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Abstract: We demonstrated the performance of an Al2O3/SiO2 stack layer AlGaN/GaN metal–
oxide semiconductor (MOS) high-electron-mobility transistor (HEMT) combined with a dual surface
treatment that used tetramethylammonium hydroxide (TMAH) and hydrochloric acid (HCl) with
post-gate annealing (PGA) modulation at 400 ◦C for 10 min. A remarkable reduction in the reverse
gate leakage current (IG) up to 1.5× 10−12 A/mm (@ VG = −12 V) was observed in the stack layer
MOS-HEMT due to the combined treatment. The performance of the dual surface-treated MOS–
HEMT was significantly improved, particularly in terms of hysteresis, gate leakage, and subthreshold
characteristics, with optimized gate annealing treatment. In addition, an organized gate leakage
conduction mechanism in the AlGaN/GaN MOS–HEMT with the Al2O3/SiO2 stack gate dielectric
layer was investigated before and after gate annealing treatment and compared with the conventional
Schottky gate. The conduction mechanism in the reverse gate bias was Poole–Frankel emission for the
Schottky-gate HEMT and the MOS–HEMT before annealing. The dominant conduction mechanism
was ohmic/Poole-Frankel at low/medium forward bias. Meanwhile, gate leakage was governed
by the hopping conduction mechanism in the MOS–HEMT without gate annealing modulation at a
higher forward bias. After post-gate annealing (PGA) treatment, however, the leakage conduction
mechanism was dominated by trap-assisted tunneling at the low to medium forward bias region and
by Fowler–Nordheim tunneling at the higher forward bias region. Moreover, a decent product of
maximum oscillation frequency and gate length (fmax × LG) was found to reach 27.16 GHz·µm for
the stack layer MOS–HEMT with PGA modulation. The dual surface-treated Al2O3/SiO2 stack layer
MOS–HEMT with PGA modulation exhibited decent performance with an IDMAX of 720 mA/mm,
a peak extrinsic transconductance (GMMAX) of 120 mS/mm, a threshold voltage (VTH) of −4.8 V, a
higher ION/IOFF ratio of approximately 1.2× 109, a subthreshold swing of 82 mV/dec, and a cutoff
frequency(ft)/maximum frequency of (fmax) of 7.5/13.58 GHz.

Keywords: Al2O3/SiO2; AlGaN/GaN; MOS-HEMT; post-gate annealing (PGA)

1. Introduction

Considering the unique features of III-nitride, e.g., high carrier density (~1013/cm3),
large band gap (~3.4 eV), high saturation velocity (~2× 107 cm/s), and large breakdown
field (>3 MV/cm), extensive research has been conducted on AlGaN/GaN high-electron-
mobility transistors (HEMTs) for high-power and high-frequency applications [1–3]. The
high-density and high-mobility two-dimensional electron gas (2DEG) generated at the
AlGaN/GaN interface enables us to understand how a power-switching transistor with
low ON resistance is relevant to next-generation power conversion systems [4]. However,
the performance of this type of transistor is inherently limited by high gate leakage current
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(IG) due to the strong polarization-induced electric field and Schottky gate contact [5]. The
high gate leakage leads to a limited gate voltage swing (GVS), reduced radio frequency
(RF) performance, and breakdown voltage (VBR).

Moreover, Cl2-based inductive coupled plasma (ICP) dry etching has been extensively
used to isolate devices. This process correspondingly induces trap states in a device,
leading to severe gate leakage current [6]. Lee et al. reported that surface conditions,
e.g., the native oxide layer on the GaN surface or ICP etching damage, also severely
affect device performance [7]. Thus, the native oxide layer or ICP etching damage must
be removed from the surface to improve device performance. Numerous wet chemical
solutions, including sulfuric acid (H2SO4), hydrogen fluoride (HF), hydrochloric acid (HCl),
potassium hydroxide (KOH), and tetramethylammonium hydroxide (TMAH), have been
used to improve the surface condition of devices [8–15]. Previous reports have suggested
that TMAH surface treatment prior to gate oxide deposition can effectively enhance the
performance of GaN HEMT devices to a considerable extent [7].

In addition to wet surface treatment, inserting a dielectric layer or stack structure
under the metal gate can effectively suppress IG, improve current collapse, and provide
better linearity [16]. Various dielectric materials, e.g., AlN [17], SiO2 [18], MgCaO [19],
HfO2 [20], Al2O3 [21], HfAlOX [22], ZrO2 [23], and TiO2 [24], have been extensively investi-
gated. Among these materials, Al2O3 is a potential candidate for fabricating a metal-oxide
semiconductor (MOS)–HEMT due to its comparatively high dielectric constant (~9 eV),
large bandgap (~6.5 eV) with a significant conduction band offset (~1.91 eV), and good
interface with AlGaN [25,26]. However, to reduce the gate leakage current further and
improve the conduction band offset, a thin layer of SiO2 with a larger bandgap (~9 eV)
can be inserted under the Al2O3 layer [18]. Nevertheless, the interface traps between the
stack gate dielectric (Al2O3/SiO2) and the (Al)GaN layer affect the performance of the
MOS–HEMT. A previous report suggested that post-gate annealing (PGA) is an effective
method for reducing the oxide defect charge, interface-trapped charge, and oxide-trapped
charge [27].

To reduce IG further, and thus, improve device reliability and increase GVS, the gate
leakage mechanism in AlGaN/GaN-based MOS–HEMTs before and after gate anneal-
ing should be investigated. Previous reports have indicated that Poole–Frankel emission
(PFE), trap-assisted tunneling (TAT), and Fowler–Nordheim tunneling (FNT) are the dom-
inant leakage mechanisms in the atomic layer deposition (ALD) of Al2O3/AlGaN/GaN
and the low-power chemical vapor deposition (CVD) of the SiNx/AlGaN/GaN MOS–
HEMT [28,29]. However, they have only investigated forward bias gate leakage character-
istics. Although the forward and reverse leakage mechanisms of a SiNX MOS–HEMT were
investigated previously in detail, the changes in the conduction mechanism after annealing
were not considered [5]. To date, no report is available on the explicit investigation of
the gate leakage conduction mechanism in a dual surface-treated Al2O3/SiO2 stack layer
MOS–HEMT before and after gate annealing modulation.

With this objective, this work demonstrated the improved device performance with
a remarkable reduction in the gate leakage current of a dual surface-treated Al2O3/SiO2
stack layer MOS–HEMT with PGA modulation. A detailed investigation of the conduction
mechanism of gate leakage current in forward and reverse biases was performed on a
MOS–HEMT before and after gate annealing treatment, and the results demonstrated
how the dominant conduction mechanism was changed after PGA treatment. The dual
surface-treated Al2O3/SiO2 stack layer MOS–HEMT with PGA modulation exhibited
decent performance with a maximum drain current (IDMAX) of 720 mA/mm, a peak
extrinsic transconductance (GMMAX)of 120 mS/mm, a threshold voltage (VTH) of −4.8 V, a
higher ION/IOFF ratio of approximately 1.2× 109, a subthreshold swing (SS) of 82 mV/dec,
and a cutoff frequency (ft)/maximum frequency (fmax) of 7.5/13.58 GHz, with the lowest
gate leakage current of 1.5× 10−12 A/mm and a decent (fmax × LG) of 27.16 GHz·µm.
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2. Materials and Methods

The AlGaN/GaN epitaxy was grown using a low-pressure metal-organic chemical
vapour deposition (MOCVD) system on a p-type low-resistive (111) Si substrate. The epilay-
ers consisted 3.9 µm GaN buffer layer, a 300 nm undoped GaN layer, a 20 nm Al0.25Ga0.75N
barrier layer, and a 2 nm GaN cap layer. The measured sheet carrier concentration and Hall
mobility were 6.15 × 1012/cm2 and 2338 cm2/V·s, respectively.

Device processing started with mesa isolation by using an ICP reactive ion etching
system with a Cl2/BCl3 gas mixture. Then, the sample was immersed into 5% TMAH
solution at 85 ◦C for 1 min to remove native oxide and ICP etching damage. Thereafter, the
source and the drain regions were defined via ultraviolet (UV) photolithography. Then,
Ti/Al/Ni/Au (25/150/30/120 nm) metal contacts were deposited using an electron beam
(e-beam) evaporator system, followed by rapid thermal annealing at 875 ◦C for 30 s under
N2 ambient atmosphere to ensure good ohmic contact. Subsequently, HCl wet treatment
was performed for 3 min prior to gate metal deposition for conventional HEMT and gate
oxide deposition for MOS-HEMT. Then, a stack gate dielectric layer composed of a 5 nm
SiO2 followed by a 10 nm Al2O3 layer, was deposited using an ALD system (Picosun)
at 250 ◦C. Finally, the gate region was defined via UV photolithography, and a Ni/Au
(80/100 nm) gate stack was deposited using an e-beam evaporator followed by a liftoff
process. To improve device performance further, PGA was performed at 400 ◦C for 10 min.
Sheet resistance was 434 Ω/�. For reference, a MOS–HEMT with 5 nm SiO2 gate dielectric
and a conventional HEMT were also fabricated. The gate width (WG) and gate length (LG)
were 100 µm and 2 µm for all devices, and LGD and LSG were both 2 µm. To understand the
gate annealing treatment on the MOS–HEMT and the conventional HEMT, all devices were
fabricated following the same processing conditions without PGA treatment. Figure 1a,b
shows the typical schematic of a MOS–HEMT and a planar HEMT. UV photolithography
was performed using an MJB3 Karl Suss mask aligner system. DC I–V and RF performance
were measured with a B1500A semiconductor characterization system and an Agilent
N5245A network analyzer with an HP 4142B DC monitor, respectively. To understand
the gate dielectric thickness we used transmission electron microscopy (TEM) (JEOL JEM-
2100F) system. After the focused ion beam, we used carbon lacey grid for better resolution
of the TEM image. To understand the quantitative analysis of the surface composition and
material elemental composition we did X-ray photoelectron spectroscopy (XPS) (JEOL). To
analyze the effect of TMAH wet surface treatment on the performance of the stack layer
MOS–HEMT device, XPS was conducted using a k-alpha X-ray photoelectron spectrometer.
To stick the sample on the holder for XPS a copper foil conductive has been used. A
monochromatic Al Kα X-ray source with 90◦ taken off-angle was used. The sputtering
depth was approximately 30–50 nm.Materials 2022, 15, x FOR PEER REVIEW 4 of 16 
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dual surface treatment with PGA modification, the root-mean-square roughness was sig-
nificantly improved from 0.70 nm to 0.24 nm, subsequently enhancing device perfor-
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Figure 1. Schematic of (a) Al2O3/SiO2 MOS–HEMT and (b) conventional HEMT. TEM images of the
MOS–HEMT (c) without gate annealing and (d) with gate annealing treatment.
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3. Results

Figure 1c,d shows the TEM image of the Al2O3/SiO2 MOS–HEMT before and after
gate annealing treatment. Clear layers of the 5 nm SiO2 and 10 nm Al2O3 were found
without intermixing before PGA treatment. Owing to the diffusion of atoms, a less layered
structure was observed after gate annealing treatment. Typical atomic force microscopy
(AFM) images are shown in Figure 2a–e under different conditions. As shown in Figure 2a,b,
side wall surface morphology was improved with TMAH surface treatment. After dual
surface treatment with PGA modification, the root-mean-square roughness was significantly
improved from 0.70 nm to 0.24 nm, subsequently enhancing device performance.
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Figure 2. AFM profile of AlGaN/GaN device after ICP mesa etching (a) without and (b) with TMAH
treatment. The 3D AFM images of the device (c) without, (d) with dual surface treatment and gate
annealing modulation.

Figure 3 illustrates the change in the atomic composition of the Ga 3 core levels before
and after surface treatment, with both spectra deconvoluted into two peaks of Ga-N and Ga-
O. The Ga 3d5/2 and Ga2O3 (Ga3+) peaks were de-convoluted by considering spin-orbital
splitting [30]. Figure 3 clearly shows that the intensity of Ga-O is considerably lower after
TMAH surface treatment. The peak intensity ratio of Ga-O/Ga-N significantly decreased to
6.6% from 63%. The removal of native oxide at the GaN surface via wet surface treatment
reduced the intensity of the Ga-O bond, subsequently improving device performance as
previously reported [31–34].

The typical drain current versus voltage (ID–VD) characteristics of the conventional
HEMT and the Al2O3/SiO2 stack layer MOS–HEMT are shown in Figure 4. The IDMAX
of the dual surface-treated stack layer (SiO2) MOS–HEMT and the conventional HEMT
was 720 mA/mm (650 mA/mm) (@ VG = 3 V) and 520 mA/mm (@ VG = 1 V), respectively,
with PGA modulation, as shown in Figure 4. Better pinch-off behavior in the stack layer
MOS–HEMT suggested better gate controllability than in the SiO2 MOS–HEMT. The con-
ventional HEMT was not biased with higher VG due to the large late leakage current. The
reduction of IDMAX in the conventional HEMT was attributed to the large IG [35]. Moreover,
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IDMAX was 650 mA/mm (500 mA/mm) for the MOS–HEMT (HEMT) without annealing
modulation. In addition, the ON resistance (RON) was significantly reduced from 6.3 Ω.mm
to 4.9 Ω.mm in the MOS–HEMT due to dual surface treatment with the application of a
stack dielectric layer.
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Figure 4. ID–VD characteristics of (a) conventional HEMT with and without gate annealing and
(b) Al2O3/SiO2 MOS–HEMT with and without gate annealing treatment and SiO2 MOS–HEMT
without PGA treatment.

The transfer characteristics of the stack layer MOS–HEMT and the conventional
HEMT before and after gate annealing treatment (@ VD = 4 V) are shown in Figure 5. The
Al2O3/SiO2 stack layer MOS–HEMT exhibited a VTH of −4.8 V (−4.4 V) with (without)
gate annealing modulation. For the conventional HEMT and the SiO2 MOS–HEMT, VTH
was −2.7 V and −3.6 V, respectively. The threshold voltage is defined as the gate bias
intercept point of the linear extrapolation of the drain current at GMMAX [22]. The VTH
difference between HEMT and MOS–HEMT can be expressed as [5]:

VTH,MOS–HEMT − VTH,HEMT = −
(

Qint
εox

)
·tox −

(
qnox

2εox

)
·t2

ox, (1)

where Qint is the total interface charge, tox is the thickness of the dielectric layer, εox is the
effective dielectric constant of the stack dielectric layer, and nox is the oxide bulk charge. In
accordance with Equation (1), the negative shift of VTH is attributable to the increment of
the interface fixed charge at the interface and oxide layers and the increase in the 2DEG
concentration after passivation [36–38]. Moreover, the increase in separation between the
gate and the channel layer may be another reason for the negative shifting of VTH. The shift
of VTH to the reverse direction with gate annealing treatment was confirmed in Figure 5b.
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(b) Al2O3/SiO2 MOS–HEMT with and without gate annealing treatment, and SiO2 MOS–HEMT
without PGA treatment.

An improvement in peak extrinsic transconductance (GMMAX) was observed in the
dual surface-treated Al2O3/SiO2 stack layer MOS–HEMT after gate annealing modulation
compared with the SiO2 MOS–HEMT or the conventional HEMT shown in Figure 5. The
GMMAX values were 120 mS/mm (102 mS/mm) and 123 mS/mm (110 mS/mm) in the
stack layer MOS–HEMT and the conventional HEMT with annealing (without annealing)
modulation. The insertion of the two gate dielectrics increased the distance between the
gate and the 2DEG channel, reducing gate controllability and decreasing GMMAX in MOS–
HEMT. In addition, GVS, defined as the 10% drop in maximum transconductance, was
calculated for both devices to understand the linearity behavior of the device [20]. GVS
improved from 1.10 V to 1.92 V in the dual surface-treated stack layer MOS–HEMT after
gate annealing treatment. Thus, low phase noise, device linearity, and wide dynamic
range were improved after dual surface treatment and PGA modulation in the stack layer
MOS–HEMT [39]. Moreover, GMMAX was 91 mS/mm in the SiO2 MOS–HEMT.

Figure 6 shows the subthreshold characteristics as a function of gate voltage (@ VD = 4 V)
for all devices. In this figure, the subthreshold drain leakage current was decreased by
more than three orders of magnitude in the Al2O3/SiO2 MOS–HEMT after gate annealing
modulation compared with that of the conventional HEMT. The subthreshold drain leakage
current was influenced by the reverse bias gate leakage current in the pinch-off region [39].
Given that IG was suppressed by the combined effects of the stack layer gate dielectric
and dual surface treatment with PGA modulation in MOS–HEMT, as discussed later, the
subthreshold drain leakage current was decreased to a considerable extent. Subthreshold
swing (SS) also depends on IG. The SS values of different devices were extracted from
Figure 6. The SS values were improved from 130 mV/dec to 82 mV/dec in the stack layer
MOS–HEMT after gate annealing treatment. Meanwhile, for the conventional HEMT (SiO2
MOS–HEMT), the SS value was 178 mV/dec (91 mV/dec). The current ON/OFF (ION/IOFF)
ratios were 1.2× 109 and 5.8× 107 for the stack layer MOS–HEMT with and without PGA
treatment. By contrast, no significant improvement in the current ratio was found in the
planar HEMT after gate annealing treatment.

The reverse and forward gate leakage current (IG–VG) characteristics of the dual
surface-treated stack layer MOS–HEMT before and after gate annealing treatment and the
Schottky gate HEMT without PGA were measured, and the results are presented in Figure 7.
The reverse gate leakage current (@ VG = −12 V) of the Al2O3/SiO2 MOS–HEMT was
2.3× 10−8 A/mm before gate annealing treatment. Evidently, IG was significantly reduced
by four orders of magnitude to 1.5× 10−12 A/mm after annealing treatment with dual
surface modification. The insertion of large bandgap materials as gate dielectric combined
with dual surface treatment and PGA modulation reduced IG to a considerable extent.
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To explore the charge of transportation mechanisms responsible for the gate leakage
phenomenon, IG–VG characteristics were divided into five regions as indicated in Figure 7.
Leakage characteristics were analyzed in different regions to determine the dominant
leakage mechanism for each particular region. The multiple conduction mechanism was
studied to justify the appropriate charge transport phenomenon in the stack layer MOS–
HEMT before and after gate annealing treatment and conventional HEMT. The conduction
band edge diagram of the MOS–HEMT before and after PGA treatment and HEMT under
different operating regions that illustrated the conduction mechanisms is shown in Figure 8.

3.1. Gate Leakage Mechanisms in the AlGaN/GaN MOS–HEMT before Gate Annealing

For the stack layer MOS–HEMT before annealing treatment, as indicated in Region (I)
for VG ≤ VTH, the leakage current was saturated due to the saturation of the vertical elec-
trical fields across the gate dielectric and the barrier layer [5]. However, the IG–VG charac-
teristics in Region (II) exhibited dependency on the applied electric field, and the PFE mech-
anism clearly dominated this region, as suggested in the fitted curve of [ln (I/V) vs. V1/2]
in Figure 9a. A comparatively high electric field supported the PFE conduction depicted
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in the fitted Figure 9a, and the charge transferred through a trap shown in the band edge
diagram in Figure 8a in this region exhibited the following relation [5,40]:

ln
(

JPFE
EDi

)
= m

√
EDi + c (2)

m =
q

kT

√
q

πεDi
(3)

where εDi is the permittivity of the dielectric materials, kB is the Boltzmann’s constant, T is
the temperature, and q is the electronic charge. The effective dielectric constant (εDi) was
extracted to 7.2 from the ln (I/V) vs V1/2 characteristics, which was sufficiently close to the
calculated effective dielectric constant of the Al2O3/SiO2 layer [41].

The dominant leakage conduction mechanism in Region (III) was ohmic due to the
linear relationship of ln (I) vs. ln (V), with a slope value close to 1, as shown in Figure 9b.
The leakage mechanism was assumed to be PFE at a comparatively higher voltage region.
The linear fitting in Figure 9c further confirmed PFE conduction because electrons can be
de-trapped with an increased electric field as shown in the band edge diagram in Figure 8b.
In addition, the dominant conduction mechanism in a high field region (VG ≥ 3 V) was
satisfied with hopping conduction from the fitted curve of ln (I) vs. V, as shown in Figure 9d.
Hopping distance (λ) can be extracted from the fitted curve by considering the following
equation [40,42]:

J = qnλ exp
(

qλE− Ea

kT

)
(4)

where n is the electron concentration, f is the thermal vibration frequency of the trapping
sites, E is the corresponding electric field, and Ea is the activation energy. The hopping
distance was calibrated to 0.47 nm by using Equation (4). The electrons can overcome
the hopping distance (λ) in the higher field region, as shown in Figure 8c, due to the
higher energy.
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3.2. Gate Leakage Mechanisms in the AlGaN/GaN MOS–HEMT after Gate Annealing

The leakage mechanism of the Al2O3/SiO2 MOS–HEMT after gate annealing modula-
tion was also investigated as shown in Figure 10. After gate annealing modulation, shallow
traps were reduced [39] and IG was independent of gate voltage at VG ≤ 2 V due to the
saturation of the electric field [5]. The conduction band diagram in Region (IV) for the
stack layer MOS–HEMT after annealing treatment is shown in Figure 8d. In this region,
leakage transportation was estimated from the fitting curve of [ln (I) vs. 1/V], as shown in
Figure 10a, to a two-step TAT mechanism. The electric field dependence of the TAT current
(JTAT) is given by the following equation [43]:

JTAT = Aexp

−8π
√

2qm∗∅3
T

3hE

 (5)

where ∅T is the trapped energy of electron traps with respect to the conduction band edge,
A is a constant, and h is Planck’s constant. Shallow traps were reduced through the creation
of deep traps via PGA modulation, causing the conduction mechanism to shift toward
TAT from PFE after gate annealing treatment as indicated in the band diagram of TAT in
Figure 8d [44].

Consequently, the leakage mechanism in the high forward bias region was dominated
by FNT across the Al2O3/SiO2 gate dielectric layer, as shown in Figure 10b. FNT current
density (JFNT) can be related to the electric field across the dielectric (EDi) by [45]:

ln

(
JFNT

E2
Di

)
= ln

(
A′
)
− B′

|EDi|
(6)

where A′ is a constant, B′ = 8π (2 mn*(q∅e f f )3)1/2/(3qh), mn* is the effective mass of
the electron in the gate dielectric, ∅e f f is the effective barrier height of the electrons for
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FNT, and h is Planck’s constant. The linear relationship of the ln
(

I
V2

)
vs. 1/V graph in

Figure 10b verified the FNT conduction mechanism in Region (V) for the MOS–HEMT after
gate annealing modulation. The band edge diagram of FNT is shown in Figure 8e.
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3.3. Gate Leakage Mechanisms in the AlGaN/GaN HEMT

We also investigated the conduction mechanism of leakage current in the conventional
HEMT without PGA by dividing the IG–VG characteristics into different regions, as shown
in Figure 7. From Figure 7, IG (@ VG ≤ −4 V) was clearly saturated due to the saturation
of the vertical electrical fields as mentioned previously. The conduction mechanism in
Region (II) was confirmed as PFE conduction from the ln (I/V) vs. V1/2 graph by following
Equation (2), similar to the stack layer MOS–HEMT before PGA treatment, as shown in
Figure 11a. In addition, Schottky emission (SE) dominated Region (III) with increasing
electric fields at VG > 0 from the linear slope of ln (I/T2) vs. V1/2, as shown in Figure 11b,
in accordance with the following relation [7]:

IG = A ∗ T2exp
(
−∅B

kT

)
exp

(
SSE
√

V
kT
√

d

)
(7)

SSE =
1
2

(
q3

πε0εr

)1/2

(8)

where SSE is the SE lowering coefficients, and ∅B is the Schottky barrier height as depicted
in the conduction band edge of Region (III) in Figure 8f. In general, SE leads to conduction
through the contact interface rather than from bulk material. By contrast, PFE is closely
related to the tunneling of carriers and associated with the wide distribution of traps in the
band gap of dielectric materials, which originates from impurities and/or structural defects.

To understand the interface quality of the devices, the hysteresis characteristics of the
Al2O3/SiO2 stack layer MOS–HEMT and the conventional MOS–HEMT were measured
(@ VG = 6 V) before and after gate annealing treatment, as shown in Figure 12. Hysteresis
behavior was significantly improved after gate annealing modulation in both devices. After
gate annealing modulation, the MOS–HEMT exhibited nearly low hysteresis of 0.1 V due
to the affective neutralization of the surface caused by the combined effects of TMAH/HCl
surface treatment with gate annealing modulation [7]. In addition, a counterclockwise
hysteresis was observed in both devices. No surface states were available to capture
electrons at a high gate voltage due to the presence of acceptor-like surface states, and
electron density in the 2DEG channel was increased to raise the channel current, resulting
in counterclockwise hysteresis [7,46].
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and without PGA treatment.

To understand the reduction of trap states after dual surface treatment and PGA
modulation with the stack layer gate dielectric in the MOS–HEMT compared with that
in the conventional HEMT, capacitance-voltage (C–V) measurements were performed
at 1 MHz for both devices as shown in Figure 13a. The high-frequency performance of
the stack layer MOS–HEMT and the conventional HEMT without PGA, and short-circuit
current gain (|H21|), maximum stable gain/maximum available gain (MSG/MAG) were
measured as shown in Figure 13b. The measured cut-off frequency (ft) and maximum
oscillation frequency (fmax) of the MOS–HEMT were 7.5 GHz and 13.5 GHz, while those
for the conventional HEMT were only 2.7 GHz and 5 GHz, respectively. The comparatively
higher (fmax × LG) was recorded in the MOS–HEMT after PGA modification in contrast
with previous reports as indicated in Table 1. The interface state density (Dit) for the dual
surface-treated MOS–HEMT can be extracted from a previously reported formula [47] to be
1.61× 1012 eV−1cm−2, which is significantly improved from that of the conventional HEMT(

1.1× 1013 eV−1cm−2
)

. For the SiO2 MOS–HEMT, Dit was 3.8× 1012 eV−1cm−2. Given the
combined effects of dual surface treatment and the stack dielectric layer with gate annealing
modulation, Dit was significantly reduced up to one order of magnitude lower in the MOS–
HEMT compared with that in the conventional HEMT. Table 1 presents the DC performance
and high-frequency comparison of the different gate structure MOS–HEMTs, including the
PGA modulated dual surface-treated Al2O3/SiO2 stack layer MOS–HEMT [17,19,31,48–51].
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Table 1. Comparison of DC/RF performances for different gate structure AlGaN/GaN MOS-HEMTs
with dual surface treated Al2O3/SiO2 stack layer MOS-HEMT.

Reference LG (µm)
Gate

Dielectric
(Thickness)

IDMAX
(mA/mm)

GMMAX
(mS/mm)

SS
(mV/dec)

ION/
IOFF

Gate Leakage
(A/mm)

fMAX
(GHz)

fMAX × LG
(GHz·µm)

[19] 0.09
(T-gate)

Mg0.25Ca0.75O
(4 nm) 1250 345

(@ VD = 9 V) 104 ~108 ~10−7

(@VG = −7 V)
160 14.4

[27]
1

(rectangular
gate)

Al2O3
(12 nm) 853.3 159

(@ VD = 7 V) 90.3 ~107
~10−8

(@ VG = −100
V)

23.4 23.4

[48]
1

(rectangular
gate)

HfO2/Y2O3
(12/1 nm) 600 4.5

(@ VD = 0.05 V) 70 109 ~10−10

(@ VG = −9 V)
- -

[31] 0.15
(T-gate) Al2O3 (7 nm) 859 484

(@ VD = 5 V) - - ~10−8

(@ VG = −4 V)
100 15

[49]
1

(rectangular
gate)

Al2O3
(20 nm) 855 140.6

(@ VD = 7 V) - - ~10−9

(@ VG = −50 V)
19.1 19.1

[50] 0.4
(T-gate)

TiO2/NiO
(>35 nm) 709 149

(@ VD = 10 V) - - ~10−9

(@ VG = −10 V)
40 16

[51]
1

(rectangular
gate)

ZrO2/Al2O3
(12/1 nm) 847 181

(@ VD = 4 V) 95 ~107 - 9.1 9.1

This
work

2
(rectangular

gate)

Al2O3/SiO2
(10/5 nm) 720 120

(@ VD = 4 V) 82 109 10−12

(@ VG = −12 V)
13.58 27.16

4. Conclusions

In summary, we successfully demonstrated the performance of an Al2O3/SiO2 stack
layer MOS–HEMT that used TMAH and HCl dual surface treatment prior to gate oxide
deposition with PGA modulation. The off-state gate leakage current was remarkably
reduced to 1.5× 10−12 A/mm, which was seven orders of magnitude lower (~10−5 A/mm)
than that of the conventional HEMT. A significant reduction in IG was observed in MOS–
HEMT due to the combined effects of dual surface treatment and the stack gate dielectric
layer with gate annealing modulation at 400 ◦C. In addition, a systematic investigation of
the gate leakage conduction mechanism of the conventional HEMT and the MOS–HEMT
before and after PGA modulation was conducted. At reverse bias, the PFE conduction
mechanism dominated both devices. At low and medium forward bias, the dominant
conduction mechanisms were ohmic and PFE, and at higher forward bias, gate leakage
was governed by the hopping conduction mechanism for the MOS–HEMT before PGA.
By contrast, after the gate annealing treatment of MOS–HEMT, the dominant leakage
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conduction mechanism was TAT at the low to medium forward bias region and FNT at the
higher forward bias region due to the reduction of shallow traps.
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