Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown Using Mist Chemical Vapor Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Gradation of the Ga2O3 Layers
3.2. Crystal Quality
- Zone I: Thin layer (<1.1 µm), Hall effect unmeasurable at RT, low crystal quality.
- Zone II: Transition layer, Hall effect unmeasurable, saturated crystal quality.
- Zone III: Thick layer (>1.6 µm), Hall effect measurable at RT, high crystal quality.
3.3. Electrical Properties and Scattering Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pearton, S.J.; Yang, J.; Cary, P.H.; Ren, F.; Kim, J.; Tadjer, M.J.; Mastro, M.A. A Review of Ga2O3 Materials, Processing, and Devices. Appl. Phys. Rev. 2018, 5, 011301. [Google Scholar] [CrossRef] [Green Version]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E.; et al. Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges. Adv. Electron. Mater. 2018, 4, 1600501. [Google Scholar] [CrossRef] [Green Version]
- Fujita, S. Wide-Bandgap Semiconductor Materials: For Their Full Bloom. Jpn. J. Appl. Phys. 2015, 54, 030101. [Google Scholar] [CrossRef] [Green Version]
- Shenai, K.; Scott, R.S.; Baliga, B.J. Optimum Semiconductors for High-Power Electronics. IEEE Trans. Electron Devices 1989, 36, 1811–1823. [Google Scholar] [CrossRef]
- Shenai, K. Future Prospects of Widebandgap (WBG) Semiconductor Power Switching Devices. IEEE Trans. Electron Devices 2015, 62, 248–257. [Google Scholar] [CrossRef]
- Razeghi, M. Short-Wavelength Solar-Blind Detectors-Status, Prospects, and Markets. Proc. IEEE 2002, 90, 1006–1014. [Google Scholar] [CrossRef]
- Mastro, M.A.; Kuramata, A.; Calkins, J.; Kim, J.; Ren, F.; Pearton, S.J. Perspective—Opportunities and Future Directions for Ga2O3. ECS J. Solid State Sci. Technol. 2017, 6, P356. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Gallium Oxide (Ga2O3) Metal-Semiconductor Field-Effect Transistors on Single-Crystal β-Ga2O3 (010) Substrates. Appl. Phys. Lett. 2012, 100, 013504. [Google Scholar] [CrossRef]
- Bae, S.-Y. Growth of Various Phases of Gallium Oxide. In Digital Encyclopedia of Applied Physics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2021; pp. 1–37. ISBN 978-3-527-60043-4. [Google Scholar]
- Guo, D.; Guo, Q.; Chen, Z.; Wu, Z.; Li, P.; Tang, W. Review of Ga2O3-Based Optoelectronic Devices. Mater. Today Phys. 2019, 11, 100157. [Google Scholar] [CrossRef]
- Oshima, Y.; Víllora, E.G.; Shimamura, K. Halide Vapor Phase Epitaxy of Twin-Free α-Ga2O3 on Sapphire (0001) Substrates. Appl. Phys. Express 2015, 8, 055501. [Google Scholar] [CrossRef]
- Oshima, T.; Okuno, T.; Fujita, S. Ga2O3 Thin Film Growth on c-Plane Sapphire Substrates by Molecular Beam Epitaxy for Deep-Ultraviolet Photodetectors. Jpn. J. Appl. Phys. 2007, 46, 7217. [Google Scholar] [CrossRef]
- Son, H.; Choi, Y.-J.; Hwang, J.; Jeon, D.-W. Influence of Post-Annealing on Properties of α-Ga2O3 Epilayer Grown by Halide Vapor Phase Epitaxy. ECS J. Solid State Sci. Technol. 2019, 8, Q3024. [Google Scholar] [CrossRef]
- Oka, D.; Fukumura, T. Crystal Engineering for Novel Functionalities with Oxide Thin Film Epitaxy. CrystEngComm 2017, 19, 2144–2162. [Google Scholar] [CrossRef]
- Kim, K.-H.; Ha, M.-T.; Kwon, Y.-J.; Lee, H.; Jeong, S.-M.; Bae, S.-Y. Growth of 2-Inch α-Ga2O3 Epilayers via Rear-Flow-Controlled Mist Chemical Vapor Deposition. ECS J. Solid State Sci. Technol. 2019, 8, Q3165. [Google Scholar] [CrossRef]
- Shinohara, D.; Fujita, S. Heteroepitaxy of Corundum-Structured α-Ga2O3 Thin Films on α-Al2O3 Substrates by Ultrasonic Mist Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2008, 47, 7311. [Google Scholar] [CrossRef]
- Kawaharamura, T.; Dang, G.T.; Furuta, M. Successful Growth of Conductive Highly Crystalline Sn-Doped α-Ga2O3 Thin Films by Fine-Channel Mist Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2012, 51, 040207. [Google Scholar] [CrossRef]
- Kaneko, K.; Kawanowa, H.; Ito, H.; Fujita, S. Evaluation of Misfit Relaxation in α-Ga2O3 Epitaxial Growth on α-Al2O3 Substrate. Jpn. J. Appl. Phys. 2012, 51, 020201. [Google Scholar] [CrossRef]
- Akaiwa, K.; Kaneko, K.; Ichino, K.; Fujita, S. Conductivity Control of Sn-Doped α-Ga2O3 Thin Films Grown on Sapphire Substrates. Jpn. J. Appl. Phys. 2016, 55, 1202BA. [Google Scholar] [CrossRef] [Green Version]
- Ng, H.M.; Doppalapudi, D.; Moustakas, T.D.; Weimann, N.G.; Eastman, L.F. The Role of Dislocation Scattering in n-Type GaN Films. Appl. Phys. Lett. 1998, 73, 821–823. [Google Scholar] [CrossRef]
- Ueda, N.; Hosono, H.; Waseda, R.; Kawazoe, H. Anisotropy of Electrical and Optical Properties in β-Ga2O3 Single Crystals. Appl. Phys. Lett. 1997, 71, 933–935. [Google Scholar] [CrossRef]
- Shin, H.; Lim, K.; Hwang, S.; Han, I.-K.; Jang, M. The Evaluation of Hole Mobility Characteristics with Surface Roughness. J. Nanosci. Nanotechnol. 2017, 17, 7766–7770. [Google Scholar] [CrossRef]
- Ha, M.-T.; Kim, K.-H.; Shin, Y.-J.; Jeong, S.-M.; Bae, S.-Y. Leidenfrost Motion of Water Microdroplets on Surface Substrate: Epitaxy of Gallium Oxide via Mist Chemical Vapor Deposition. Adv. Mater. Interfaces 2021, 8, 2001895. [Google Scholar] [CrossRef]
- Ha, M.-T.; Kim, K.-H.; Kwon, Y.-J.; Kim, C.-J.; Jeong, S.-M.; Bae, S.-Y. Understanding Thickness Uniformity of Ga2O3 Thin Films Grown by Mist Chemical Vapor Deposition. ECS J. Solid State Sci. Technol. 2019, 8, Q3206. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, J.; Qi, D.-C.; Chen, L.; Zhang, K.H.L. Recent Progress on the Electronic Structure, Defect, and Doping Properties of Ga2O3. APL Mater. 2020, 8, 020906. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Yamakoshi, S.; Kuramata, A. Ozone-Enhanced Molecular Beam Epitaxy. In Gallium Oxide: Materials Properties, Crystal Growth, and Devices; Higashiwaki, M., Fujita, S., Eds.; Springer Series in Materials Science; Springer International Publishing: Cham, Switzerland, 2020; pp. 123–140. ISBN 978-3-030-37153-1. [Google Scholar]
- Ma, T.C.; Chen, X.H.; Kuang, Y.; Li, L.; Li, J.; Kremer, F.; Ren, F.-F.; Gu, S.L.; Zhang, R.; Zheng, Y.D.; et al. On the Origin of Dislocation Generation and Annihilation in α-Ga2O3 Epilayers on Sapphire. Appl. Phys. Lett. 2019, 115, 182101. [Google Scholar] [CrossRef]
- Noguchi, M.; Iwamatsu, T.; Amishiro, H.; Watanabe, H.; Kita, K.; Yamakawa, S. Determination of Intrinsic Phonon-Limited Mobility and Carrier Transport Property Extraction of 4H-SiC MOSFETs. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; pp. 9.3.1–9.3.4. [Google Scholar]
- Böer, K.W.; Pohl, U.W. Carrier Scattering at Low Electric Fields. In Semiconductor Physics; Böer, K.W., Pohl, U.W., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 897–930. ISBN 978-3-319-69150-3. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-H.; Ha, M.-T.; Lee, H.; Kim, M.; Nam, O.; Shin, Y.-J.; Jeong, S.-M.; Bae, S.-Y. Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown Using Mist Chemical Vapor Deposition. Materials 2022, 15, 1050. https://doi.org/10.3390/ma15031050
Kim K-H, Ha M-T, Lee H, Kim M, Nam O, Shin Y-J, Jeong S-M, Bae S-Y. Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown Using Mist Chemical Vapor Deposition. Materials. 2022; 15(3):1050. https://doi.org/10.3390/ma15031050
Chicago/Turabian StyleKim, Kyoung-Ho, Minh-Tan Ha, Heesoo Lee, Minho Kim, Okhyun Nam, Yun-Ji Shin, Seong-Min Jeong, and Si-Young Bae. 2022. "Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown Using Mist Chemical Vapor Deposition" Materials 15, no. 3: 1050. https://doi.org/10.3390/ma15031050
APA StyleKim, K. -H., Ha, M. -T., Lee, H., Kim, M., Nam, O., Shin, Y. -J., Jeong, S. -M., & Bae, S. -Y. (2022). Microstructural Gradational Properties of Sn-Doped Gallium Oxide Heteroepitaxial Layers Grown Using Mist Chemical Vapor Deposition. Materials, 15(3), 1050. https://doi.org/10.3390/ma15031050