New Graphene Composites for Power Engineering
Abstract
:1. Introduction
- (a)
- (b)
- Electrochemical deposition of graphene on elements of copper or another material [22].
- (c)
- Casting a mixture of liquid metal with graphene to a form facilitating further plastic processing to make wires with required characteristics (continuous-cast conductors as input material for further wire making can be the product of the process).
- (d)
- Deposition of monoatomic carbon coats (graphene) using the CVD method on the surface of Al or Cu wires and their further plastic processing to form wires with required characteristics.
- (e)
2. Materials and Methods
2.1. Raw Materials for Synthesis
2.2. Synthesis Parameters
2.3. Methods of Testing the Properties of Composites
3. Results and Discussion
4. Conclusions
- As a result of the mechanical synthesis process consisting of mixing and compacting (without sintering), Al-C and Cu-C composites with homogeneous carbon distribution were obtained.
- The results of the drawing process showed good deformability of composite wires in the drawing process. At the same time, a limited ductility was found, which is expressed by a lower total deformability of these materials compared to traditional materials. The above fact results from the significantly lower plasticity of composite wires.
- The addition of graphene to aluminum and copper results in an increase in resistivity and strength
- The addition of graphene to copper and aluminum results in a different type of strain hardening during the wiredrawing process. The addition of graphene to aluminum leads to greater strain hardening (increasing UTS: pure Al—49.6%, Al-C0.5% wt.—65.8%, Al-C1% wt.—63.3%). On the other hand, in the case of Cu-C composites, the addition of graphene resulted in a lower strain hardening in the drawing process (increasing of UTS: pure Cu—110.1%, Cu-C0.5% wt.—76.8%, Al-C1% wt.—76.5%). The different types of strain hardening result from a different mechanism of graphene interaction on Cu and Al.
- The obtained results showed that it is possible to produce wires from composites based on aluminum/copper powders with the addition of graphene in the core of the wires, which can be a component of overhead power cables.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McConnell, B.W. Applications of high temperature superconductors to direct current electric power transmission and distribution. IEEE Trans. Appl. Supercond. 2005, 15, 2142–2145. [Google Scholar] [CrossRef]
- Snider, E.; Dasenbrock-Gammon, N.; McBride, R.; Debessai, M.; Vindana, H.; Vencatasamy, K.; Lawler, K.V.; Salamat, A.; Dias, R.P. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 2020, 586, 373–377. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene research and their outputs: Status and prospect. J. Sci. Adv. Mater. Devices 2020, 5, 10–29. [Google Scholar] [CrossRef]
- Madurani, K.A.; Suprapto, S.; Machrita, N.I.; Bahar, S.L.; Illiya, W.; Kurniawan, F. Progress in Graphene Synthesis and its Application: History, Challenge and the Future Outlook for Research and Industry. ECS J. Solid State Sci. Technol. 2020, 9, 093013. [Google Scholar] [CrossRef]
- Su, J.; Teng, J. Recent progress in graphene-reinforced aluminum matrix composites. Front. Mater. Sci. 2021, 15, 79–97. [Google Scholar] [CrossRef]
- Hidalgo-Manrique, P.; Lei, X.; Xu, R.; Zhou, M.; Kinloch, I.A.; Young, R.J. Copper/graphene composites: A review. J. Mater. Sci. 2019, 54, 12236–12289. [Google Scholar]
- Hidalgo-Manrique, P.; Yan, S.; Lin, F.; Hong, Q.; Kinloch, I.A.; Chen, X.; Young, R.J.; Zhang, X.; Dai, S. Microstructure and mechanical behavior of aluminium matrix composites reinforced with graphene oxide and carbon nanotubes. J. Mater. Sci. 2017, 52, 13466–13477. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.J.; Choi, J.W. Electrical Property of Graphene and Its Application to Electrochemical Biosensing. Nanomaterials 2019, 9, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabanas-Moreno, J.G.; Morales-Hernandez, J. Microstructural Characterization of Copper-Carbon Composites. In 2002 Annual Congress of the Mexican Academy of Materials Science: Advanced Structural Materials Symposium; Sociedad Mexicana de Materiales: Cancun, Quintana Roo, Mexico, 2002. [Google Scholar]
- Yamane, T.; Okubo, H.; Hisayuki, K.; Oki, N.; Konishi, M.; Komatsu, M.; Minamino, Y.; Koizumi, Y.; Kiritani, M.; Kim, S.J. Solid solubility of carbon in copper mechanically alloyed. J. Mater. Sci. Lett. 2001, 20, 259–260. [Google Scholar] [CrossRef]
- Electrochemical-Codeposition Methods for Forming Carbon Nanotube Reinforced Metal Composites. U.S. Patent 20100122910A1, 20 May 2010.
- Copper-Carbon Composition. Patent WO 2011/005494A1, 13 January 2011.
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geim, A.; Novoselov, K. Graphene calling. Nat. Mater. 2007, 6, 169. [Google Scholar]
- Geim, A.K. Graphene. Science 2009, 324, 1530–1534. [Google Scholar] [CrossRef] [Green Version]
- Sutter, P.W.; Flege, J.I.; Sutter, E.A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411. [Google Scholar] [CrossRef]
- Imandoust, A.; Barrett, C.D.; Al-Samman, T.; Inal, K.a.; El Kadiri, h.A. A review on the effect of rare-earth elements on texture evolution during processing of magnesium alloys. J. Mater. Sci. 2017, 52, 1–29. [Google Scholar] [CrossRef]
- Khanna, V.; Kumar, V.; Bansal, S.A. Mechanical properties of aluminium-graphene/carbon nanotubes (CNTs) metal matrix composites: Advancement, opportunities and perspective. Mater. Res. Bull. 2021, 38, 111224. [Google Scholar] [CrossRef]
- An, Z.; Li, J.; Kikuchi, A.; Wang, Z.; Jiang, Y.; Ono, T. Mechanically strengthened graphene-Cu composite with reduced thermal expansion towards interconnect applications. Microsyst. Nanoeng. 2019, 5, 50. [Google Scholar] [CrossRef]
- Bakir, M.; Jasiuk, I. Novel metal-carbon nanomaterials: A review on covetics. Adv. Mater. Lett. 2017, 8, 884–890. [Google Scholar] [CrossRef]
- Balachandran, U.; Ma, B.; Dorris, S.E.; Koritala, R.E.; Forrest, D.R. Nanocarbon-Infused Metals: A New Class of Covetic Materials for Energy Applications. Adv. Mater. Sci. Environ. Energy Technol. VI Ceram. Trans. 2017, 262, 205–218. [Google Scholar]
- Pavithra, C.L.; Sarada, B.V.; Rajulapati, K.V.; Rao, T.N.; Sundararajan, G. A New Electrochemical Approach for the Synthesis of Copper-Graphene Nanocomposite Foils with High Hardness. Sci. Rep. 2014, 4, 4049. [Google Scholar] [CrossRef] [PubMed]
- Bartolucci, S.F.; Paras, J.; Rafiee, M.A.; Rafiee, J.; Lee, S.; Kapoor, D.; Koratkar, N. Graphene–aluminum nanocomposites. Mater. Sci. Eng. A 2011, 27, 7933–7937. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Zhao, J.; Jiang, Z. Microstructure and mechanical properties of aluminium-graphene composite powders produced by mechanical milling. Mech. Adv. Mater. Mod. Processes 2018, 4, 4. [Google Scholar] [CrossRef]
- Liu, J.; Khan, U.; Coleman, J.; Fernandez, B.; Rodriguez, P.; Naher, S.; Brabazon, D. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: Powder synthesis and prepared composite characteristics. Mater. Des. 2016, 94, 87–94. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Gupta, N.; Behera, R.K.; Rohatgi, P.K. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties. JOM 2018, 70, 837–845. [Google Scholar] [CrossRef]
- Kováčik, J.; Emmer, Š.; Bielek, J. Thermal conductivity of Cu-graphite composites. Int. J. Therm. Sci. 2015, 90, 298–302. [Google Scholar] [CrossRef]
- Nazeer, F.; Ma, Z.; Gao, L.; Malik, A.; Abubaker Khan, M.; Wang, F.; Li, H. Effect of processing routes on mechanical and thermal properties of copper–graphene composites. Mater. Sci. Technol. 2019, 35, 1770–1774. [Google Scholar] [CrossRef]
- Randviir, E.P.; Brownson, D.A.C.; Banks, C.E. A decade of graphene research: Production, application and outlook. Mater. Today 2014, 17, 426–432. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 2012, 66, 594–597. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Guo, L.N.; Lin, W.M.; Chen, J.; Liu, C.L.; Zhang, S.; Zhen, T.T. Effect of the graphene content on the microstructures and properties of graphene/aluminum composites. New Carbon Mater. 2019, 34, 275–285. [Google Scholar] [CrossRef]
- Ke, Q.; Wang, J. Graphene-based materials for supercapacitor electrodes–A review composites. J. Mater. 2016, 2, 37–54. [Google Scholar]
- Huang, Y.; Bazarnik, P.; Wan, D.; Luo, D.; Pereira, P.H.R.; Lewandowska, M.; Yao, J.; Hayden, B.E.; Langdon, T.G. The fabrication of graphene-reinforced Al-based nanocomposites using high-pressure torsion. Acta Mater. 2019, 164, 499–511. [Google Scholar] [CrossRef]
- Jiang, R.; Zhou, X.; Fang, Q.; Liu, Z. Copper–graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties, Mater. Sci. Eng. A 2016, 654, 124–130. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, H.; Cheng, H.M.; Ruoff, R.S. Mass production and industrial applications of graphene materials, Natl. Sci. Rev. 2018, 5, 90–101. [Google Scholar]
- Rana, R.S.; Purohit, R.; Das, S. Review of recent studies in Al matrix composites. Int. J. Sci. Eng. Res. 2012, 3. Available online: https://www.ijser.org/researchpaper/Review-of-recent-Studies-in-Al-matrix-composites.pdf (accessed on 11 January 2022).
- Rajeshkumar, R.; Udhayabanu, V.; Srinivasan, A.; Ravi, K.R. Microstructural evolution in ultrafine grained Al-graphite composite synthesized via combined use of ultrasonic treatment and friction stir processing, J. Alloy. Compd. 2017, 726, 358–366. [Google Scholar] [CrossRef]
- Chen, F.; Ying, J.; Wang, Y.; Du, S.; Liu, Z.; Huang, Q. Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 2016, 96, 836–842. [Google Scholar] [CrossRef]
Parameter | Traditional Materials | Modern Materials | ||
---|---|---|---|---|
Aluminium | Copper | Nanotubes | Graphene | |
Melting point [°C] | 660 | 1083 | 4520 | 4620 |
Density [g/cm3] | 2.76 | 8.92 | 1.3–1.4 | 1.1–1.5 |
Mobility of electrons, [cm2 v−1 s−1] | 1.2 | 4.33 | 10,000 | 15,000 |
Conductivity [MS/m] | 36 | 58 | 280 (1.5–5 × Al) | 100 (3 × Al) |
Thermal conductivity [W/m.k] | 200 | 400 | 3500 | 4840±440–5300±480 |
Tensile strength [MPa] | 60–200 | 200–400 | 11,000–63,000 | 130,000 |
Temperature coefficient of resistance [K−1] | 4.0 × 10−3 | 3.9 × 10−3 | - | - |
Young Modulus [GPa] | 70 | 120 | 1000 | 1000 |
Atomic radius [pm] | 125 | 128 | 70 | 70 |
Lattice parameter [pm] | 404 | 360 | 142 | 142 |
Measuring | Al. Powder | Cu. Powder | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chemical Composition, %wt. | Measuring | Chemical Composition, %wt. | |||||||||
Point No | O2 | Cr | S | Fe | Al | Point No | O2 | Cr | S | Fe | Cu |
1 | 0.819 | 0.024 | 0.003 | 0.118 | 98.4 | 1 | 0.355 | 0.000 | 0.006 | 0.000 | 99.2 |
2 | 0.743 | 0.018 | 0.007 | 0.138 | 98.2 | 2 | 0.311 | 0.000 | 0.012 | 0.013 | 99.17 |
3 | 0.868 | 0.000 | 0.004 | 0.11 | 98.19 | 3 | 0.296 | 0.034 | 0.000 | 0.000 | 99.07 |
4 | 0.846 | 0.000 | 0.000 | 0.112 | 98.45 | 4 | 0.295 | 0.013 | 0.007 | 0.006 | 99.18 |
5 | 0.721 | 0.000 | 0.000 | 0.127 | 98.43 | 5 | 0.24 | 0.003 | 0.000 | 0.000 | 99.42 |
6 | 0.779 | 0.000 | 0.000 | 0.108 | 98.46 | 6 | 0.256 | 0.012 | 0.000 | 0.000 | 99.42 |
7 | 0.876 | 0.011 | 0.005 | 0.114 | 98.53 | 7 | 0.234 | 0.000 | 0.000 | 0.028 | 99.28 |
8 | 0.745 | 0.000 | 0.002 | 0.117 | 98.40 | 8 | 0.266 | 0.000 | 0.012 | 0.017 | 99.18 |
Average | 0.800 | 0.007 | 0.003 | 0.118 | 98.38 | Average | 0.282 | 0.008 | 0.005 | 0.008 | 99.24 |
Type of Composite | Milling | Consolidation | |||||
---|---|---|---|---|---|---|---|
Sample No | Powder Mass (g) | Graphene Mass (g) | Graphene Content | Milling Time | Pressure | ||
%wt. | %vol. | min | atm | ||||
Cu-C | 1 | 500 | 2.5 | 0.5 | 0.6 | 30–60 | 30–50 |
Cu-C | 2 | 500 | 5 | 1 | 1.2 | 30–60 | 30–50 |
Al-C | 3 | 100 | 0.5 | 0.5 | 0.6 | 30–60 | 30–50 |
Al-C | 4 | 100 | 1 | 1 | 1.2 | 30–60 | 30–50 |
Type of Composite | Extrusion Process | Diameter Rods after Extrusion, (mm) | Diameter Wires after Drawing Process, (mm) | |
---|---|---|---|---|
Temperature, (°C) | Force, (kN) | |||
ALGRAF (40 mm) | 200–400 | 800 | 4 | 2 |
CUGRAF (40 mm) | 400–600 | 1000 | 4 | 2 |
Sample No | Ultimate Tensile Strength (UTS), (MPa) | Yield Stress (YS), (MPa) | A100 (%) | Resistivity 20 °C (nΩm) |
---|---|---|---|---|
1 | 211 | 158 | 11.3 | 17.6 |
2 | 221 | 162 | 10.2 | 17.9 |
3 | 117 | 98 | 3.1 | 28.16 |
4 | 128 | 114 | 3.2 | 28.84 |
Pure Cu | 208 | 154 | 25.0 | 17.2 |
Pure Al | 123 | 100 | 5.7 | 27.31 |
Sample No | Ultimate Tensile Strength (UTS), (MPa) | Yield Stress (YS), (MPa) | A100 (%) | Resistivity 20 °C (nΩm) |
---|---|---|---|---|
1 | 373 | 363 | 2.20 | 18.04 |
2 | 390 | 376 | 2.60 | 18.20 |
3 | 194 | 187 | 1.52 | 28.65 |
4 | 209 | 114 | 2.19 | 28.96 |
Pure Cu | 437 | 430 | 3.20 | 17.54 |
Pure Al | 184 | 179 | 1.88 | 28.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knych, T.; Mamala, A.; Kwaśniewski, P.; Kiesiewicz, G.; Smyrak, B.; Gniełczyk, M.; Kawecki, A.; Korzeń, K.; Sieja-Smaga, E. New Graphene Composites for Power Engineering. Materials 2022, 15, 715. https://doi.org/10.3390/ma15030715
Knych T, Mamala A, Kwaśniewski P, Kiesiewicz G, Smyrak B, Gniełczyk M, Kawecki A, Korzeń K, Sieja-Smaga E. New Graphene Composites for Power Engineering. Materials. 2022; 15(3):715. https://doi.org/10.3390/ma15030715
Chicago/Turabian StyleKnych, Tadeusz, Andrzej Mamala, Paweł Kwaśniewski, Grzegorz Kiesiewicz, Beata Smyrak, Marek Gniełczyk, Artur Kawecki, Kinga Korzeń, and Eliza Sieja-Smaga. 2022. "New Graphene Composites for Power Engineering" Materials 15, no. 3: 715. https://doi.org/10.3390/ma15030715
APA StyleKnych, T., Mamala, A., Kwaśniewski, P., Kiesiewicz, G., Smyrak, B., Gniełczyk, M., Kawecki, A., Korzeń, K., & Sieja-Smaga, E. (2022). New Graphene Composites for Power Engineering. Materials, 15(3), 715. https://doi.org/10.3390/ma15030715