Spectrometric Analysis of the Wear from Metallic and Ceramic Dental Implants following Insertion: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implant Insertion into Artificial Bone
2.2. X-ray Fluorescence Spectrometry
2.3. Experimental Groups
3. Results
3.1. Titanium Implants
3.2. Zirconia (Zr) Implants
3.3. Implant System Drills
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Misch, C.E.; Perel, M.L.; Wang, H.-L.; Sammartino, G.; Galindo-Moreno, P.; Trisi, P.; Steigmann, M.; Rebaudi, A.; Palti, A.; Pikos, M.A.; et al. Implant success, survival, and failure: The International Congress of Oral Implantologists (ICOI) pisa consensus conference. Implant Dent. 2008, 17, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Douglass, C.W.; Shih, A.; Ostry, L. Will there be a need for complete dentures in the United States in 2020? J. Prosthet. Dent. 2002, 87, 5–8. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global Burden of Severe Tooth Loss: A Systematic Review and Meta-analysis. J. Dent. Res. 2014, 93 (Suppl. 7), 20S–28S. [Google Scholar] [CrossRef] [Green Version]
- Emami, E.; De Souza, R.F.; Kabawat, M.; Feine, J.S. The impact of edentulism on oral and general health. Int. J. Dent. 2013, 2013, 7. [Google Scholar] [CrossRef]
- Tyrovolas, S.; Koyanagi, A.; Panagiotakos, D.; Haro, J.M.; Kassebaum, N.J.; Chrepa, V.; Kotsakis, G.A. Population prevalence of edentulism and its association with depression and self-rated health. Sci. Rep. 2016, 6, 37083. [Google Scholar] [CrossRef] [Green Version]
- Romanos, G.E.; Delgado-Ruiz, R.; Sculean, A. Concepts for prevention of complications in implant therapy. Periodontol. 2000 2019, 81, 7–17. [Google Scholar] [CrossRef]
- Tuan, R.S.; Lee, F.Y.-I.; Konttinen, Y.T.; Wilkinson, M.J.; Smith, R.L. What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? J. Am. Acad. Orthop. Surg. 2008, 16, S42–S48. [Google Scholar] [CrossRef]
- Apaza-Bedoya, K.; Bijukumar, D.R.; Benfatti, C.A.; Mathew, M.T.; Silva, J.D.; Souza, J.C. Adverse local and systemic effect of nanoparticles released from oral and cranio-maxillofacial implants. In Nanostructured Biomaterials for Cranio-Maxillofacial and Oral Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 63–79. [Google Scholar] [CrossRef]
- Romanos, G.E.; Fischer, G.A.; Delgado-ruiz, R. Titanium wear of dental implants from placement, under loading and maintenance protocols. Int. J. Mol. Sci. 2021, 22, 1067. [Google Scholar] [CrossRef]
- He, X.; Hartlieb, E.; Rothmund, L.; Waschke, J.; Wu, X.; Van Landuyt, K.L.; Milz, S.; Michalke, B.; Hickel, R.; Reichl, F.X.; et al. Intracellular uptake and toxicity of three different Titanium particles. Dent. Mater. 2015, 31, 734–744. [Google Scholar] [CrossRef]
- Song, B.; Liu, J.; Feng, X.; Wei, L.; Shao, L. A review on potential neurotoxicity of titanium dioxide nanoparticles. Nanoscale Res. Lett. 2015, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Messous, R.; Henriques, B.; Bousbaa, H.; Silva, F.S.; Teughels, W.; Souza, J.C.M. Cytotoxic effects of submicron- and nano-scale titanium debris released from dental implants: An integrative review. Clin. Oral Investig. 2021, 25, 1627–1640. [Google Scholar] [CrossRef]
- Wilson, T.G., Jr.; Valderrama, P.; Burbano, M.; Blansett, J.; Levine, R.; Kessler, H.; Rodrigues, D.C. Foreign Bodies Associated with Peri-Implantitis Human Biopsies. J. Periodontol. 2015, 86, 9–15. [Google Scholar] [CrossRef]
- Eger, M.; Sterer, N.; Liron, T.; Kohavi, D.; Gabet, Y. Scaling of titanium implants entrains inflammation-induced osteolysis. Sci. Rep. 2017, 7, 39612. [Google Scholar] [CrossRef]
- Pettersson, M.; Kelk, P.; Belibasakis, G.N.; Bylund, D.; Thorén, M.; Johansson, A. Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J. Periodontal Res. 2017, 52, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Lockman, P.R.; Koziara, J.M.; Mumper, R.J.; Allen, D. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J. Drug Target. 2004, 12, 635–641. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Gemini-Piperni, S.; Travassos, R.; Lemgruber, L.; Silva, R.C.; Rossi, A.L.; Farina, M.; Anselme, K.; Shokuhfar, T.; Shahbazian-Yassar, R.; et al. Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells. Sci. Rep. 2016, 6, 23615. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, H.; Zhou, J.; Li, F.; Wang, J.; Chen, M.; Liu, Q. Cytotoxicity, DNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ. Sci. Pollut. Res. 2015, 22, 5519–5530. [Google Scholar] [CrossRef]
- Trouiller, B.; Reliene, R.; Westbrook, A.; Solaimani, P.; Schiestl, R.H. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009, 69, 8784–8789. [Google Scholar] [CrossRef] [Green Version]
- Nogiwa-Valdez, A.A.; Rainforth, W.M.; Stewart, T.D. Wear and degradation on retrieved zirconia femoral heads. J. Mech. Behav. Biomed. Mater. 2014, 31, 145–151. [Google Scholar] [CrossRef]
- Parkes, M.; Sayer, K.; Goldhofer, M.; Cann, P.; Walter, W.L.; Jeffers, J. Zirconia phase transformation in retrieved, wear simulated, and artificially aged ceramic femoral heads. J. Orthop. Res. 2017, 35, 2781–2789. [Google Scholar] [CrossRef] [Green Version]
- Perrichon, A.; Liu, B.H.; Chevalier, J.; Gremillard, L.; Reynard, B.; Farizon, F.; Liao, J.D.; Geringer, J. Ageing, Shocks and Wear Mechanisms in ZTA and the Long-Term Performance of Hip Joint Materials. Materials 2017, 10, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miura, S.; Yamauchi, S.; Kasahara, S.; Katsuda, Y.; Fujisawa, M.; Egusa, H. Clinical evaluation of monolithic zirconia crowns: A failure analysis of clinically obtained cases from a 3.5-year study. J. Prosthodont. Res. 2021, 65, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Lekholm, U.; Zarb, G.A. Patient selection and preparation. In Tissue Integrated Prostheses: Osseointegration in Clinical Dentistry; Quintessence Publishing: Berlin, Germany, 1985. [Google Scholar]
- Arai, T.; Langhoff, N.; Simionovici, A.; Arkadiev, V.; Knüpfer, W.; Cech´ak, T.; Leonhardt, J.; Chavanne, J.; Erko, A.; Bjeoumikhov, A.; et al. Handbook of Practical X-ray Fluorescence Analysis; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Franchi, M.; Bacchelli, B.; Martini, D.; Pasquale, V.D.; Orsini, E.; Ottani, V.; Fini, M.; Giavaresi, G.; Giardino, R.; Ruggeri, A. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials 2004, 25, 2239–2246. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, E.; Andreola, S.; Battistini, A.; Gentile, G.; Zoja, R. Release of metals from osteosynthesis implants as a method for identification: Post-autopsy histopathological and ultrastructural forensic study. Int. J. Legal Med. 2011, 125, 21–26. [Google Scholar] [CrossRef]
- Pettersson, M.; Pettersson, J.; Thorén, M.M.; Johansson, A. Release of titanium after insertion of dental implants with different surface characteristics—An ex vivo animal study. Acta Biomater. Odontol. Scand. 2017, 3, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Martini, D.; Fini, M.; Franchi, M.; Pasquale, V.D.; Bacchelli, B.; Gamberini, M.; Tinti, A.; Taddei, P.; Giavaresi, G.; Ottani, V.; et al. Detachment of titanium and fluorohydroxyapatite particles in unloaded endosseous implants. Biomaterials 2003, 24, 1309–1316. [Google Scholar] [CrossRef]
- Senna, P.; Antoninha del Bel Cury, A.; Kates, S.; Meirelles, L. Surface Damage on Dental Implants with Release of Loose Particles after Insertion into Bone. Clin. Implant Dent. Relat. Res. 2015, 17, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Suito, H.; Iwawaki, Y.; Goto, T.; Tomotake, Y.; Ichikawa, T. Oral Factors Affecting Titanium Elution and Corrosion: An In Vitro Study Using Simulated Body Fluid. PLoS ONE 2013, 8, e66052. [Google Scholar] [CrossRef]
- Bauer, T.W. Particles and periimplant bone resorption. Clin. Orthop. Relat. Res. 2002, 405, 138–143. [Google Scholar] [CrossRef]
- Zhang, L.; Haddouti, E.M.; Welle, K.; Burger, C.; Wirtz, D.C.; Schildberg, F.A.; Kabir, K. The Effects of Biomaterial Implant Wear Debris on Osteoblasts. Front. Cell Dev. Biol. 2020, 8, 352. [Google Scholar] [CrossRef]
- Horowitz, S.M.; Purdon, M.A. Mechanisms of cellular recruitment in aseptic loosening of prosthetic joint implants. Calcif. Tissue Int. 1995, 57, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.G.J. Bone loss around implants-is it metallosis? J. Periodontol. 2021, 92, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Guo, T. Race to invade: Understanding soft tissue integration at the transmucosal region of titanium dental implants. Dent. Mater. 2021, 31, 816–831. [Google Scholar] [CrossRef]
- Irshad, M.; Scheres, N.; Crielaard, W.; Loos, B.G.; Wismeijer, D.; Laine, M.L. Influence of titanium on in vitro fibroblast-Porphyromonas gingivalis interaction in peri-implantitis. J. Clin. Periodontol. 2013, 40, 841–849. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, X.; Zuscik, M.J.; Drissi, M.H.; Schwarz, E.M.; O’Keefe, R.J. Fibroblasts express RANKL and support osteoclastogenesis in a COX-2-dependent manner after stimulation with titanium particles. J. Bone Miner. Res. 2005, 20, 1136–1148. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, M.; Pettersson, J.; Johansson, A.; Thorén, M.M. Titanium release in peri-implantitis. J. Oral Rehabil. 2019, 46, 179–188. [Google Scholar] [CrossRef]
- Fuh, L.-J.; Hsu, J.-T.; Huang, H.-L.; Chen, M.Y.; Shen, Y.-W. Biomechanical Investigation of Thread Designs and Interface Conditions of Zirconia and Titanium Dental Implants with Bone: Three-Dimensional Numeric Analysis. Int. J. Oral Maxillofac. Implants 2013, 28, e64–e71. [Google Scholar] [CrossRef]
Experimental Group | Coronal Ti Level (ppm) | Middle Ti Level (ppm) | Apical Ti Level (ppm) | Control/Osteotomy Ti Level (ppm) |
---|---|---|---|---|
Group 1–4 mm × 13 mm | 1951 ± 491 | 2919 ± 784 | 1651 ± 620 | 304 ± 254 |
Group 2–4.3 mm × 10 mm | 1890 ± 40 | 1200 ± 90 | 970 ± 181 | 123 ± 217 |
Group 2–4.3 mm × 11.5 mm | 1675 ± 155 | 1086 ± 185 | 575 ± 103 | |
Group 2–4.3 mm × 15 mm | 2425 ± 85 | 1905 ± 55 | 936 ± 35 | |
Group 3–4.3 mm × 10 mm | 747 ± 52 | 1170 ± 130 | 747 ± 4 | 48 ± 108 |
Group 3–4.3 mm × 11.5 mm | 1540 ± 400 | 1365 ± 175 | 882 ± 178 | |
Group 3–4.3 mm × 13 mm | 1485 ± 145 | 1069 ± 81 | 589 ± 25 | |
Group 4–4.1 mm × 8 mm | 494 ± 161 | 404 ± 404 | 691 ± 122 | ND |
Group 4–4.1 mm × 12 mm | 1008 ± 104 | 886 ± 498 | 175 ± 175 | |
Group 4–4.1 mm × 14 mm | 1095 ± 45 | 872 ± 709 | 574 ± 53 | |
Group 4–4.1 mm × 16 mm | 1130 ± 40 | 1290 ± 625 | 264 ± 264 |
Element | Coronal Level (ppm) | Middle Level (ppm) | Apical Level (ppm) | Control/Osteotomy Level (ppm) |
---|---|---|---|---|
Ti | ND | 136.2 ± 211 | 36.1 ± 112 | 90 ± 166 |
Zr | 160.1 ± 32.9 | 165.3 ± 36.8 | 147 ± 11.1 | 152.4 ± 34.3 |
Experimental Group | N | Mean (ppm) | Min (ppm) | Max (ppm) |
---|---|---|---|---|
Group 1 (Ti) | 5 | 2174 ± 700 | 1511 | 3473 |
Group 2 (Ti) | 5 | 1407 ± 534 | 721 | 2063 |
Group 3 (Ti) | 5 | 1063 ± 261 | 670 | 1325 |
Group 4 (Ti) | 5 | 741 ± 433 | 304 | 1422 |
Group 5 (Zr) | 5 | 158 ± 21 | 135 | 216 |
Implant System | N | Average Ti Concentration (ppm) |
---|---|---|
Group 1 System | 2 | 53,600 ± 6700 |
Group 2/3 System | 2 | Not Detected |
Group 4 System | 2 | Not Detected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanos, G.E.; Fischer, G.A.; Rahman, Z.T.; Delgado-Ruiz, R. Spectrometric Analysis of the Wear from Metallic and Ceramic Dental Implants following Insertion: An In Vitro Study. Materials 2022, 15, 1200. https://doi.org/10.3390/ma15031200
Romanos GE, Fischer GA, Rahman ZT, Delgado-Ruiz R. Spectrometric Analysis of the Wear from Metallic and Ceramic Dental Implants following Insertion: An In Vitro Study. Materials. 2022; 15(3):1200. https://doi.org/10.3390/ma15031200
Chicago/Turabian StyleRomanos, Georgios E., Gerard A. Fischer, Zaid T. Rahman, and Rafael Delgado-Ruiz. 2022. "Spectrometric Analysis of the Wear from Metallic and Ceramic Dental Implants following Insertion: An In Vitro Study" Materials 15, no. 3: 1200. https://doi.org/10.3390/ma15031200
APA StyleRomanos, G. E., Fischer, G. A., Rahman, Z. T., & Delgado-Ruiz, R. (2022). Spectrometric Analysis of the Wear from Metallic and Ceramic Dental Implants following Insertion: An In Vitro Study. Materials, 15(3), 1200. https://doi.org/10.3390/ma15031200