss increased with the time of immersion,
without any significant difference between the two samples. The highest weight loss
was noticed within the interval of 1–3 days; moreover, at the end of the study, the total
weight loss was between 12.50–13%. The presence of vanadium oxide did not change
the rate of mass loss and biodegradation of the BG2. During the analysis period, the
concentration of Ca2+ ions released increased, which was faster in BG1, with a maximum
at 3 days, and slower in BG2 with vanadium oxide, which presented an increasing trend
throughout the experiment. It seems that vanadium oxide slowed down the rate of release
of Ca2+ ions, consistent with other studies in the literature [12]. SEM images indicated
the appearance of irregular formations arranged randomly on the smooth surface of the
BG with boron trioxide, while the addition of vanadium oxide increased the reaction time
with the fluid, leading to the appearance of a wavy and inhomogeneous surface with more
compact layers as the interaction increased. Through elemental X-ray analysis, traces of
boron, calcium, and fluoride were detected but not vanadium, likely due to the very low
amounts of vanadium initially introduced into the composition of BG2. Third, the toxicity
assessment of the newly synthesized BGs was conducted, which is extremely important
for biomedical applications in dentistry. The toxicity was tested on DOK cell lines through
assessment of cell viability, LDH activity (as a marker of cell membrane damage), MDA
level, the expression of transcription factors NFkB and pNFkB, and γH2AX formation
(as a marker of DNA damage). In terms of cell viability, the newly synthesized BGs did
not influence cell viability at low doses but increased cell toxicity at high doses. The
viability of cell lines was maintained at over 70% viable cells, suggesting that both BGs
are not toxic in vitro. Data from the literature suggests that boron may have toxic effects
in a concentration-dependent manner. Thus, boron-containing BGs have demonstrated
toxic effects on certain cell types, including bone cells [24]. In human osteoblasts, boron
concentrations above 1000 ng/mL led to short-term toxic effects, but these effects were not
observed under long-term exposure [25]. Boron at a concentration of 6.25 mg/mL has been
shown to have toxic effects on dental pulp stem cells [26]. Studies [27] have also shown that
nanoparticles loaded with vanadium trioxide exerted toxic effects on lung endothelial and
epithelial cells due to the conversion of vanadium trioxide to vanadium pentoxide. Some
researchers [28] have explained the toxicity of vanadium in terms of the interaction with
other metals from the medium, such as selenium or iron. To assess the biocompatibility
of the BGs, the cell membrane damage, free radical production, transcription factors, and
DNA damage were quantified. LDH activity—a parameter that quantifies cell membrane
damage—was increased after treatment with the two BGs, in parallel with the increase of
MDA levels, suggesting the production of free radicals as a possible mechanism of lipid
peroxidation and membrane damage. The constitutive expression of NFkB decreased in
cells exposed to BGs, while BG1 induced NFkB activation, suggesting the possible role
of oxidative stress as an inducing factor for NFkB activation. Both BGs were not toxic to
DNA and the γH2AX formation decreased, demonstrating the efficiency of DNA damage
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repair mechanisms. The evaluation of oxidative stress, as an indicator of biocompatibility,
started from the observations of some studies showing that some dental materials—even
new-generation ones—may produce oxidative stress and cytotoxicity in some cell lines [29].
There are even studies that have claimed that some materials widely used in dentistry,
including restorative materials, have more important pro-oxidant and cytotoxic effects
than amalgam [30]. Even materials considered to be biocompatible have been shown [31]
to induce oxidative stress and inflammation, sounding the alarm regarding the need for
robust assessments of the toxicity of dental materials. Oxidative stress is defined as an
imbalance between the production of reactive oxygen or nitrogen species and the body’s
antioxidant, enzymatic, or non-enzymatic defenses. Reactive species can attack proteins,
nucleic acids, carbohydrates, and lipids, and can change their structure to lose their specific
functions [32]. In our study, the oxidative stress produced by the two BGs was highlighted
by a marker of lipid peroxidation, demonstrating the attack of free radicals on lipids.
Free radicals themselves have a very short life and are sometimes difficult to detect. For
this reason, products obtained from the interaction of free radicals with macromolecules
are more frequently measured; most commonly, malondialdehyde is used, which is a
result of lipid peroxidation [33,34]. For BGs with antioxidant effect, it has been shown
that the occurrence of gingival disorders secondary to dental caries was attenuated [35].
For BGs with vanadium oxides, some studies have demonstrated pro-oxidant effects,
depending on the type of vanadium oxide used and the cellular compartment in which it
accumulates [36,37]. In order to evaluate the toxic effects on DNA, the γH2AX foci were
assessed by Western blot analysis. In studies performed on periodontal fibroblasts C165
using the comet test [38], the genotoxic effects of bioactive nanoglasses and Novobone
microglasses were revealed, depending on the concentration and the time of exposure. In
our study, both BGs did not induce DNA lesions, suggesting their protective effects against
cell death and the efficacy of DNA repair mechanisms.

The limitations of the current study derive from the fact that we were unable to use
primary cultures of keratinocytes obtained from the oral mucosa, as the proliferation of
this type of keratinocyte is difficult to realize, even for experienced professionals, and they
tend to change phenotype after a few passages. This did not allow all desired experiments
to be performed so we chose to use DOK cells.

In future, we would like to compare these two newly synthesized BGs with those that
are already used in dental medicine. We also intend to integrate these BGs into restorative
dental materials in order to determine whether, once incorporated, the properties of the
BGs are preserved and if they still have the ability to release ions. Additionally, we aim to
evaluate whether the biocompatibility of restorative dental materials can be improved by
the addition of the BGs, through both in vitro and in vivo studies.

9. Conclusions

In this study, we demonstrated that our two proposed BGs present the same behavior
in simulated fluids, characterized by high degradation, fast release of calcium and boron
in the environment (especially from BG1), and increased pH and zeta potential. Both
BGs reacted with the fluid (particularly BG2), with irregular deposits covering the glass
surface. The sudden rise in pH after day 8 could be explained by the rapid degradation of
boric BG, and the likely deposition of hydroxyapatite on their surface. The concentration
of Ca2+ in the medium showed an increasing evolution, especially within the first 6 h
after immersion, due to the release of these ions; notably, the vanadium oxide in the BG
composition slowed the release of calcium ions into the environment. SEM images of the
studied BGs indicated the formation of irregular structures arranged randomly on their
surface, with the deposited layer becoming more and more compact as the immersion
time was prolonged. In vitro studies showed that normal doses of the BGs were not
cytotoxic to DOK cells, while high doses reduced cellular viability. Both BGs induced
oxidative stress and cell membrane damage, and enhanced NFkB activation. Additionally,
the BGs down-regulated the expression of NFkB and diminished DNA damage, suggesting
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protective effects of the BGs on cell death and the efficacy of DNA repair mechanisms. The
results obtained are promising, but future studies are required to decipher the mechanisms
involved in oxidative lesions of the cell membrane and the importance of these lesions for
the health of people and animals. Their use in dental medicine, especially their inclusion in
different dental materials, can provide a beneficial therapeutic option, considering their
protective effect on important mechanisms of cell death; however, further studies are still
required.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15249060/s1, Figure S1: XRD diffraction patterns of BG1 and
BG2 samples before immersion in PBS; Table S1: Ratio between different atoms in the considered
samples.
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