In-Situ Crystallization and Characteristics of Alkali-Activated Materials-Supported Analcime-C from a By-Product of the Lithium Carbonate Industry
Abstract
:1. Introduction
2. Materials and Experiments
2.1. Resource Materials
2.2. Experimental Procedures
2.3. Characterization
2.4. Rietveld Quantitative Analysis
2.5. Adsorption Tests
3. Results and Discussion
3.1. The Effects of Synthesis Parameters on Crystallization of AFs
3.2. The Relationship between Compressive Strength and Analcime-C Yield of AFs
3.3. The porosity Structure Analysis
3.4. Pb2+ Adsorption Tests
4. Conclusions
- (1)
- From XRD results, it was confirmed that the analcime-C was found to be mainly in the zeolitic phase. Synthesis parameters, such as saturated steam temperature, pressure, and time, had large effects on compressive strength and the yield of analcime-C.
- (2)
- MIP, BET, and SEM results illustrated that the AFs combined micro-porosity, meso-porosity, and macro-porosity. We obtained materials with pores ranging from the micro- to the macro range. The phase formation of analcime-C was partial, resulting in voids in the backbone, which enriched the porous structure of the materials.
- (3)
- The Pb2+ adsorption test showed that the AFs materials had excellent ability in the removal of heavy metal ions (Pb2+), exhibiting 69.3 mg/g adsorption capacity. Its adsorption potential was higher than the FAAs and was also higher than the geopolymer pieces and self-supported zeolite materials reported in other studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J.-M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Han, X.; Li, J.; Hua, J.; Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 15, 272–288. [Google Scholar] [CrossRef]
- Qiu, Y.; Wu, D.; Yan, L.; Zhou, Y. Recycling of spodumene slag: Preparation of green polymer composites. RSC Adv. 2016, 6, 36942–36953. [Google Scholar] [CrossRef]
- Tan, H.; Li, X.; He, C.; Ma, B.; Bai, Y.; Luo, Z. Utilization of lithium slag as an admixture in blended cements: Physico-mechanical and hydration characteristics. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2015, 30, 129–133. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, D.; Cui, Y.; Zheng, D.; Liu, Z. Micro-morphology and phase composition of lithium slag from lithium carbonate production by sulphuric acid process. Constr. Build. Mater. 2019, 203, 304–313. [Google Scholar]
- He, Z.-H.; Li, L.-Y.; Du, S.-G. Mechanical properties, drying shrinkage, and creep of concrete containing lithium slag. Constr. Build. Mater. 2017, 147, 296–304. [Google Scholar] [CrossRef]
- Taylor, H.F. Cement Chemistry; Thomas Telford London: London, UK, 1997; Volume 2. [Google Scholar]
- Luukkonen, T.; Heponiemi, A.; Runtti, H.; Pesonen, J.; Yliniemi, J.; Lassi, U. Application of alkali-activated materials for water and wastewater treatment: A review. Rev. Environ. Sci. Bio/Technol. 2019, 18, 271–297. [Google Scholar] [CrossRef] [Green Version]
- Institute, G.; Galilée, R. SaintQuentin, Geopolymers: Ceramic-Like Inorganic Polymers. Sci. Technol. 2017, 8, 335–350. [Google Scholar]
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S. Geopolymerisation kinetics. 1. In situ energy-dispersive X-ray diffractometry. Chem. Eng. Sci. 2007, 62, 2309–2317. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Jiang, Q.; Cheng, G.; Li, L.; Kang, Y.; Wang, D. A green route to sustainable alkali-activated materials by heat and chemical activation of lithium slag. J. Clean. Prod. 2019, 225, 1184–1193. [Google Scholar] [CrossRef]
- Shao, N.-N.; Zhang, Y.-B.; Liu, Z.; Wang, D.-M.; Zhang, Z.-T. Fabrication of hollow microspheres filled fly ash based foam geopolymers with ultra-low thermal conductivity and relative high strength. Constr. Build. Mater. 2018, 185, 567–573. [Google Scholar] [CrossRef]
- Duan, P.; Song, L.; Yan, C.; Ren, D.; Li, Z. Novel thermal insulating and lightweight composites from metakaolin geopolymer and polystyrene particles. Ceram. Int. 2017, 43, 5115–5120. [Google Scholar] [CrossRef]
- Vaou, V.; Panias, D. Thermal insulating foamy geopolymers from perlite. Miner. Eng. 2010, 23, 1146–1151. [Google Scholar] [CrossRef]
- Masi, G.; Rickard, W.; Bignozzi, M.C.; Riessen, A.V. The Influence of Short Fibres and Foaming Agents on the Physical and Thermal Behaviour of Geopolymer Composites; Trans Tech Publications: Zurich, Switzerland, 2014; pp. 56–61. [Google Scholar]
- Kraenzlein, E.; Poellmann, H.; Krcmar, W. Metal powders as foaming agents in fly ash based geopolymer synthesis and their impact on the structure depending on the Na/Al ratio. Cem. Concr. Compos. 2018, 90, 161–168. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, F.; Liu, J.; Ren, B.; He, P.; Jia, D.; Yang, J. Green synthesis of high porosity waste gangue microsphere/geopolymer composite foams via hydrogen peroxide modification. J. Clean. Prod. 2019, 227, 483–494. [Google Scholar] [CrossRef]
- Prud’Homme, E.; Michaud, P.; Joussein, E.; Peyratout, C.; Smith, A.; Rossignol, S. In situ inorganic foams prepared from various clays at low temperature. Appl. Clay Sci. 2011, 51, 15–222. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, R.; Gong, L.; Li, Y.; Cao, W.; Cheng, X. Development of porous fly ash-based geopolymer with low thermal conductivity. Mater. Des. 2015, 65, 529–533. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Reid, A.; Wang, H. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem. Concr. Compos. 2015, 62, 97–105. [Google Scholar] [CrossRef]
- Cundy, C.S.; Cox, P.A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater. 2005, 82, 1–78. [Google Scholar] [CrossRef]
- Chen, D.; Hu, X.; Shi, L.; Cui, Q.; Wang, H.; Yao, H. Synthesis and characterization of zeolite X from lithium slag. Appl. Clay Sci. 2012, 59, 148–151. [Google Scholar] [CrossRef]
- Khalid, H.R.; Lee, N.K.; Choudhry, I.; Wang, Z.; Lee, H.K. Evolution of zeolite crystals in geopolymer-supported zeolites: Effects of composition of starting materials. Mater. Lett. 2019, 239, 33–36. [Google Scholar] [CrossRef]
- Lee, N.; Khalid, H.R.; Lee, H.-K. Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment. Microporous Mesoporous Mater. 2016, 229, 22–30. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications; Geopolymer Institute: Paris, France, 2008. [Google Scholar]
- Khalid, H.R.; Lee, N.; Park, S.M.; Abbas, N.; Lee, H.-K. Synthesis of geopolymer-supported zeolites via robust one-step method and their adsorption potential. J. Hazard. Mater. 2018, 353, 522–533. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Seabra, M.P.; Labrincha, J.A. Novel porous fly-ash containing geopolymer monoliths for lead adsorption from wastewaters. J. Hazard. Mater. 2016, 318, 631–640. [Google Scholar] [CrossRef]
- Al-Zboon, K.; Al-Harahsheh, M.S.; Hani, F.B. Fly ash-based geopolymer for Pb removal from aqueous solution. J. Hazard. Mater. 2011, 188, 414–421. [Google Scholar] [CrossRef]
- Barbosa, V.F.F.; Mackenzie, K.J.D.; Bhattacharjee, R.; Laskar, A.I.; Cergypontoise, L.U.D.E.; Duxson, P.; Fernndezjimnez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A. Geopolymerisation of alumino-silicate minerals. Int. J. Miner. Processing 2007, 59, 247–266. [Google Scholar]
- Han, L.; Wang, J.; Liu, Z.; Zhang, Y.; Jin, Y.; Li, J.; Wang, D. Synthesis of fly ash-based self-supported zeolites foam geopolymer via saturated steam treatment. J. Hazard. Mater. 2020, 393, 122468. [Google Scholar] [CrossRef]
- Young, R. The Rietveld Method; Oxford University Press: Oxford, UK, 1993; Volume 5. [Google Scholar]
- Nascimento, M.; Soares, P.S.M.; de Souza, V.P. Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method. Fuel 2009, 88, 1714–1719. [Google Scholar] [CrossRef]
- Dyer, A.; Tangkawanit, S.; Rangsriwatananon, K. Exchange diffusion of Cu2+, Ni2+, Pb2+ and Zn2+ into analcime synthesized from perlite. Microporous Mesoporous Mater. 2004, 75, 273–279. [Google Scholar] [CrossRef]
- Barbosa, L.I.; Valente, G.; Orosco, R.P.; Gonzalez, J.A. Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner. Eng. 2014, 56, 29–34. [Google Scholar] [CrossRef]
- Botto, I.L. Structural and spectroscopic properties of leached spodumene in the acid roast processing. Mater. Chem. Phys. 1985, 13, 423–436. [Google Scholar] [CrossRef]
- Oh, J.E.; Monteiro, P.J.; Jun, S.S.; Choi, S.; Clark, S.M. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res. 2010, 40, 189–196. [Google Scholar] [CrossRef]
- Atta, A.Y.; Jibril, B.Y.; Aderemi, B.O.; Adefila, S.S. Preparation of analcime from local kaolin and rice husk ash. Appl. Clay Sci. 2012, 61, 8–13. [Google Scholar] [CrossRef]
- Ma, X.; Yang, J.; Ma, H.; Liu, C.; Zhang, P. Synthesis and characterization of analcime using quartz syenite powder by alkali-hydrothermal treatment. Microporous Mesoporous Mater. 2015, 201, 134–140. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Gebregziabiher, B.S.; Thomas, R.J.; Peethamparan, S. Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders. Constr. Build. Mater. 2016, 113, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.W.; Lee, M.L.; Ko, M.S.; Ueng, T.H.; Yang, S.F. The heavy metal adsorption characteristics on metakaolin-based geopolymer—ScienceDirect. Appl. Clay Sci. 2012, 56, 90–96. [Google Scholar] [CrossRef]
- Sing, K.W.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Wei, T.; Wu, Z.; Feng, D.; Fan, J.; Wang, J.; Hao, W.; Song, M.; Zhao, D. Rapid and efficient removal of microcystins by ordered mesoporous silica. Environ. Sci. Technol. 2013, 47, 8633–8641. [Google Scholar]
- Katiyar, A.; Ji, L.; Smirniotis, P.; Pinto, N.G. Protein adsorption on the mesoporous molecular sieve silicate SBA-15: Effects of pH and pore size. J. Chromatogr. A 2005, 1069, 119–126. [Google Scholar] [CrossRef] [PubMed]
Oxide | SiO2 | Al2O3 | SO3 | CaO | Fe2O3 | K2O | others | LOI |
---|---|---|---|---|---|---|---|---|
MLS | 59.5 | 24.9 | 7.68 | 5.42 | 1.68 | 0.484 | 0.336 | 1.03 |
Mark | MLS (g) | AA (g) | Modulus (n) | Pressure (MPa) | Temperature (°C) | Time (h) |
---|---|---|---|---|---|---|
AFn1.4 | 400 | 347 | 1.4 | 1 | 179.88 | 2 |
AFn1.2 | 400 | 311 | 1.2 | 1 | 179.88 | 2 |
AFn1.0 (AF1-2) | 400 | 275 | 1 | 1 | 179.88 | 2 |
AF0.5-2 | 400 | 275 | 1.0 | 0.5 | 151.85 | 2 |
AF2-2 | 400 | 275 | 1.0 | 2 | 212.37 | 2 |
AF1-1 | 400 | 275 | 1.0 | 1 | 179.88 | 1 |
AF1-4 | 400 | 275 | 1.0 | 1 | 179.88 | 4 |
Sample | Quartz | Lithium Aluminum Silicate/Spodumene | Sodium Sulfate | Calcium Sulfate | Amorphous | Analcime-C | Rwp * (%) |
---|---|---|---|---|---|---|---|
AFn1.4 | 4.28 | 2.41 | - | 0.01 | 84.06 | 9.24 | 7.24 |
AFn1.2 | 6.08 | 3.03 | - | 0.01 | 83.17 | 7.71 | 6.00 |
AFn1.0 (AF1-2) | 2.64 | - | - | - | 58.57 | 38.79 | 8.46 |
AF0.5-2 | 3.15 | 3.91 | 0.04 | 0.07 | 92.83 | - | 8.03 |
AF2-2 | 4.70 | - | - | - | 46.41 | 48.89 | 8.51 |
AF1-1 | 3.03 | 2.04 | - | 0.01 | 80.98 | 13.94 | 8.42 |
AF1-4 | 4.16 | - | - | - | 50.63 | 45.21 | 8.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Han, L.; Liu, Z.; Wang, J.; Zhang, Y.; Wang, D. In-Situ Crystallization and Characteristics of Alkali-Activated Materials-Supported Analcime-C from a By-Product of the Lithium Carbonate Industry. Materials 2022, 15, 1261. https://doi.org/10.3390/ma15031261
Huang L, Han L, Liu Z, Wang J, Zhang Y, Wang D. In-Situ Crystallization and Characteristics of Alkali-Activated Materials-Supported Analcime-C from a By-Product of the Lithium Carbonate Industry. Materials. 2022; 15(3):1261. https://doi.org/10.3390/ma15031261
Chicago/Turabian StyleHuang, Lixiang, Le Han, Ze Liu, Jixiang Wang, Yanbo Zhang, and Dongmin Wang. 2022. "In-Situ Crystallization and Characteristics of Alkali-Activated Materials-Supported Analcime-C from a By-Product of the Lithium Carbonate Industry" Materials 15, no. 3: 1261. https://doi.org/10.3390/ma15031261
APA StyleHuang, L., Han, L., Liu, Z., Wang, J., Zhang, Y., & Wang, D. (2022). In-Situ Crystallization and Characteristics of Alkali-Activated Materials-Supported Analcime-C from a By-Product of the Lithium Carbonate Industry. Materials, 15(3), 1261. https://doi.org/10.3390/ma15031261