Use of Arc Furnace Slag and Ceramic Sludge for the Production of Lightweight and Highly Porous Ceramic Materials
Abstract
:1. Introduction
2. Experimental Techniques
2.1. Batch Calculation and Samples Preparation
2.2. X-ray Diffraction
2.3. Microstructure Photographs
2.4. Porosity and Density Measurements
2.5. Dielectric and Electric Measurements
3. Results and Discussions
3.1. X-ray Diffraction Patterns
Effect of Sintering Temperatures on Crystalline Phases
3.2. Morphology Studies
Effect of Sintering Temperatures on Ceramic Morphology
3.3. Porosity and Density Studies
Effect of Sintering Temperatures on Porosity and Density Values
3.4. Electric and Dielectric Properties
Effect of Sintering Temperatures on Electric Properties
3.5. Implication of Waste Composition on Pore Volume
3.6. Implication of Waste Composition on Electric Properties
3.7. Implications of Crystal Size and Pore Volume on Electric and Dielectric Properties
3.8. Industrial Applications
4. Conclusions
- Cleaning the environment via waste management of nonrenewable products is very important for our daily life. In the present work, lightweight porous ceramic materials composed of wollastonite (β-wollastonite or parawollastonite), gehlenite and low quartz phases were successfully prepared through recycling two industrial wastes, i.e., arc furnace slag and ceramic sludge. The recycling process consumed little energy, and therefore can be easily applied on pilot and industrial scales.
- The formed phases depended on the CaO/SiO2 ratio in both waste materials. Lower CaO/SiO2 content led to the formation of β-wollastonite and quartz phases with small amounts of the gehlenite phase. A higher CaO/SiO2 ratio led to the formation of parawollastonite and gehlenite phases but hindered the development of the low quartz phase.
- By applying different sintering temperatures to a selected sample (AFS5), it was found that both polymorphic structures of wollastonite were formed, either β-wollastonite (unstable) or parawollastonite (stable). β-wollastonite was converted into parawollastonite at high temperatures. By increasing the sintering temperature to 1150 °C, traces of the fayalite phase (Fe2SiO4) developed.
- The porosity of the prepared materials was affected by sintering temperatures. The higher the temperature, the lower the porosity, due to the formation of a compacted microstructure.
- The porosity, density and electrical properties of prepared materials depended on the composition of starting materials and formed phases. Increases in CaO and Al2O3 was accompanied by increasing porosity, while increases in MgO and Fe2O3 led to decreasing porosity and increasing dielectric constant and electric conductivity.
- The selected sample sintered at 1100 °C exhibited lower dielectric parameters than those sintered at 1050 °C and 1150 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aleluia, J.; Ferrão, P. Assessing the costs of municipal solid waste treatment technologies in developing Asian countries. Waste Manag. 2017, 69, 592–608. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Mourato, S. Cost-Benefit Analysis and the Environment; OECD: Paris, France, 2015. [Google Scholar]
- Balasubramanian, M. Economics of Solid Waste Management: A Review. In Strategies of Sustainable Solid Waste Management; Saleh, H.M., Ed.; IntechOpen: London, UK, 2021; ISBN 978-1-83962-559-6. [Google Scholar]
- Rajendran, K.; Varma, V.S.; Mahapatra, D.M.; Kondusamy, D. Economics of Solid Waste Management. Waste to Wealth; Springer: Singapore, 2018; pp. 259–275. [Google Scholar]
- Bayer Ozturk, Z.; Gultekin, E.E. Preparation of ceramic wall tiling derived from blast furnace slag. Ceram. Int. 2015, 41, 12020–12026. [Google Scholar] [CrossRef]
- Mukhamedzhanova, M.T.; Irkakhodzhaeva, A.P. Ceramic tiles utilizing waste material from a copper-enriching plant. Glass Ceram. 1994, 51, 328–329. [Google Scholar] [CrossRef]
- Khater, G.A. The use of Saudi slag for the production of glass-ceramic materials. Ceram. Int. 2002, 28, 59–67. [Google Scholar] [CrossRef]
- Schilling, P.J.; Butler, L.G.; Roy, A.; Eaton, H.C. 29Si and 27Al MAS-NMR of NaOH-Activated Blast-Furnace Slag. J. Am. Ceram. Soc. 1994, 77, 2363–2368. [Google Scholar] [CrossRef]
- Dana, K.; Das, S.K. High strength ceramic floor tile compositions containing Indian metallurgical slags. J. Mater. Sci. Lett. 2003, 22, 387–389. [Google Scholar] [CrossRef]
- Vincenzini, P. Ceramic Powders: Preparation, Consolidation and Sintering. In Proceedings of the 5th International Meeting on Modern Ceramics Technologies (5th CIMTEC), Lignano Sabbiadoro, Italy, 14–19 June 1982. [Google Scholar]
- Semanda, J.; Mutuku, R.N.; Kaluli, J.W. The effect of cement-waste mixes on the physical and strength properties of floor tiles. Eur. Int. J. Sci. Technol. 2014, 3, 32–43. [Google Scholar]
- Badiee, H.; Maghsoudipour, A.; Dehkordi, B.R. Use of Iranian steel slag for production of ceramic floor tiles. Adv. Appl. Ceram. 2008, 107, 111–115. [Google Scholar] [CrossRef]
- Abu-Eishah, S.I.; El-Dieb, A.S.; Bedir, M.S. Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region. Constr. Build. Mater. 2012, 34, 249–256. [Google Scholar] [CrossRef]
- Zhang, K.; Li, B.; Wu, W. Structural and magnetic properties of steel slag based glass–Ceramics. Adv. Appl. Ceram. 2014, 114, 121–125. [Google Scholar] [CrossRef]
- Liu, Z.; Zong, Y.; Hou, J. Preparation of slag glass ceramic from electric arc furnace slag, quartz sand and talc under various MgO/Al2O3ratios. Adv. Appl. Ceram. 2015, 115, 1–8. [Google Scholar] [CrossRef]
- Teo, P.T.; Anasyida, A.S.; Nurulakmal, M.S. Characterization of Ceramic Tiles Added with EAF Slag Waste. Adv. Mater. Res. 2014, 1024, 211–214. [Google Scholar] [CrossRef]
- Frıías Rojas, M.; de Rojas, M.I.S. Chemical assessment of the electric arc furnace slag as construction material: Expansive compounds. Cem. Concr. Res. 2004, 34, 1881–1888. [Google Scholar] [CrossRef]
- Sarkar, R.; Singh, N.; Kumar, S.D. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles. Bull. Mater. Sci. 2010, 33, 293–298. [Google Scholar] [CrossRef]
- Pioro, L.S.; Pioro, I.L. Reprocessing of metallurgical slag into materials for the building industry. Waste Manag. 2004, 24, 371–379. [Google Scholar] [CrossRef]
- Shil’tsina, A.; Vereshchagin, V.I. Ceramic tiles containing diopside and clay raw materials from Khakassia. Glass Ceram. 2000, 57, 87–90. [Google Scholar] [CrossRef]
- Saadaldin, S.A.; Rizkalla, A.S. Synthesis and characterization of wollastonite glass–Ceramics for dental implant applications. Dent. Mater. 2014, 30, 364–371. [Google Scholar] [CrossRef]
- Volochko, A.T.; Podbolotov, K.B.; Zhukova, A.A. Preparation of porous ceramic materials based on wollastonite using silicon-containing components. Refract. Ind. Ceram. 2011, 52, 186–190. [Google Scholar] [CrossRef]
- Pérez, J.M.; Teixeira, S.R.; Rincón, J.M.; Romero, M. Understanding the Crystallization Mechanism of a Wollastonite Base Glass Using Isoconversional, IKP Methods and Master Plots. J. Am. Ceram. Soc. 2012, 95, 3441–3447. [Google Scholar] [CrossRef] [Green Version]
- Hasmaliza, M.; Seman, A.A.; Gan, W.L. Effect of Feldspar Content on Electric Arc Furnace Slag (EAFS) Added Tiles. Adv. Mater. Res. 2014, 1024, 235–238. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S. Reusing ceramic wastes in concrete. Constr. Build. Mater. 2010, 24, 832–838. [Google Scholar] [CrossRef]
- Medina, C.; Frías, M.; de Rojas, M.I.S. Microstructure and properties of recycled concretes using ceramic sanitary ware industry waste as coarse aggregate. Constr. Build. Mater. 2012, 31, 112–118. [Google Scholar] [CrossRef]
- Zimbili, O.; Salim, W.; Ndambuki, M. A review on the usage of ceramic wastes in concrete production. Int. J. Civ. Environ. Struct. Constr. Archit. Eng. 2014, 8, 91–95. [Google Scholar]
- Awoyera, P.O.; Ndambuki, J.M.; Akinmusuru, J.O.; Omole, D. Characterization of ceramic waste aggregate concrete. HBRC J. 2018, 14, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Khater, G.A.; Nabawy, B.S.; El-Kheshen, A.A.; Abdel-Baki, M.; Farag, M.; Elsatar, A.A. Preparation and characterization of low-cost wollastonite and gehlenite ceramics based on industrial wastes. Constr. Build. Mater. 2021, 310, 125214. [Google Scholar] [CrossRef]
- McKenna, F.; Archbold, P. Ceramic waste sludge as a partial cement replacement. In Proceedings of the Civil Engineering Research in Ireland Conference, Belfast, UK, 28–29 August 2014. [Google Scholar]
- Kuak, L.M. Carbon Dioxide Adsorption on Eaf Steel Slag Derived Adsorbent. Master’s Thesis, Universiti Sains Malaysia, Gelugor, Malaysia, 2017. [Google Scholar]
- David, C.; Bertauld, D.; Dautriat, J.; Sarout, J.; Menéndez, B.; Nabawy, B.S. Detection of moving capillary front in porous rocks using X-ray and ultrasonic methods. Front. Phys. 2015, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Nabawy, B.S.; Elgendy, N.T.H.; Gazia, M.T. Mineralogic and Diagenetic Controls on Reservoir Quality of Paleozoic Sandstones, Gebel El-Zeit, North Eastern Desert, Egypt. Nat. Resour. Res. 2019, 29, 1215–1238. [Google Scholar] [CrossRef]
- Elgendy, N.T.H.; Abuamarah, B.A.; Nabawy, B.S.; Ghrefat, H.; Kassem, O.M.K. Pore Fabric Anisotropy of the Cambrian–Ordovician Nubia Sandstone in the Onshore Gulf of Suez, Egypt: A Surface Outcrop Analog. Nat. Resour. Res. 2019, 29, 1307–1328. [Google Scholar] [CrossRef]
- Khater, G.A.; Nabawy, B.; Kang, J.; Mahmoud, M.A. Dielectric Properties of Basaltic Glass and Glass-Ceramics: Modeling and Applications as Insulators and Semiconductors. Silicon 2018, 11, 579–592. [Google Scholar] [CrossRef]
- Khater, G.A.; Nabawy, B.; Kang, J.; Yue, Y.; Mahmoud, M.A. Magnetic and Electrical Properties of Glass and Glass-Ceramics Based on Weathered Basalt. Silicon 2020, 12, 2921–2940. [Google Scholar] [CrossRef]
- Nabawy, B.S.; Rochette, P. A Preliminary Study on the Electrical Signatures of Some Iron and Stony Meteorites and Their Dependence On Nickel Content. Acta Geophys. 2016, 64, 1942–1969. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.-D.; Yang, Q.-W.; Guo, B.; Liu, B.; Zhang, S.-G. Crystallization mechanism of glass-ceramics prepared from stainless steel slag. Rare Met. 2018, 37, 413–420. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, J.; Li, X.; Shao, G. Effect of MgO addition on sinterability, crystallization kinetics, and flexural strength of glass–Ceramics from waste materials. Ceram. Int. 2016, 42, 3452–3459. [Google Scholar] [CrossRef]
- Casasola, R.; Pérez, J.M.; Romero, M. Crystal Growth of F-Phlogopite from Glasses of the SiO2-Al2O3-MgO-K2O-F System. J. Am. Ceram. Soc. 2015, 99, 484–491. [Google Scholar] [CrossRef]
- Tabit, K.; Hajjou, H.; Waqif, M.; Saâdi, L. Effect of CaO/SiO2 ratio on phase transformation and properties of anorthite-based ceramics from coal fly ash and steel slag. Ceram. Int. 2020, 46, 7550–7558. [Google Scholar] [CrossRef]
- Edrees, S.J.; Shukur, M.M.; Obeid, M.M. First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph. Comput. Condens. Matter 2018, 14, 20–26. [Google Scholar] [CrossRef]
- Ismail, H.; Shamsudin, R.; Hamid, M.A.; Awang, R. Characteristics of β-wollastonite derived from rice straw ash and limestone. J. Aust. Ceram. Soc. 2016, 52, 163–174. [Google Scholar]
- Qin, J.; Cui, C.; Cui, X.; Hussain, A.; Yang, C.; Yang, S. Recycling of lime mud and fly ash for fabrication of anorthite ceramic at low sintering temperature. Ceram. Int. 2015, 41, 5648–5655. [Google Scholar] [CrossRef]
- Veit, U.; Rüssel, C. Viscosity and liquidus temperature of quaternary glasses close to an eutectic composition in the CaO–MgO–Al2O3–SiO2 system. J. Mater. Sci. 2017, 52, 8280–8292. [Google Scholar] [CrossRef]
- Leko, V.; Mazurin, O. Analysis of regularities in composition dependence of the viscosity for glass-forming oxide melts: II. Viscosity of ternary alkali aluminosilicate melts. Glass Phys. Chem. 2003, 29, 16–27. [Google Scholar] [CrossRef]
- Almasri, K.A.; Sidek, H.A.A.; Matori, K.A.; Zaid, M.H.M. Effect of sintering temperature on physical, structural and optical properties of wollastonite based glass-ceramic derived from waste soda lime silica glasses. Results Phys. 2017, 7, 2242–2247. [Google Scholar] [CrossRef]
- Marincea, S.; Dumitras, D.-G.; Ghinet, C.; Fransolet, A.-M.; Hatert, F.; Rondeaux, M. Gehlenite from three occurrences of high-temperature skarns, romania: New mineralogical data. Can. Mineral. 2011, 49, 1001–1014. [Google Scholar] [CrossRef]
- Yan, X.; Wen, J. Study on factors influencing the performance of reactive powder concrete. IOP Conf. Ser. Earth Environ. Sci. 2020, 510, 052075. [Google Scholar] [CrossRef]
- Chen, G.Q.; Ahrens, T.J.; Stolper, E.M. Shock-wave equation of state of molten and solid fayalite. Phys. Earth Planet. Inter. 2002, 134, 35–52. [Google Scholar] [CrossRef]
- Abd-El-Messieh, S.L.; Abd-El-Nour, K.N. Effect of curing time and sulfur content on the dielectric relaxation of styrene butadiene rubber. J. Appl. Polym. Sci. 2003, 88, 1613–1621. [Google Scholar] [CrossRef]
- Nabawy, B.S.; Wassif, N.A. Effect of the mineralogical composition on the petrophysical behavior of the amygdaloidal and vesicular basalt of Wadi Wizr, Eastern Desert, Egypt. J. Afr. Earth Sci. 2017, 134, 613–625. [Google Scholar] [CrossRef]
- Nabawy, B.S. Impacts of fossil anisotropy on the electric and permeability anisotropy of highly fossiliferous limestone: A case study. Mar. Geophys. Res. 2017, 39, 537–550. [Google Scholar] [CrossRef]
- Wagner, H.; Richert, R. Measurement and analysis of time-domain electric field relaxation: The vitreous ionic conductor 0.4 Ca(NO3)2–0.6 KNO3. J. Appl. Phys. 1999, 85, 1750–1755. [Google Scholar] [CrossRef]
- Turky, G.M.; Fayad, A.M.; El-Bassyouni, G.T.; Abdel-Baki, M. Dielectric and electrical properties of MoO3-doped borophosphate glass: Dielectric spectroscopy investigations. J. Mater. Sci. Mater. Electron. 2021, 32, 22417–22428. [Google Scholar] [CrossRef]
- Dimitrijev, S. Principles of Semiconductor Devices (The Oxford Series in Electrical and Computer Engineering); Oxford University Press: Oxford, UK, 2011. [Google Scholar]
Oxide | Arc Furnace Slag | Ceramic Sludge | Limestone | Silica Sand |
---|---|---|---|---|
(wt.%) | ||||
SiO2 | 16.09 | 61.89 | 0.15 | 99.2 |
CaO | 38.59 | 6.58 | 55.7 | 0.1 |
Al2O3 | 5.24 | 17.28 | 0.22 | 0.28 |
MgO | 14.62 | 0.9 | 0.1 | trace |
Na2O | 0.62 | 1.83 | trace | trace |
BaO | 0 | 0.64 | nil | trace |
MnO | 0.74 | 0.02 | nil | trace |
Fe2O3 | 10.29 | 0.99 | 0.03 | 0.03 |
TiO2 | 0.16 | 0.74 | nil | trace |
K2O | 0.13 | 1.24 | trace | trace |
L.O.I. | 11.15 | 5.86 | 44.02 | 0.4 |
Batch No. | Nominal Composition (wt.%) | Calculated Oxide Constituents (wt.%) | CaO/SiO2 | Batch Ingredients (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AF | S | SiO2 | CaO | Al2O3 | Fe2O3 | MgO | Arc Furnace Slag | Sludge | Limestone | Silica Sand | ||
AFS1 | 10 | 90 | 47.86 | 32.73 | 13.42 | 1.6 | 1.9 | 0.68 | 6.52 | 58.64 | 34.84 | 0 |
AFS2 | 20 | 80 | 47.8 | 30.22 | 13.48 | 2.58 | 3.3 | 0.63 | 14.6 | 58.39 | 27.08 | 0 |
AFS3 | 30 | 70 | 47.65 | 27.35 | 13.53 | 3.71 | 4.97 | 0.57 | 24.84 | 57.95 | 17.21 | 0 |
AFS4 | 40 | 60 | 47.52 | 23.79 | 13.61 | 5.14 | 6.97 | 0.5 | 38.32 | 57.48 | 4.2 | 0 |
AFS5 | 50 | 50 | 52.58 | 21.46 | 10.7 | 5.37 | 7.37 | 0.41 | 42.91 | 42.91 | 0 | 14.17 |
AFS6 | 60 | 40 | 48.54 | 24.52 | 9.56 | 6.25 | 8.69 | 0.51 | 51.37 | 34.25 | 0 | 14.38 |
AFS7 | 70 | 30 | 48.62 | 25.55 | 7.81 | 6.61 | 9.25 | 0.52 | 55.74 | 23.88 | 0 | 20.38 |
AFS8 | 80 | 20 | 49.44 | 26.02 | 6.19 | 6.82 | 9.6 | 0.53 | 58.71 | 14.68 | 0 | 26.61 |
AFS9 | 90 | 10 | 49.8 | 26.62 | 4.85 | 7.04 | 9.97 | 0.53 | 61.64 | 6.85 | 0 | 31.51 |
Sample No. | Density g/cm3 | Porosity% | Phases Developed |
---|---|---|---|
AFS 1 | 1.896 | 41.12 | β-woll., Geh., QZ-low |
AFS 2 | 1.906 | 40.14 | Parawoll., Geh., QZ-low |
AFS 3 | 1.875 | 38.87 | Parawoll., Geh., QZ- low |
AFS 4 | 1.824 | 41.66 | Parawoll., Geh., QZ-low |
AFS5 | 2.01 | 31.16 | β-woll., Geh., QZ-low |
AFS 6 | 2.211 | 29.4 | Geh., β-woll., QZ-low |
AFS 7 | 2.203 | 29 | β-woll, Geh., QZ-low |
AFS 8 | 2.106 | 28.41 | β-woll., Geh., QZ-low |
AFS 9 | 1.798 | 47.26 | β-woll., Geh., QZ-low |
Sintering Temperatures | Density g/cm3 | Porosity (%) | Phases Developed |
---|---|---|---|
1050 °C | 1.691 | 43.98 | Parawoll.,Geh., QZ-low |
1100 °C | 2.010 | 31.16 | β-woll., Geh., QZ-low |
1150 °C | 1.990 | 33.36 | Parawoll, Fay., QZ-low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khater, G.A.; Nabawy, B.S.; El-Kheshen, A.A.; Abdel Latif, M.A.-B.; Farag, M.M. Use of Arc Furnace Slag and Ceramic Sludge for the Production of Lightweight and Highly Porous Ceramic Materials. Materials 2022, 15, 1112. https://doi.org/10.3390/ma15031112
Khater GA, Nabawy BS, El-Kheshen AA, Abdel Latif MA-B, Farag MM. Use of Arc Furnace Slag and Ceramic Sludge for the Production of Lightweight and Highly Porous Ceramic Materials. Materials. 2022; 15(3):1112. https://doi.org/10.3390/ma15031112
Chicago/Turabian StyleKhater, Gamal A., Bassem S. Nabawy, Amany A. El-Kheshen, Manal Abdel-Baki Abdel Latif, and Mohammad M. Farag. 2022. "Use of Arc Furnace Slag and Ceramic Sludge for the Production of Lightweight and Highly Porous Ceramic Materials" Materials 15, no. 3: 1112. https://doi.org/10.3390/ma15031112
APA StyleKhater, G. A., Nabawy, B. S., El-Kheshen, A. A., Abdel Latif, M. A. -B., & Farag, M. M. (2022). Use of Arc Furnace Slag and Ceramic Sludge for the Production of Lightweight and Highly Porous Ceramic Materials. Materials, 15(3), 1112. https://doi.org/10.3390/ma15031112