Functionalization of Gold Nanoparticles with Ru-Porphyrin and Their Selectivity in the Oligomerization of Alkynes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Synthesis
2.2.1. Synthesis of AuNPs
2.2.2. Synthesis of Ru-TPP-CH2-SH (4)
2.2.3. Synthesis of Ru-TPP-CH2S-AuNPs (5)
2.3. Typical Oligomerization Reaction
2.4. Recycling of the Ru-TPP-CH2S-AuNPs (5) Catalyst
3. Results and Discussion
3.1. Characterization of Ru-TPP-CH2S-AuNPs (5) Catalyst
3.2. Oligomerization of Phenylacetylenes Catalyzed by Ru-TPP-CH2S-AuNPs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sau, T.K.; Rogach, A.L.; Jaeckel, F.; Klar, T.A.; Feldmann, J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 2011, 22, 1805–1825. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Chen, J.; Li, Z.Y.; Au, L.; Hartland, G.V.; Li, X.; Marquez, M.; Xia, Y. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 2006, 35, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Ogarev, V.A.; Rudoi, V.M.; Dement’eva, O.V. Gold Nanoparticles: Synthesis, Optical Properties, and Application. Inorg. Mater. Appl. Res. 2018, 9, 134–140. [Google Scholar] [CrossRef]
- Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671. [Google Scholar] [CrossRef]
- Murphy, C.J.; Gole, A.M.; Stone, J.W.; Sisco, P.N.; Alkilany, A.M.; Goldsmith, E.C.; Baxter, S.C. Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Acc. Chem. Res. 2008, 48, 1721–1730. [Google Scholar] [CrossRef]
- Carnovale, C.; Bryant, G.; Shukla, R.; Bansal, V. Identifying Trends in Gold Nanoparticle Toxicity and Uptake: Size, Shape, Capping Ligand, and Biological Corona. ACS Omega 2019, 4, 242–256. [Google Scholar] [CrossRef] [Green Version]
- Dunning, C.A.S.; Bazalova-Carter, M. Sheet beam X-ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles. Med. Phys. 2018, 45, 2572–2582. [Google Scholar] [CrossRef]
- Repenko, T.; Rix, A.; Nedilko, A.; Rose, J.; Hermann, A.; Vinokur, R.; Moli, S.; Cao-Milàn, R.; Mayer, M.; von Plessen, G.; et al. Strong Photoacoustic Signal Enhancement by Coating Gold Nanoparticles with Melanin for Biomedical Imaging. Adv. Funct. Mater. 2018, 28, 1705607. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Dong, Y.; Wang, B.; Li, D.; Shi, Y.; Wu, Y. Colorimetric Sensor Array Based on Gold Nanoparticles with Diverse Surface Charges for Microorganisms Identification. Anal. Chem. 2017, 89, 10639–10643. [Google Scholar] [CrossRef]
- Ishida, T.; Murayama, T.; Taketoshi, A.; Haruta, M. Importance of Size and Contact Structure of Gold Nanoparticles for the Genesis of Unique Catalytic Processes. Chem. Rev. 2020, 120, 464–525. [Google Scholar] [CrossRef] [Green Version]
- Lim, I.I.S.; Ip, W.; Crew, E.; Njoki, P.M.; Mott, D.; Zhong, C.J.; Pan, Y.; Zhou, Z. Homocysteine-mediated reactivity and assembly of gold nanoparticles. Langmuir 2007, 23, 826–833. [Google Scholar] [CrossRef]
- Zhang, F.X.; Han, I.; Israel, I.B.; Daras, J.G.; Maye, M.M.; Ly, N.K.; Zhong, C.J. Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst 2002, 127, 462–465. [Google Scholar] [CrossRef]
- Li, L.; Li, B. Sensitive colorimetric detection of cysteine using gold nanoparticles as colorimetric probes. Analyst 2009, 134, 1361–1365. [Google Scholar] [CrossRef]
- Carcione, R.; Limosani, F.; Antolini, F. Cadmium telluride nanocomposite films formation from thermal decomposition of cadmium carboxylate precursor and their optical properties. Crystals 2021, 11, 253. [Google Scholar] [CrossRef]
- Limosani, F.; Carcione, R.; Antolini, F. Formation of CdSe Quantum Dots from Single Source Precursor Obtained by Thermal and Laser Treatment. J. Vac. Sci. Technol. B 2020, 38, 012802. [Google Scholar] [CrossRef] [Green Version]
- Scarselli, M.; Limosani, F.; Passacantando, M.; D’Orazio, F.; Nardone, M.; Cacciotti, I.; Arduini, F.; Gautron, E.; De Crescenzi, M. Influence of Iron Catalyst in the Carbon Spheres Synthesis for Energy and Electrochemical Applications. Adv. Mater. Interfaces 2018, 5, 1800070. [Google Scholar] [CrossRef]
- Matassa, R.; Carbone, M.; Lauceri, R.; Purrello, R.; Caminiti, R. Supramolecular structure of extrinsically chiral porphyrin hetero-assemblies and achiral analogues. Adv. Mater. 2007, 19, 3961–3967. [Google Scholar] [CrossRef] [Green Version]
- Limosani, F.; Tessore, F.; Di Carlo, G.; Forni, A.; Tagliatesta, P. Nonlinear Optical Properties of Porphyrin, Fullerene and Ferrocene Hybrid Materials. Materials 2021, 14, 4404. [Google Scholar] [CrossRef]
- Limosani, F.; Possanza, F.; Ciotta, E.; Pepi, F.; Salvitti, C.; Tagliatesta, P.; Pizzoferrato, R. Synthesis and Characterization of Two New Triads with Ferrocene and C60 Connected by Triple Bonds to the Beta-positions of Meso-tetraphenylporphyrin. J. Porphyr. Phthalocyanines 2017, 21, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Possanza, F.; Limosani, F.; Tagliatesta, P.; Zanoni, R.; Scarselli, M.; Ciotta, E.; Pizzoferrato, R. Functionalization of Carbon Sphere with a Porphyrin-Ferrocene Dyad. ChemPhysChem 2018, 19, 2243–2249. [Google Scholar] [CrossRef]
- Kaur, R.; Possanza, F.; Limosani, F.; Bauroth, S.; Zanoni, R.; Clark, T.; Arrigoni, G.; Tagliatesta, P.; Guldi, D.M.J. Understanding and controlling short- and long-range electron/charge transfer processes in electron donor-acceptor conjugates. J. Am. Chem. Soc. 2020, 142, 7898–7911. [Google Scholar] [CrossRef] [PubMed]
- Limosani, F.; Kaur, R.; Cataldo, A.; Bellucci, S.; Micciulla, F.; Zanoni, R.; Lembo, A.; Wang, B.; Pizzoferrato, R.; Guldi, D.M.; et al. Designing cascades of electron transfer processes in multicomponent graphene conjugates. Angew. Chem. Int. Ed. 2020, 59, 23706–23715. [Google Scholar] [CrossRef] [PubMed]
- Kadish, K.M.; Smith, K.M.; Guilard, R. Handbook of Porphyrin Science with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine; World Scientific Publishing Company: London, UK, 2012; p. 430. [Google Scholar]
- Zeng, J.; Yang, W.; Shi, D.; Li, X.; Zhang, H.; Chen, M. Porphyrin Derivative Conjugated with Gold Nanoparticles for Dual-Modality Photodynamic and Photothermal Therapies In Vitro. ACS Biomater. Sci. Eng. 2018, 4, 963–972. [Google Scholar] [CrossRef]
- Kanehara, M.; Takahashi, H.; Teranishi, T. Gold(0) porphyrins on gold nanoparticles. Angew. Chem. 2008, 120, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Ciammaichella, A.; Leoni, A.; Tagliatesta, P. Ruthenium porphyrin bound to a Merrifield resin as heterogeneous catalyst for the cyclooligomerization of arylethynes. New J. Chem. 2010, 34, 2122–2124. [Google Scholar] [CrossRef]
- Ohyama, J.; Hitomi, Y.; Higuchi, Y.; Shinagawa, M.; Mukai, H.; Kodera, M.; Teramura, K.; Shishido, T.; Tanaka, T. One-Phase Synthesis of Small Gold Nanoparticles Coated by a Horizontal Porphyrin Monolayer. Chem. Commun. 2008, 47, 6300–6302. [Google Scholar] [CrossRef]
- Ohyama, J.; Teramura, K.; Higuchi, Y.; Shishido, T.; Hitomi, Y.; Aoki, K.; Funabiki, T.; Kodera, M.; Kato, K.; Tanida, H.; et al. An in Situ Quick XAFS Spectroscopy Study on the Formation Mechanism of Small Gold Nanoparticles Supported by Porphyrin-Cored Tetradentate Passivants. Phys. Chem. Chem. Phys. 2011, 13, 11128–11135. [Google Scholar] [CrossRef]
- Tagliatesta, P.; Carbone, M. Encapsulated Porphyrins as Catalysts for Organic Synthesis. In Encapsulated Catalysts; Elsevier: Amsterdam, The Netherlands, 2017; pp. 249–278. [Google Scholar]
- Meunier, B. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev. 1992, 92, 1411–1456. [Google Scholar] [CrossRef]
- Grinstaff, M.W.; Hill, M.G.; Labinger, J.A.; Gray, H.B. Mechanism of Catalytic Oxygenation of Alkanes by Halogenated Iron Porphyrins. Science 1994, 264, 1311–1313. [Google Scholar] [CrossRef]
- Meunier, B.; Robert, A.; Pratviel, G.; Bernadou, J. Metalloporphyrins in Catalytic Oxidations and Oxidative DNA Cleavage. In The Porphyrin Handbook; Kadish, K.M., Smith, K.M., Guilard, R., Eds.; Academic Press: New York, NY, USA, 2000; p. 119. [Google Scholar]
- Wolf, J.R.; Hamaker, C.G.; Djukic, J.P.; Kodadek, T.; Woo, L.K. Shape and stereoselective cyclopropanation of alkenes catalyzed by iron porphyrins. J. Am. Chem. Soc. 1995, 117, 9194–9199. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, J.L.; Brown, K.C.; Bartley, D.W.; Kodadek, T. Mechanism of the Rhodium Porphyrin-Catalyzed Cyclopropanation of Alkenes. Science 1992, 256, 1544–1547. [Google Scholar] [CrossRef] [PubMed]
- Tagliatesta, P.; Pastorini, A. Remarkable selectivity in the cyclopropanation reactions catalysed by an halogenated iron meso-tetraphenylporphyrin. J. Mol. Catal. A Chem. 2003, 198, 57–61. [Google Scholar] [CrossRef]
- Tagliatesta, P.; Pastorini, A. Electronic and steric effects on the stereoselectivity of cyclopropanation reactions catalysed by rhodium meso-tetraphenylporphyrins. J. Mol. Catal. A Chem. 2002, 185, 127–133. [Google Scholar] [CrossRef]
- Zhou, C.Y.; Yu, W.Y.; Che, C.M. Ruthenium(II) Porphyrin Catalyzed Tandem Carbonyl Ylide Formation and 1,3-Dipolar Cycloaddition Reactions of α-Diazo Ketones. Org. Lett. 2002, 4, 3235–3238. [Google Scholar] [CrossRef] [PubMed]
- Galardon, E.; Le Maux, P.; Simonneaux, G. Cyclopropanation of alkenes with ethyl diazoacetate catalysed by ruthenium porphyrin complexes. Chem. Commun. 1997, 10, 927–928. [Google Scholar] [CrossRef]
- Galardon, E.; Roué, S.; Le Maux, P.; Simonneaux, G. Asymmetric cyclopropanation of alkenes and diazocarbonyl insertion into SH bonds catalyzed by a chiral porphyrin Ru(II) complex. Tetrahedron Lett. 1998, 39, 2333–2334. [Google Scholar] [CrossRef]
- Ragaini, F.; Penoni, A.; Gallo, E.; Tollari, S.; Li Gotti, C.; Lapadula, M.; Mangioni, E.; Cenini, S. Amination of Benzylic CH Bonds by Arylazides Catalyzed by CoII–Porphyrin Complexes: A Synthetic and Mechanistic Study. Chem.—Eur. J. 2003, 9, 249–259. [Google Scholar] [CrossRef]
- Leung, S.K.Y.; Tsui, W.M.; Huang, J.S.; Che, C.M.; Liang, J.L.; Zhu, N. Imido Transfer from Bis(imido)ruthenium(VI) Porphyrins to Hydrocarbons: Effect of Imido Substituents, C−H Bond Dissociation Energies, and RuVI/V Reduction Potentials. J. Am. Chem. Soc. 2005, 127, 16629–16640. [Google Scholar] [CrossRef] [PubMed]
- Mirafzal, G.A.; Cheng, G.L.; Woo, L.K. A New and Efficient Method for the Selective Olefination of Aldehydes with Ethyl Diazoacetate Catalyzed by an Iron(II) Porphyrin Complex. J. Am. Chem. Soc. 2002, 124, 176–177. [Google Scholar] [CrossRef] [Green Version]
- Douglas, W.E. Solvent-free oligomerization of phenylacetylene catalyzed by (cyclopentadienyl)nickel complexes. J. Chem. Soc. Dalton Trans. 2000, 1, 57–62. [Google Scholar] [CrossRef]
- Saraev, V.V.; Kraikivskii, P.B.; Vilms, A.I.; Zelinskii, S.N.; Yunda, Y.A.; Danilovtseva, E.N. Kuzakova, A.S. Cyclotrimerization and Linear Oligomerization of Phenylacetylene on the Nickel(I) Monocyclopentadienyl Complex CpNi(PPh3)2. Kinet. Catal. 2007, 48, 834–840. [Google Scholar] [CrossRef]
- Tagliatesta, P.; Floris, B.; Galloni, P.; Leoni, A.; D’Arcangelo, G. The First Solvent-Free Cyclotrimerization Reaction of Arylethynes Catalyzed by Rhodium Porphyrins. Inorg. Chem. 2003, 42, 7701–7703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, K.; Huai, Q.Y.; Shen, Z.L.; Li, H.J.; Liu, C.; Wu, Y.C. Rearrangement of dypnones to 1,3,5-triarylbenzenes. Org. Lett. 2015, 17, 1473–1476. [Google Scholar] [CrossRef] [PubMed]
- Dash, B.P.; Satapathy, R.; Gaillard, E.R.; Maguire, J.A.; Hosmane, N.S. Synthesis and Properties of Carborane-Appended C3-Symmetrical Extended π Systems. J. Am. Chem. Soc. 2010, 132, 6578–6587. [Google Scholar] [CrossRef] [PubMed]
- Wöhrle, T.; Beardsworth, S.J.; Schilling, C.; Baro, A.; Giesselmann, F.; Laschat, S. Columnar propeller-like 1,3,5-triphenylbenzenes: The missing link of shape-persistent hekates. Soft Matter 2016, 12, 3730–3736. [Google Scholar] [CrossRef] [Green Version]
- Bao, C.; Lu, R.; Jin, M.; Xue, P.; Tan, C.; Xu, T.; Liu, G.; Zhao, Y. Helical Stacking Tuned by Alkoxy Side Chains in π-Conjugated Triphenylbenzene Discotic Derivatives. Chem.—Eur. J. 2006, 12, 3287–3294. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.K.; Siberio-Pérez, D.Y.; Kim, J.; Go, Y.; Matzger, A.J.; O’Keeffe, M.; Yaghi, O.M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523–527. [Google Scholar] [CrossRef]
- Kaleeswaran, D.; Vishnoi, P.; Murugavel, R. [3+3] Imine and β-ketoenamine tethered fluorescent covalent-organic frameworks for CO2 uptake and nitroaromatic sensing. J. Mater. Chem. C 2015, 3, 7159–7171. [Google Scholar] [CrossRef]
- Reppe, W.; Kutepow, N.; Magin, A. Cyclization of Acetylenic Compounds. Angew. Chem. Int. Ed. 1969, 8, 717–733. [Google Scholar] [CrossRef]
- Iyer, V.S.; Vollhardt, K.P.C.; Wilhelm, R. Near-Quantitative Solid-State Synthesis of Carbon Nanotubes from Homogeneous Diphenylethynecobalt and -Nickel complexes. Angew. Chem. Int. Ed. 2003, 42, 4379–4383. [Google Scholar] [CrossRef]
- Carbone, M.; Sabbatella, G.; Antonaroli, S.; Remita, H.; Orlando, V.; Biagioni, S.; Nucara, A. Exogenous control over intracellular acidification: Enhancement via proton caged compounds coupled to gold nanoparticles. Biochim. Biophys. Acta Gen. Subj. 2015, 1850, 2304–2307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, M.; Micheli, L.; Limosani, F.; Possanza, F.; Abdallah, Y.; Tagliatesta, P. Ruthenium and manganese metalloporphyrins modified screen-printed electrodes for bio-relevant electroactive targets. J. Porphyr. Phthalocyanines 2018, 22, 491–500. [Google Scholar] [CrossRef]
- Paolesse, R.; Macagnano, A.; Monti, D.; Tagliatesta, P.; Boschi, T. Synthesis and Characterization of meso-Tetraphenylporphyrin-Corrole Unsymmetrical Dyads. J. Porphyr. Phthalocyanines 1998, 2, 501–510. [Google Scholar] [CrossRef]
- Tsutsui, M.; Ostfeld, D.; Francis, J.N.; Hoffman, L.M. UNUSUAL METALLOPORPHYRINS VIII: Synthesis of Ruthenium Mesoporphyrin IX Dimethylester Carbonyl and its Imidazole Derivatives; Observation of a new type of Tautaumerism—Metal Shuttling. J. Coord. Chem. 1971, 1, 115–119. [Google Scholar] [CrossRef]
- Adler, A.D.; Longo, F.R.; Kampas, F.; Kim, J. On the preparation of metalloporphyrins. J. Inorg. Nucl. Chem. 1970, 32, 2443–2445. [Google Scholar] [CrossRef]
- Béthencourt, M.I.; Srisombat, L.O.; Chinwangso, P.; Lee, T.R. SAMs on gold derived from the direct adsorption of alkanethioacetates are inferior to those derived from the direct adsorption of alkanethiols. Langmuir 2009, 25, 1265–1271. [Google Scholar] [CrossRef]
- Sabbatella, G.; Antonaroli, S.; Diociauti, M.; Nucara, A.; Carbone, M. Synthesis of proton caged disulphide compounds for gold nanoparticle functionalization. New J. Chem. 2015, 39, 2489–2496. [Google Scholar] [CrossRef]
- Elakkari, E.; Floris, B.; Galloni, P.; Tagliatesta, P. The Formation of 1-Aryl-Substituted Naphthalenes by an Unusual Cyclization of Arylethynes Catalyzed by Ruthenium and Rhodium Porphyrins. Eur. J. Org. Chem. 2005, 2005, 889–894. [Google Scholar] [CrossRef]
Reaction Time | AuNPs (%) | Ru-TPP-CH2-SH (%) | Ru-TPP-CH2S-AuNPs (%) | Products |
---|---|---|---|---|
24 h | 77.4 | 76.1 | 62.4 | 1-PN |
1.9 | 1.7 | 3.0 | 1,2,3-TFB | |
8.2 | 7.4 | 11.9 | 1,2,4-TFB | |
12.5 | 14.8 | 22.7 | 1,3,5-TFB | |
48 h | 77.3 | 77.0 | 64.6 | 1-PN |
1.0 | 1.7 | 2.5 | 1,2,3-TFB | |
9.3 | 7.4 | 10.2 | 1,2,4-TFB | |
12.4 | 14.8 | 22.7 | 1,3,5-TFB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Limosani, F.; Remita, H.; Tagliatesta, P.; Bauer, E.M.; Leoni, A.; Carbone, M. Functionalization of Gold Nanoparticles with Ru-Porphyrin and Their Selectivity in the Oligomerization of Alkynes. Materials 2022, 15, 1207. https://doi.org/10.3390/ma15031207
Limosani F, Remita H, Tagliatesta P, Bauer EM, Leoni A, Carbone M. Functionalization of Gold Nanoparticles with Ru-Porphyrin and Their Selectivity in the Oligomerization of Alkynes. Materials. 2022; 15(3):1207. https://doi.org/10.3390/ma15031207
Chicago/Turabian StyleLimosani, Francesca, Hynd Remita, Pietro Tagliatesta, Elvira Maria Bauer, Alessandro Leoni, and Marilena Carbone. 2022. "Functionalization of Gold Nanoparticles with Ru-Porphyrin and Their Selectivity in the Oligomerization of Alkynes" Materials 15, no. 3: 1207. https://doi.org/10.3390/ma15031207
APA StyleLimosani, F., Remita, H., Tagliatesta, P., Bauer, E. M., Leoni, A., & Carbone, M. (2022). Functionalization of Gold Nanoparticles with Ru-Porphyrin and Their Selectivity in the Oligomerization of Alkynes. Materials, 15(3), 1207. https://doi.org/10.3390/ma15031207