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Abstract: In order to investigate and compare the effects of RDX crystal quality on the safety and
mechanical properties of pressed PBX, different RDX-based PBXs were prepared by a water sus-
pension granulation method. The surface morphology, thermal decomposition properties, impact
sensitivity, and mechanical properties of high-quality RDX (H-RDX) and PBX were characterized by
SEM, optical microscope, DSC, impact sensitivity tester, and universal material testing machines. The
results have shown that the H-RDX crystal has a smoother surface, regular shape, higher density,
fewer defects, better thermal stability, and lower impact sensitivity than raw RDX. The activation
energy of H-RDX-based PBX is 26.0% higher than that of raw RDX-based PBX, and H50 increased by
2.8 cm, indicating that the application of H-RDX to PBX can effectively improve its thermal stability
and reduce the impact sensitivity in the safety performance. However, the compressive strength
of pressed H-RDX-based PBX is 36% lower than that of pressed raw RDX-based PBX, showing
that H-RDX results in the deterioration of the compressive strength of pressed PBX in mechanical
performance. Fortunately, this study found a strategy on how to effectively improve mechanical
performance, which is changing the type of binder and increasing the pressing pressure. Under the
same pressing conditions, the order of compressive strength of PBX prepared by the three binders is
FKM DS2603 > Viton A > PVAc. Moreover, the compressive strength of H-RDX-based PBX with FKM
DS2603 can be increased by 33.7% compared with PVAc. When the pressing pressure is 200 MPa, the
average compressive strength of H-RDX-based PBX with FKM DS2603 reaches 10.00 MPa, which can
basically meet application requirements.

Keywords: high-quality RDX; thermal decomposition performance; impact sensitivity; mechanical
performance; compressive strength

1. Introduction

With the continuous improvement of survival and safety requirements of munitions
in modern warfare, there has been a huge demand for insensitive munitions (IM). Research
suggests that one of the important potential method for reducing the vulnerability of
explosive formulations is to improve the crystal quality of existing elementary explosives,
reducing their sensitivity and improving their stability [1,2]. Due to the high detonation
energy, low cost, and wide application of RDX, it is expected to obtain high-quality RDX
(H-RDX) by improving the crystal quality [3–5]. The initial research topics focused on the
improvement of RDX crystals and their product characterization [6–9]. Subsequently, the
called I-RDX, RS-RDX, Grade A-RDX, and H-RDX were developed [10,11]. Additionally,
the purity, density, mean size, shape, thermal, and hazard properties of H-RDX were
also characterized [12–14]. Along with improvements in the quality of RDX crystal, the
application research and performance evaluation of H-RDX has also been conducted over
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the years. The use of H-RDX is mainly concentrated in cast formulations and melt-cast
formulations owing to its higher density, lower shock wave sensitivity, better thermal
stability, and detonation performance [15–19]. Despite the application of H-RDX to pressed
formulations coming later than to other kinds of formulations [20], RS-RDX can keep their
reduced shock sensitivity feature in pressed formulations, even with some extra-granular
pores in the bulk of the binder. Therefore, the effects of H-RDX on the safety and mechanical
properties of pressed PBX were further studied.

Considering the coating of H-RDX is difficult due to its smooth surface. The H-RDX-
based modeling powder was prepared by a water suspension granulation method [21] with
three different binders. Moreover, the pressed PBX with a different binder was pressed
in a stainless-steel mold under different compressive strengths. Finally, the formula with
better mechanical properties was screened out, and impact sensitivity was tested to provide
technical support for the large-scale application of H-RDX in pressed PBX.

2. Experimental Section
2.1. Materials

H-RDX particles (1.798 g•cm−3) and raw RDX (1.781 g•cm−3) with sizes ranging
from 109 µm to 212 µm was procured from No.375 Factory of China North Industries
Group Corporation (Liaoyang, Liaoning, China). PVAc with an average molecular weight
of 40,000 g•mol−1 was supplied by the Sinopharm Chemical Reagent Co., Ltd. (Shang-
hai, China). DNT was purchased from No.804 Factory of China North Industries Group
Corporation (Xian, China). The FKM DS2603 with fluorine content of 68% was provided
by Shandong Huaxia Shenzhou New Material Co., Ltd. (Zibo, China). VITON A with a
fluorine content of 66% was obtained from DuPont company. Ethyl acetate and stearic acid
(both AR) were procured from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
In the experiment, all reagents were used without further purification. Deionized water
was used throughout the experiments.

2.2. Preparation of PBX

The H-RDX-based modeling powders were prepared by a water suspension granu-
lation method [21] according to the formulation in Table 1. The binder was dissolved in
ethyl acetate to form a binder solution (5%). The H-RDX (94.5 g) was placed in a 1000 mL
three-necked flask, and then 300 mL water was added. This mixture was stirred at a
speed of 250–350 rpm until uniformly dispersed. Keeping the inside flask temperature
at 70 ◦C, the binder solution was added dropwise into the H-RDX suspension through a
separating funnel over 20 min. Then, the mixture was heated to 90 ◦C. After about 30 min,
SA was added and stirred for 5 min. When the temperature of the mixture fell to ambient
temperature, the solid was filtered off, washed with water, and dried in a vacuum. The
molding powders were, thus, obtained. Finally, the pressed PBX with different binders was
pressed in a stainless-steel mold under different compressive strengths.

Table 1. Formulations of PBX with different RDX %.

Sample RDX H-RDX DNT PVAc FKM
DS2603 VITON A SA

1 # 100 0 0 0 0 0 0
2 # 0 100 0 0 0 0 0
3 # 94.5 0 3 2 0 0 0.5
4 # 0 94.5 3 2 0 0 0.5
5 # 94.5 0 0 0 5 0 0.5
6 # 0 94.5 0 0 5 0 0.5
7 # 0 94.5 0 0 0 5 0.5
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2.3. Experimental Techniques

The morphology of samples was measured by scanning electron microscope (SEM)
and an optical microscope. The true density of samples was carried out at 298.15 K using
an electronic weighing balance equipped density determination kit based on Archimedes
principle. The samples were weighed both in air and in water; accordingly, density was
calculated. The purity of H-RDX was analyzed by Agilent 1200 HPLC using a C18 chro-
matographic column and a methanol/acetonitrile/water mixture as the mobile phase,
volume ratio of 28:12:60, and flow rate 1.5 mL/min. The injected volume was 5 µL. The
UV detection wavelength was 240 nm. DSC analysis was carried out by a Mettler Toledo
instrument from 50 to 600 ◦C, with a heating rate of 5, 10, 15, and 20 K•min−1 under
nitrogen atmosphere (40 mL•min−1), and the mass of the powdery samples (H-RDX and
PBXs) used was approximately 0.50 mg. The impact sensitivity was tested on a dropping
hammer apparatus with a 5 kg drop weight according to GJB 772A-97 standard method
601.2 (National Military Standard of China) [22], and the results could be expressed by the
drop height of 50% explosion probability (H50). The static mechanical tests were conducted
with a universal testing machine at room temperature, with pressed cylindrical PBX for the
compression test.

3. Results and Discussion
3.1. Morphological Analysis of H-RDX and Raw RDX

In order to investigate the apparent morphology changes of RDX crystals, SEM and
optical microscope were used to observe the surface and profile of H-RDX and raw RDX
crystals. It can be observed from Figure 1a,c that raw RDX crystals have different shapes. In
particular, the large raw RDX particles have many small crystals embedded or attached to
the surface, resulting in obvious cracks and defects. However, a closer look at the H-RDX in
Figure 1b,d points out that the crystal has a regular shape and a smooth surface. Compared
with the raw RDX crystal, surface defects are significantly reduced. Table 2 shows the true
densities and purities of H-RDX and raw RDX crystals. The H-RDX crystal has a much
greater true density than raw RDX, which suggests that H-RDX has fewer voids. The purity
of the H-RDX is higher than that of raw RDX, indicating H-RDX has fewer impurities. All
of these results proved that the H-RDX crystal with less defects and inclusions is of a higher
crystal quality.
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(200×), (c) raw RDX (1500×), and (d) H-RDX (2000×).
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Table 2. The true density and purity of different RDX crystals.

Sample True Density/g·cm−3 Purity/%

1 # 1.781 99.14
2 # 1.798 99.91

3.2. Effects of H-RDX on the Safety Performance of PBX

The improvement of the quality of explosive crystals will cause changes in the safety
performance of PBXs [4,7]. As the crystal shape of H-RDX is regular, the surface is smoother,
the defect is less and the apparent density is higher so that the quality is significantly
improved. Therefore, the accurate influence of H-RDX on the thermal safety and impact
sensitivity of PBX was investigated.

3.2.1. Effects of H-RDX on the Thermal Properties of PBX

The DSC curves of the samples at different heating rates are shown in Figure 2. The
thermal decomposition processes of H-RDX, raw RDX, and corresponding PBX are similar.
As shown in Figure 2, there is an endothermic peak and an exothermic peak, and the
endothermic peak near 204 ◦C (5 K•min−1) may be attributed to the melting of RDX,
followed by an exothermic peak around 235 ◦C (5 K•min−1), which may correspond to
the decomposition process of RDX. When the heating rate is 5 K•min−1 or 10 K•min−1,
the thermal decomposition peak temperature of H-RDX is slightly higher than that of raw
RDX, but it is not obvious.

Figure 2. DSC curves of different RDX and PBX.

In order to further compare the thermal properties of H-RDX, raw RDX, and corre-
sponding PBX, the activation energy (E) of samples were studied by the Kissinger method
and Flynn–Wall–Ozawa method, and the results are shown in Table 2. The equations of
Kissinger (1) [23] and Ozawa (2) [24] are as follows.

ln

(
βi

T2
Pi

)
= ln

AR
E
− E

R
• 1

TPi
i = 1, 2, 3, 4 (1)
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lg

(
βi

T2
Pi

)
= lg

AE
RG(α)

− 2.315− 0.4567
E

RTPi
i = 1, 2, 3, 4 (2)

In those equations, E is the apparent activation energy (J•mol−1), A is the pre-
referential constant (min−1), βi is the heating rate of the sample (K•min−1), G(α) is the
reaction mechanism function, Tpi is the peak temperature of thermal decomposition (K),
and R is the ideal gas constant (8.314 J•mol−1•K−1).

It can be observed from Table 3 that the apparent activation energy calculated by the
Kissinger method and the Flynn–Wall–Ozawa method are very close. The EK value of
H-RDX is 63.64 kJ•mol−1 higher than that of raw RDX, which indicates that H-RDX has a
high energy barrier, resulting in the thermal stability of the H-RDX being better than that
of raw RDX. Furthermore, the EK of H-RDX-based PBX is 26.0% higher than that of raw
RDX-based PBX, pointing out that applying H-RDX to pressed PBX can effectively improve
its thermal stability, which is due to the fact that the thermal stability of the H-RDX crystal
is better than raw RDX. Therefore, the quality of RDX crystal has a significant impact on
the thermal safety of PBX. Overall, the use of H-RDX crystal results in an improvement of
the thermal safety of PBX.

Table 3. Tp of samples at different heating rates and calculated value of Ea.

Sample
Tp/◦ C

EK/ kJ•mol−1 EO/ kJ•mol−1
5 K•min−1 10 K•min−1 15 K•min−1 20 K•min−1

1 # 235.41 243.97 252.98 261.03 111.87 114.62
2 # 235.71 244.31 250.03 251.66 175.51 175.07
3 # 234.75 242.5 252.22 260.77 108.10 111.03
4 # 232.35 243.93 245.03 252.53 146.06 147.04

Note: Subscript K and O data obtained by Kissinger’s method and Flynn–Wall–Ozawa’s method from Tp.

3.2.2. Effects of H-RDX on the Impact Sensitivity of PBX

The impact sensitivity of raw RDX, H-RDX, raw RDX-based PBX, and H-RDX-based
PBX was carried out using a 5 kg drop hammer. We performed 25 tests on each sample.
H50 and Standard deviation (S) are shown in Table 4. The higher the H50, the lower the
impact sensitivity. It can be observed from Table 4 that the H50 of H-RDX is 5 cm higher
than that of raw RDX, indicating that the impact sensitivity of H-RDX is 23.7% lower than
that of raw RDX. The main reasons related to this phenomenon have been studied. First,
because the surface of H-RDX is smooth, it is easier to slide between particles and drop
hammer when the particles were impacted, and the accumulated heat is lower. Second,
the density of H-RDX is higher and the defects are less than that of raw RDX. It is known
from previous research [25,26] that the fewer defects and the higher the crystal quality, the
higher the impact sensitivity. Finally, EK of H-RDX is higher than that of raw RDX. Under
the stimulation of external impact energy, the energy required for the H-RDX reaction
will naturally be higher. Therefore, the H50 of H-RDX is higher and the impact sensitivity
is lower.

Table 4. Impact sensitivity of different RDX and PBX.

Sample 1 # (RDX) 2 # (H-RDX) 5 # 6 #

H50/cm 21.1 26.1 56.2 59.0
S/cm 0.27 0.08 0.08 0.08

Note: S is the Standard deviation.

Comparing 5 # and 6 #, it can be found that the H50 of H-RDX-based PBX is 2.8 cm
higher than that of raw RDX-based PBX, indicating that H-RDX can reduce the impact
sensitivity of pressed PBX due to the fact that the impact sensitivity of H-RDX is lower than
that of raw RDX. In addition, the analysis of 1 # and 5 # and 2 # and 6 # in Table 4 shows
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that the H50 of PBX increases more than one times after the RDX is coated, pointing out
the impact sensitivity decreases greatly. According to the hot spot theory, the initiation of
explosives is caused by the “hot spot” formed by local adiabatic compression. The binders
are coated on the surface of the H-RDX crystal, which plays the role of a desensitizer. When
the PBX is subjected to mechanical impact, the binders can first play a lubricating role,
reducing the friction between PBX particles and reducing the generation of heat. Secondly,
the endothermic melting of binders reduces the ignition energy of the supply hot spot,
delaying the formation of a hot spot. Finally, the buffer energy absorption effect of the
elastic-plastic material further reduces the probability of hot spot formation inside the
H-RDX crystal.

In short, due to the smooth surface effect, dense effect, and higher Ek of H-RDX,
the impact sensitivity of H-RDX is lower than that of raw RDX, resulting in the impact
sensitivity of H-RDX-based PBX being lower than that of raw RDX-based PBX.

3.3. Effects of H-RDX on the Mechanical Performance of Pressed PBX

The mechanical properties of pressed PBX are mainly related to the explosive crystals,
the interface effect of binders, and explosive particles. The surface morphology of crystals
will affect the adhesion between crystals and binders, thus resulting in changes in the
mechanical properties of PBX. Since the surface of H-RDX is smoother and the morphology
is more regular than that of raw RDX, the influence of H-RDX on the mechanical properties
of pressed PBX was explored.

3.3.1. Effect of Different RDX on Compressive Strength of Pressed PBX

The compressive strength (Sc) of different RDX-based PBX prepared by 3 # and 4 # for-
mulations with an applied pressure of 200 MPa was tested. The comparison of the samples
before and after the test is shown in Figure 3. It can be observed that the surface cracks of H-
RDX-based PBX are obvious after the test, while the surface of raw RDX is almost no cracks.
A plot of the measured compressive stress as a function of the displacement is shown in
Figure 4, and the test results are listed in Table 5. The compressive stress of H-RDX-based
PBX is significantly lower than that of raw RDX-based PBX, and the compressive strength
decreases by 36%. However, the fluctuation of compressive stress of H-RDX-based PBX is
relatively small, due to its standard deviation and range being reduced by more than 60%
compared with raw RDX-based PBX. In other words, the compressive strength consistency
of H-RDX-based PBX is significantly better than that of raw RDX-based PBX.

Figure 3. Comparison of PBX after compressive strength test.
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Figure 4. Load–displacement curves of PBX with different RDX.

Table 5. Compressive strength of PBX with different RDX.

Sample ρ/g·cm−3 QC/N Average QC/N S/N Range/N Average SC/MPa

3 #

1.65 5412.90

5063.73 280.78 763.50 11.69
1.66 5039.92
1.66 5201.03
1.66 4649.40
1.66 5015.40

4 #

1.69 3365.78

3237.94 82.74 204.01 7.47
1.68 3244.07
1.69 3161.77
1.69 3251.08
1.68 3167.02

Note: QC is the compressive stress of PBX. SC is the compressive strength of PBX. S is the Standard deviation.

In order to investigate the reason for the decline of compressive strength caused by H-
RDX, we use the interfacial wetting theory [27,28] to deduce it. Since the surface roughness
of H-RDX is different from that of raw RDX, the Young equation [29–31] is applied to the
rough surface system. Combined with the Young equation and Wenzel equation [32], we
can obtain Equation (3):

r = cosθ′/cosθ > 1 (3)

where r is a rough factor, θ′ is the apparent contact angle of solid–liquid phase (◦), and θ is
the solid–liquid contact angle (◦).

Equation (3) shows that the cosθ′ of a rough surface is always greater than that of
a smooth surface. The apparent morphology analysis of RDX proves that the surface of
H-RDX is smoother than that of raw RDX; thus, we have the following.

cosθ′ RDX > cosθ′ H-RDX (4)

Reference [18] shows that the liquid surface tension of PVAc, FKM DS2603, and VITON
A is always greater than 0, for the use of the same binder in PBX. Combined with Equation
(4) and Young equation, we obtain the following:

Wa RDX > Wa H-RDX (5)

where Wa is the adhesion work (mJ•m−2). According to Equation (5), the adhesion work
between H-RDX with smooth surface and binder is smaller than that of raw RDX and
binder, which means that the interface effect between H-RDX crystal and binder is weaker;
thus, the compressive strength of pressed H-RDX-based PBX is lower.

On the other hand, the irregularity of the surface, such as uneven peak valley or loose
pore structure, is conducive to the filling of the adhesive. After curing, the adhesive and
the surface are bitten and fixed. In the process of coating RDX with a water suspension
granulation method, the binder wets or spreads on the irregular surface of RDX crystal,
which plays the role of filling peak valleys and gaps and makes the surface of RDX crystal
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form a large area of close combination with the binder, which result in the physical “inter-
locking block” [33]. Therefore, the raw RDX-based PBX with an irregular surface has better
compressive strength properties than the H-RDX-based PBX.

In summary, the surface of H-RDX is smoother, and the compressive strength of
H-RDX-based PBX is lower. However, due to the regular surface shape of H-RDX, the
stress in each direction is uniform. Thus, the compressive strength of H-RDX-based PBX is
better consistent.

3.3.2. Effect of Pressing Intensity on the Compressive Strength of Pressed
H-RDX-Based PBX

The pressing intensity of the PBX will directly affect the density and porosity of
the PBX, thereby affecting the mechanical properties of the pressed PBX. Therefore, the
mechanical properties of H-RDX-based PBX prepared by 4 # molding powder under
holding time of 8 s, pressing pressure of 42 kN (100 MPa), 52 kN (125 MPa), 62 kN
(150 MPa), and 83 kN (200 MPa) were studied, as listed in Table 6.

Table 6. Compressive strength of PBX with different pressing pressure.

Stress/kN P/MPa
Pressed

Density/g·cm−3 Porosity/% SC/MPa

42 100 1.63 8.8 5.24
52 125 1.65 7.7 5.86
62 150 1.66 7.1 6.39
83 200 1.68 6.0 7.47

It can be observed from Table 6 that the compressive strength of pressed H-RDX-based
PBX increases with an increase in pressing intensity in the range of 100 MPa~200 MPa.
According to the statistical theory of micro-crack brittle damage [34], there are inevitably
initial defects such as microcracks in the preparation process of PBX. When the pressing
intensity becomes higher, the density of the PBX is higher, yet the porosity of the PBX is
lower; thus, PBX has fewer and smaller initial microcracks or other defects. Under the
stimulation of external pressure, the smaller initial microcracks expand steadily and slowly,
thereby reducing the crack’s growth rate. Therefore, pressed PBX with fewer and smaller
initial microcracks needs a greater external load to achieve the critical damage degree,
which means that it can withstand greater compressive strength. In summary, the increase
in pressing intensity can improve the compressive strength of PBX by reducing porosity,
initial cracks, and other defects.

3.3.3. Effect of Different Binders on the Compressive Strength of Pressed
H-RDX-Based PBX

Thanks to the compressive strength of pressed H-RDX-based PBX decreased signif-
icantly, the feasibility of improving the compressive mechanical properties of PBX was
explored by changing the binder. Firstly, H-RDX-based molding powder was prepared
according to the formula of 4 # (PVAc), 6 # (FKM DS2603), and 7 # (VITON A), and then
PBX was pressed with an applied pressure of 200 MPa. Finally, their compressive strength
was tested, and the results are shown in Figure 5.

It can be observed from Figure 5 that the compressive strength of pressed H-RDX-
based PBX prepared with the three binders is in the order of FKM DS2603 > VITON A >
PVAc. The largest average compressive strength of pressed H-RDX-based PBX prepared
with FKM DS2603 binder reaches 10.00 MPa, which is 33.7% higher than the smallest.
Meanwhile, the compressive strength of raw RDX-based PBX (3 #) pressed with an applied
pressure of 150 MPa is 9.97 MPa, proving that the FKM DS2603/H-RDX formula (6 #) can
meet the use requirements.
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Figure 5. Compressive strength of PBX with different binders.

3.3.4. The Discussion of the Interfacial Reinforcement Effects between H-RDX and Binders

Compared with PVAc/H-RDX composites, the compressive strength of fluororubber/H-
RDX composites was significantly improved, which was believed to originate from the
interface reinforcement effect of fluororubber on H-RDX. It can be attributed to the follow-
ing mechanisms.

According to the adsorption theory [27–32], the binder is adsorbed on the surface
by wetting, and the movement of macromolecules or molecular chains forms a diffusion
interface area. Furthermore, the molecules undergo physical adsorption or chemical
reaction, forming a bond that crosses the secondary or main chemical valence of the
interface. First, the -F group in fluororubber (FKM DS2603 or VITON A) molecule has
high electronegativity and, thus, produces strong dipole–dipole interactions with the -NO2
group on the surface of H-RDX crystal. Although the CH3COO- group in PVAc can also
produce dipole–dipole interactions with the -NO2 group on the surface of the H-RDX
crystal, the volume of the CH3COO- group is larger and electronegativity is weaker than
that of the -F group; thus, the dipole–dipole interaction between CH3COO- group and
-NO2 group is smaller. Additionally, for binders with the same weight, the number of −F
groups of fluororubber is 156% more than that of CH3COO- groups of PVAc, according
to the molecular force summation formula of Fowkes [27–29], and the total force between
fluororubber and H-RDX crystal is also larger. At the same time, the fluorine content of
FKM DS2603 is 2% higher than that of VITON A thus, the total dipole–dipole interaction
between FKM DS2603 and H-RDX is larger, which results in the increase in intermolecular
interaction and enhances the compressive strength of H-RDX-based PBX.

Diffusion theory [27–32] believes that the flexibility of the molecular chain increases,
the side group reduces, and the crosslinking degree raises, and these are beneficial to
molecular diffusion, resulting in bonding strength increases. The CH3COO- group of
PVAc is suspended outside the main chain, resulting in an increase in the spatial steric
hindrance of the diffusion interface, which inhibits the spread of the PVAc molecular chain
on the surface of the H-RDX crystal. Nevertheless, the space volume of the -CF3 group
on the fluororubber molecular chain is smaller than that of the CH3COO- group; thus,
its space steric hindrance is small, which is convenient for the diffusion of fluororubber
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molecular chain and molecular chain on the surface of H-RDX crystal to achieve greater
bonding strength.

In addition, the H-RDX molecule contains the -NO2 group, which is an electron donor
and belongs to the Lewis base. However, the F atom in the fluororubber molecule has
a strong ability to attract electrons, resulting in a positive charge around the C atom of
the main chain, becoming a proton donor and belonging to Lewis acid. Moreover, the
CH3COO- group in PVAc can provide an electron pair, which belongs to the Lewis base.
Consequently, according to the acid-base interaction theory [28,32], -NO2 groups of H-
RDX are easier to form coordination bonds with fluororubber molecules and increase the
molecular interaction at the interface.

It is revealed that the interface reinforcement effect of fluororubber on H-RDX by
the analysis of adsorption theory, diffusion theory and acid-base interaction theory. The
essential reason is that the fluororubber molecular chain is easier to wet and diffuse on
the surface of H-RDX crystal, forming coordination bonds and obtaining stronger dipole–
dipole interaction. Hence, the compressive strength of the pressed H-RDX-based PBX
can be improved by the use of fluororubber, which enhances molecular interaction on
the interface.

4. Conclusions

The different RDX-based PBX was prepared by pressing modeling powder, which
was coated with a binder by a water suspension granulation method. Furthermore, the
effects of H-RDX on the safety and mechanical properties of pressed PBX were fully studied.
The surface of the H-RDX crystal is smoother, and the shape is more regular than that
of raw RDX. The defects are significantly reduced, the activation energy of H-RDX is
63.64 kJ•mol−1 higher than that of raw RDX, and H50 is 5 cm higher than that of raw
RDX. Thus, H-RDX has good thermal stability, low impact sensitivity, and high intrinsic
safety. Moreover, the EK of H-RDX-based PBX is 26.0% higher than that of raw RDX-based
PBX, and the H50 is 2.8 cm higher than that of raw RDX-based PBX, which point out
that the application of H-RDX to PBX can effectively improve its thermal stability and
decrease the impact sensitivity in safety performance. However, the compressive strength
of pressed H-RDX-based PBX is 36% lower than that of pressed raw RDX-based PBX,
showing that H-RDX results in the deterioration of the compressive strength of pressed
PBX in mechanical performance. Fortunately, this work provides a potential method to
improve mechanical performance, which is changing the type of binder and increasing
the pressing pressure. When the pressing pressure is 200 MPa, the average compressive
strength of H-RDX-based PBX with FKM DS2603 reaches 10.00 MPa, which can basically
meet application requirements.
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Abbreviations and Acronyms
RDX 1,3,5-Trinitroperhydro-1,3,5-triazine
H-RDX High-quality RDX
I-RDX Insensitive RDX
RS-RDX Reduced sensitivity RDX
PBX Plastic Bonded Explosive
FKM DS2603 Fluororubber DS2603
VITON A Fluororubber VITON A
PVAc Polyvinyl acetate
DNT 2,4-Dinitrotoluene
SA Stearic acid
H50 The drop height of 50% explosion probability
E The activation energy
G(α) Reaction mechanism function
Sc Compressive strength
Qc Compressive stress
S Standard deviation
Wa Adhesion work
r Rough factor
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