Microstructural Evolution and Mechanical Properties of Pure Aluminum upon Multi-Pass Caliber Rolling
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sivasankaran, S.; Ramkumar, K.R.; Ammar, H.R. Microstructural evolutions and enhanced performance of novel Al-Zn die-casting alloys processed by squeezing and hot extrusion. J. Mater. Process. Technol. 2021, 292, 117063. [Google Scholar] [CrossRef]
- Peng, G.S.; Huang, J.; Gu, C.Y.; Song, G.S. Self-corrosion, electrochemical and discharge behavior of commercial purity Al anode via Mn modification in Al-air battery. Rare Met. 2021, 40, 3501–3511. [Google Scholar] [CrossRef]
- Yang, Z.R.; Sun, Y.; Li, X.X.; Wang, S.Q.; Mao, T.J. Dry sliding wear performance of 7075 Al alloy under different temperatures and load conditions. Rare Met. 2022, 41, 1057–1062. [Google Scholar] [CrossRef]
- Guan, R.G.; Shen, Y.F.; Zhao, Z.Y.; Wang, X. Ductile Al-0.35Sc-0.2Zralloy with good electrical conductivity strengthened bycoherent nanosized-precipitates. J. Mater. Sci. Technol. 2016, 33, 215–223. [Google Scholar] [CrossRef]
- Ma, Y.L.; Li, J.F.; Zhang, R.Z.; Tang, J.G.; Huang, C. Strength and structure variation of 2195 Al-Li alloy caused by different deformation processes of hot extrusion and cold-rolling. Trans. Nonferrous Met. Soc. China 2020, 30, 835–849. [Google Scholar] [CrossRef]
- Ghazanlou, S.I.; Eghbali, B.; Petrov, R. EBSD characterization of Al7075/graphene nanoplates/carbon nanotubes composites processed through post-deformation annealing. Trans. Nonferrous Met. Soc. China 2021, 31, 2250–2263. [Google Scholar] [CrossRef]
- Song, Z.Z.; Niu, R.M.; Cui, X.Y.; Bobruk, E.V.; Murashkin, M.; Enikeev, N.A.; Valiev, R.Z.; Ringer, S.P.; Liao, X.Z. Room-temperature-deformation-induced chemical short-range ordering in a supersaturated ultrafine-grained Al-Zn alloy. Scr. Mater. 2022, 210, 114423. [Google Scholar] [CrossRef]
- Bazarnika, P.; Bartkowska, A.; Huang, Y.; Szlązak, K. Fabrication of hybrid nanocrystalline Al-Ti alloys by mechanical bonding through high-pressure torsion. Mater. Sci. Eng. A 2022, 833, 142549. [Google Scholar] [CrossRef]
- Sheng, K.; Lu, L.W.; Xiang, Y.; Ma, M.; Wu, Z.Q. Crack behavior in Mg/Al alloy thin sheet during hot compound extrusion. J. Magnes. Alloy. 2019, 7, 717–724. [Google Scholar] [CrossRef]
- Dobroň, P.; Drozdenko, D.; Fekete, K.; Knapek, M.; Bohlen, J.; Chmelíka, F. The slip activity during the transition from elastic to plastic tensile deformation of the Mg-Al-Mn sheet. J. Magnes. Alloy. 2021, 9, 1057–1067. [Google Scholar] [CrossRef]
- Mohammadi, A.; Enikeev, N.A.; Yu, M.; Edalati, K. Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation. J. Mater. Sci. Technol. 2021, 91, 78–79. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post dynamicrecry stallization under hot, cold and severe plastic deformation conditions.Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar]
- Lanjewar, H.; Kestens, L.A.I.; Verleysen, P. Damage and strengthening mechanisms in severely deformed commercially pure Al: Experiments and modeling. Mater. Sci. Eng. A 2021, 800, 140224. [Google Scholar] [CrossRef]
- Abdulstaar, M.A.; El-Danaf, E.A.; Waluyo, N.S. Severe plastic deformation of commercial purity Al by rotaryswaging: Microstructure evolution and mechanical properties. Mater. Sci. Eng. A 2013, 565, 351–358. [Google Scholar] [CrossRef]
- Kamikawa, N.; Huang, X.X.; Tsuji, N.; Hansen, N. Strengthening mechanisms in nanostructured high-purity Al deformed to high strain and annealed. Acta Mater. 2009, 57, 4198–4208. [Google Scholar] [CrossRef]
- Pachla, W.; Kulczyk, M.; Koziorowska, J.S.; Wróblewska, M.; Skiba, J.; Przybysz, S.; Przybysz, M. Mechanical properties and microstructure of ultrafine grained commercial purity Al prepared by cryo-hydrostatic extrusion. Mater. Sci. Eng. A 2017, 695, 178–192. [Google Scholar] [CrossRef]
- Naghdy, S.; Kestens, L.; Hertelé, S.; Verleysen, P. Evolution of microstructure and texture in commercial pure Al subjected to high pressure torsion processing. Mater. Charact. 2016, 120, 285–294. [Google Scholar] [CrossRef]
- Chrominski, W.; Olejnik, L.; Rosochowski, A.; Lewandowska, M. Grain refinement in technically pure Al plates using incremental ECAP processing. Mater. Sci. Eng. A 2015, 636, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Phongphisutthinan, C.; Tezuka, H.; Tatsuo, S.; Takamori, S.; Yoshiaki, O. Caliber Rolling Process and Mechanical Properties of High Fe-Containing Al-Mg-Si Alloys. Mater. Trans. 2012, 53, 885–892. [Google Scholar] [CrossRef]
- Somekawa, H.; Ando, D. Microstructure and mechanical properties of caliber rolled Mg-Y-Zn alloys. Mater. Sci. Eng. A 2020, 780, 139144. [Google Scholar] [CrossRef]
- Somekawa, H.; Basha, D.A.; Singh, A. Change in dominant deformation mechanism of Mg alloy via grain boundary control. Mater. Sci. Eng. A 2019, 746, 162–166. [Google Scholar] [CrossRef]
- Somekawa, H.; Singh, A.; Inoue, T. Enhancement of toughness by grain boundary control in magnesium binary alloys. Mater. Sci. Eng. A 2014, 612, 172–178. [Google Scholar] [CrossRef]
- Djavanroodi, F.; Ebrahimi, M. Effect of die channel angle, friction and back pressure in the equal channel angular pressing using 3D finite element simulation. Mater. Sci. Eng. A 2010, 527, 1230–1235. [Google Scholar] [CrossRef]
- Gamin, Y.V.; Akopyan, T.K.; Dolbachev, A.P.; Goncharuk, A.V. Microstructure evolution and property analysis of commercial pure Al alloy processed by radial shear rolling. Arch. Civ. Mech. Eng. 2020, 20, 143. [Google Scholar] [CrossRef]
- Cerri, E.; De Marco, P.P.; Leo, P. FEM and metallurgical analysis of modified 6082 Al alloys processed by multipass ECAP: Influence of material properties and different process settings on induced plastic strain. J. Mater. Process. Technol. 2009, 209, 1550–1564. [Google Scholar] [CrossRef]
- Toshiji, M.; Somekawa, H.; Inoue, T. Strengthening Mg-Al-Zn alloy by repetitive oblique shear strain with caliber roll. Scr. Mater. 2010, 62, 113–116. [Google Scholar]
- Vahid, Y.M.; Mohammad, R.T.; Ahmad, R.; Hamed, A.J.S. A texture study of nanostructured Al-Cu multilayered composite manufactured via the accumulative roll bonding (ARB). J. Mater. Res. Technol. 2021, 14, 2909–2919. [Google Scholar]
- Rakshit, R.; Sarkar, A.; Panda, S.K.; Mandal, S. Influence of out-of-plane stretch forming induced different strain paths on micro-texture evolution, slip system activity and Taylor factor distribution in Al-Li alloy. Mater. Sci. Eng. A 2022, 830, 142267. [Google Scholar] [CrossRef]
- Werenskiold, J.C.; Roven, H.J. Microstructure and texture evolution during ECAP of an AlMgSi alloy: Observations, mechanisms and modeling. Mater. Sci. Eng. A 2005, 410, 174–177. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Xu, S.B.; Luan, Y.G.; Guan, Y.J.; Lun, N. Grain refinement mechanism analysis and experimental investigation of equal channel angular pressing for producing pure Al ultra-fine grained materials. Mater. Sci. Eng. A 2006, 37, 281–292. [Google Scholar] [CrossRef]
- Su, L.H.; Lu, C.; Li, H.J. Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding. Mater. Sci. Eng. A 2014, 614, 148–155. [Google Scholar] [CrossRef] [Green Version]
- Su, L.H.; Lu, C.; He, L.Z. Study of vacancy-type defects by positron annihilation in ultrafine-grained aluminum severely deformed at room and cryogenic temperatures. Acta Mater. 2012, 60, 4218–4228. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, M.P. Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion. Scr. Mater. 2019, 159, 137–141. [Google Scholar] [CrossRef] [Green Version]
- Rangaraju, N.; Raghuram, T.; Vamsi Krishna, B. Effect of cryo-rolling and annealing on microstructure and properties of commercially pure Al. Mater. Sci. Eng. A 2005, 398, 246–251. [Google Scholar] [CrossRef]
- Orlova, T.S.; Latynina, T.A.; Mavlyutov, A.M. Effect of annealing on microstructure, strength and electrical conductivity of the pre-aged and HPT-processed Al-0.4Zr alloy. J. Alloys Compd. 2019, 784, 41–48. [Google Scholar] [CrossRef]
Pass | c/mm | R | Gap/mm | Cumulative Reduction in Area | Cumulative Strain |
---|---|---|---|---|---|
3 | 25.9 | 5 | 1.2 | 40% | 0.51 |
5 | 21.3 | 5 | 1.0 | 63% | 1.01 |
7 | 17.5 | 3.2 | 0.8 | 77% | 1.48 |
13 | 9.6 | 1.6 | 0.2 | 92% | 2.55 |
Simulation Parameters | |
---|---|
Material | AA1100 (99% wt.%) |
Total number of elements | 32,000 |
The number of steps (step) | 60 |
Step length (sec/step) | 0.05 |
Billet size (mm) | Φ35 × 100 |
Rolling temperature (°C) | 25 |
Rolling speed (m/s) | 0.2 |
Friction coefficient between billet and groove | 0.35 |
Thermal exchange coefficient between rolls and Al (N/s/mm/°C) | 11 |
Thermal exchange coefficient between air and Al (N/s/mm/°C) | 0.016 |
Pure Al | TYS (MPa) | UTS (MPa) | El. (%) |
---|---|---|---|
as-cast | 32 | 53 | 35 |
3P | 82 | 89 | 19 |
5P | 108 | 116 | 15 |
7P | 116 | 126 | 15 |
13P | 115 | 136 | 17 |
Alloys | Process | TYS (MPa) | UTS (MPa) | El. (%) | Ref. |
---|---|---|---|---|---|
Al 1050 | RS 1, RT, φ 2 = 0 | 20 | 72 | 12 | [14] |
RS, RT, φ = 0.4 | 87 | 91 | 18 | [14] | |
RS, RT, φ = 0.8 | 111 | 112 | 15.1 | [14] | |
RS, RT, φ = 2 | 137 | 139 | 12.9 | [14] | |
RS, RT, φ = 3 | 158 | 163 | 11.6 | [14] | |
Pure Al | ARB 3, 350 °C, 6-cycle | 105 | 113 | 15 | [15] |
ARB, 350 °C, 6-cycle; AN 4, 175 °C, 0.5 h | 98 | 109 | 10 | [15] | |
ARB, 350 °C, 6-cycle; AN, 175 °C, 6 h | 88 | 93 | 12 | [15] | |
E 5, 350 °C, 25:1; air cold | 146 | 158 | 14 | [16] | |
E, 300 °C, 25:1; water cold | 158 | 158 | 13.7 | [16] | |
ARB, 200 °C, 1-cycle | 170 | 172 | 1.5 | [31] | |
ARB, 200 °C, 2-cycle | 185 | 200 | 1.5 | [31] | |
ARB, 200 °C, 3-cycle | 187 | 205 | 1.5 | [31] | |
ARB, 200 °C, 4-cycle | 195 | 230 | 1.5 | [31] | |
ARB, 200 °C, 5-cycle | 209 | 243 | 1.5 | [31] | |
ECAP 6, 456 °C, 4P | 111 | 145 | - | [32] | |
CR, RT, 13P | 115 | 136 | 17 | This Study | |
T4, 380 °C, 2 h | 45 | 75 | 25 | [33] | |
T4, 380 °C, 2 h; HPT 7, RT, | 145 | 200 | 8 | [33] | |
Cryo-rolling, −196 °C, ε = 0.25 | 130 | 170 | 12 | [34] | |
Cryo-rolling, −196 °C, ε = 0.5 | 155 | 175 | 16 | [34] | |
Cryo-rolling, −196 °C, ε = 0.75 | 168 | 195 | 12 | [34] | |
Al-0.4Zr (wt.%) | AG 8, 375 °C, 60 h; HPT, RT, γ 9 = 6.6 | 96 | 118 | 25 | [35] |
AG, 375 °C, 60 h; AG; HPT; AN, 230 °C, 1 h | 137 | 142 | 5 | [35] | |
AG, 375 °C, 60 h; AG; HPT; AN, 230 °C, 3 h | 145 | 160 | 6 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Yu, H.; Wang, Z.; Yu, W.; Cheng, W.; Huang, L.; Liu, C.; Yin, F.; Zhao, W.; Qin, C. Microstructural Evolution and Mechanical Properties of Pure Aluminum upon Multi-Pass Caliber Rolling. Materials 2022, 15, 1206. https://doi.org/10.3390/ma15031206
Guo S, Yu H, Wang Z, Yu W, Cheng W, Huang L, Liu C, Yin F, Zhao W, Qin C. Microstructural Evolution and Mechanical Properties of Pure Aluminum upon Multi-Pass Caliber Rolling. Materials. 2022; 15(3):1206. https://doi.org/10.3390/ma15031206
Chicago/Turabian StyleGuo, Shulong, Hui Yu, Zhifeng Wang, Wei Yu, Weili Cheng, Lixin Huang, Chunhai Liu, Fuxing Yin, Weimin Zhao, and Chunling Qin. 2022. "Microstructural Evolution and Mechanical Properties of Pure Aluminum upon Multi-Pass Caliber Rolling" Materials 15, no. 3: 1206. https://doi.org/10.3390/ma15031206
APA StyleGuo, S., Yu, H., Wang, Z., Yu, W., Cheng, W., Huang, L., Liu, C., Yin, F., Zhao, W., & Qin, C. (2022). Microstructural Evolution and Mechanical Properties of Pure Aluminum upon Multi-Pass Caliber Rolling. Materials, 15(3), 1206. https://doi.org/10.3390/ma15031206