An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Problems with Individual Nanostructure(s)
3.2. Integrated Nanostructure: Nanoparticle in a Metallic Hole
3.3. Geometrical Tolerance of Metallic Hole
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devaraj, V.; Lee, J.-M.; Kim, Y.-J.; Jeong, H.; Oh, J.-W. Engineering Efficient Self-Assembled Plasmonic Nanostructures by Configuring Metallic Nanoparticle’s Morphology. Int. J. Mol. Sci. 2021, 22, 10595. [Google Scholar] [CrossRef]
- Centurion, M.; Porter, M.A.; Kevrekidis, P.G.; Psaltis, D. Nonlinearity Management in Optics: Experiment, Theory, and Simulation. Phys. Rev. Lett. 2006, 97, 033903. [Google Scholar] [CrossRef] [Green Version]
- Amirjani, A.; Sadrnezhaad, S.K. Computational Electromagnetics in Plasmonic Nanostructures. J. Mater. Chem. C 2021, 9, 9791–9819. [Google Scholar] [CrossRef]
- Baumberg, J.J.; Aizpurua, J.; Mikkelsen, M.H.; Smith, D.R. Extreme Nanophotonics from Ultrathin Metallic Gaps. Nat. Mater. 2019, 18, 668–678. [Google Scholar] [CrossRef]
- Lee, J.-M.; Devaraj, V.; Jeong, N.-N.; Lee, Y.; Kim, Y.-J.; Kim, T.; Yi, S.H.; Kim, W.-G.; Choi, E.J.; Kim, H.-M.; et al. Neural Mechanism Mimetic Selective Electronic Nose Based on Programmed M13 Bacteriophage. Biosens. Bioelectron. 2022, 196, 113693. [Google Scholar] [CrossRef] [PubMed]
- Laible, F.; Horneber, A.; Fleischer, M. Mechanically Tunable Nanogap Antennas: Single-Structure Effects and Multi-Structure Applications. Adv. Opt. Mater. 2021, 9, 2100326. [Google Scholar] [CrossRef]
- Sun, A.Y.; Lee, Y.-C.; Chang, S.-W.; Chen, S.-L.; Wang, H.-C.; Wan, D.; Chen, H.-L. Diverse Substrate-Mediated Local Electric Field Enhancement of Metal Nanoparticles for Nanogap-Enhanced Raman Scattering. Anal. Chem. 2021, 93, 4299–4307. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, V.; Lee, J.-M.; Lee, D.; Oh, J.-W. Defining the Plasmonic Cavity Performance Based on Mode Transitions to Realize Highly Efficient Device Design. Mater. Adv. 2020, 1, 139–145. [Google Scholar] [CrossRef]
- Devaraj, V.; Baek, J.; Jang, Y.; Jeong, H.; Lee, D. Design for an Efficient Single Photon Source Based on a Single Quantum Dot Embedded in a Parabolic Solid Immersion Lens. Opt. Express 2016, 24, 8045–8053. [Google Scholar] [CrossRef]
- Jiang, N.; Zhuo, X.; Wang, J. Active Plasmonics: Principles, Structures, and Applications. Chem. Rev. 2018, 118, 3054–3099. [Google Scholar] [CrossRef] [PubMed]
- Guimbao, J.; Weituschat, L.M.; Montolio, J.M.L.; Postigo, P.A. Enhancement of the Indistinguishability of Single Photon Emitters Coupled to Photonic Waveguides. Opt. Express 2021, 29, 21160–21173. [Google Scholar] [CrossRef] [PubMed]
- Gellé, A.; Jin, T.; de la Garza, L.; Price, G.D.; Besteiro, L.V.; Moores, A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem. Rev. 2020, 120, 986–1041. [Google Scholar] [CrossRef]
- Kim, S.; Jang, M.S.; Brar, V.W.; Tolstova, Y.; Mauser, K.W.; Atwater, H.A. Electronically Tunable Extraordinary Optical Transmission in Graphene Plasmonic Ribbons Coupled to Subwavelength Metallic Slit Arrays. Nat. Commun. 2016, 7, 12323. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.; Jang, J.; Jeong, H.; Rho, J. Plasmonic- and Dielectric-Based Structural Coloring: From Fundamentals to Practical Applications. Nano Converg. 2018, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, A.; Yang, J.K.W.; Bozhevolnyi, S.I.; Link, S.; Nordlander, P.; Halas, N.J.; Mortensen, N.A. Plasmonic Colour Generation. Nat. Rev. Mater. 2016, 2, 16088. [Google Scholar] [CrossRef]
- Smith, D.R.; Pendry, J.B.; Wiltshire, M.C.K. Metamaterials and Negative Refractive Index. Science 2004, 305, 788–792. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-M.; Choi, J.W.; Jeon, I.; Zhu, Y.; Yang, T.; Chun, H.; Shin, J.; Park, J.; Bang, J.; Lim, K.; et al. High Quantum Efficiency and Stability of Biohybrid Quantum Dots Nanojunctions in Bacteriophage-Constructed Perovskite. Mater. Today Nano 2021, 13, 100099. [Google Scholar] [CrossRef]
- Kravets, V.G.; Kabashin, A.V.; Barnes, W.L.; Grigorenko, A.N. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018, 118, 5912–5951. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Salazar, J.R.; Oliveira, O.N. Plasmonic Biosensing. Chem. Rev. 2018, 118, 10617–10625. [Google Scholar] [CrossRef] [PubMed]
- Abouelela, M.M.; Kawamura, G.; Matsuda, A. A Review on Plasmonic Nanoparticle-Semiconductor Photocatalysts for Water Splitting. J. Clean. Prod. 2021, 294, 126200. [Google Scholar] [CrossRef]
- Devaraj, V.; Lee, J.-M.; Oh, J.-W. Influence of Cavity Geometry towards Plasmonic Gap Tolerance and Respective Near-Field in Nanoparticle-on-Mirror. Curr. Appl. Phys. 2020, 20, 1335–1341. [Google Scholar] [CrossRef]
- Ringe, E. Shapes, Plasmonic Properties, and Reactivity of Magnesium Nanoparticles. J. Phys. Chem. C 2020, 124, 15665–15679. [Google Scholar] [CrossRef] [PubMed]
- Mann, M.E.; Yadav, P.; Kim, S. Colloidal Plasmonic Nanocubes as Capacitor Building Blocks for Multidimensional Optical Metamaterials: A Review. ACS Appl. Nano Mater. 2021, 4, 9976–9984. [Google Scholar] [CrossRef]
- Fan, X.; Zheng, W.; Singh, D.J. Light Scattering and Surface Plasmons on Small Spherical Particles. Light Sci. Appl. 2014, 3, e179. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.; Chu, S.; Liang, Y.; Liang, Y.; Yuan, H.; Gao, H.; Yu, L.; Wang, Q.; Peng, W.; Peng, W. Plasmonic Hybridization Generation in Self-Aligned Disk/Hole Nanocavities for Multi-Resonance Sensing. Opt. Express 2020, 28, 36455–36465. [Google Scholar] [CrossRef]
- Xiang, H.; Wang, Z.; Xu, L.; Zhang, X.; Lu, G. Quantum Plasmonics in Nanorods: A Time-Dependent Orbital-Free Density Functional Theory Study with Thousands of Atoms. J. Phys. Chem. C 2020, 124, 945–951. [Google Scholar] [CrossRef]
- Devaraj, V.; Lee, J.-M.; Oh, J.-W. Distinguishable Plasmonic Nanoparticle and Gap Mode Properties in a Silver Nanoparticle on a Gold Film System Using Three-Dimensional FDTD Simulations. Nanomaterials 2018, 8, 582. [Google Scholar] [CrossRef] [Green Version]
- Devaraj, V.; Jeong, N.-N.; Lee, J.-M.; Hwang, Y.-H.; Sohn, J.-R.; Oh, J.-W. Revealing Plasmonic Property Similarities and Differences between a Nanoparticle on a Metallic Mirror and Free Space Dimer Nanoparticle. J. Korean Phys. Soc. 2019, 75, 313–318. [Google Scholar] [CrossRef]
- Devaraj, V.; Lee, J.-M.; Adhikari, S.; Kim, M.; Lee, D.; Oh, J.-W. A Single Bottom Facet Outperforms Random Multifacets in a Nanoparticle-on-Metallic-Mirror System. Nanoscale 2020, 12, 22452–22461. [Google Scholar] [CrossRef]
- Devaraj, V.; Choi, J.; Kim, C.-S.; Oh, J.-W.; Hwang, Y.-H. Numerical Analysis of Nanogap Effects in Metallic Nano-Disk and Nano-Sphere Dimers: High Near-Field Enhancement with Large Gap Sizes. J. Korean Phys. Soc. 2018, 72, 599–603. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Brickdale, C.; Buchanan, A.; Butterworth, A.R.; Chalmers, M.D.; Clay, W.G.; Craies, W.F.; Shepheard, W. List of Contributors for Volume II. In Handbook of Optical Constants of Solids; Palik, E.D., Ed.; Academic Press: Burlington, Germany, 1997; pp. xv–xviii. ISBN 9780125444156. [Google Scholar]
- Movsesyan, A.; Muravitskaya, A.; Castilla, M.; Kostcheev, S.; Proust, J.; Plain, J.; Baudrion, A.-L.; Vincent, R.; Adam, P.-M. Hybridization and Dehybridization of Plasmonic Modes. J. Phys. Chem. C 2021, 125, 724–731. [Google Scholar] [CrossRef]
- Kongsuwan, N.; Demetriadou, A.; Horton, M.; Chikkaraddy, R.; Baumberg, J.J.; Hess, O. Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation. ACS Photonics 2020, 7, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Juodėnas, M.; Peckus, D.; Tamulevičius, T.; Yamauchi, Y.; Tamulevičius, S.; Henzie, J. Effect of Ag Nanocube Optomechanical Modes on Plasmonic Surface Lattice Resonances. ACS Photonics 2020, 7, 3130–3140. [Google Scholar] [CrossRef]
- Zhang, Y.; He, S.; Guo, W.; Hu, Y.; Huang, J.; Mulcahy, J.R.; Wei, W.D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2018, 118, 2927–2954. [Google Scholar] [CrossRef] [PubMed]
- Kasani, S.; Curtin, K.; Wu, N. A Review of 2D and 3D Plasmonic Nanostructure Array Patterns: Fabrication, Light Management and Sensing Applications. Nanophotonics 2019, 8, 2065–2089. [Google Scholar] [CrossRef]
- Sheena, T.S.; Devaraj, V.; Lee, J.-M.; Balaji, P.; Gnanasekar, P.; Oh, J.-W.; Akbarsha, M.A.; Jeganathan, K. Sensitive and Label-Free Shell Isolated Ag NPs@Si Architecture Based SERS Active Substrate: FDTD Analysis and in-Situ Cellular DNA Detection. Appl. Surf. Sci. 2020, 515, 145955. [Google Scholar] [CrossRef]
- Kleinman, S.L.; Sharma, B.; Blaber, M.G.; Henry, A.-I.; Valley, N.; Freeman, R.G.; Natan, M.J.; Schatz, G.C.; Van Duyne, R.P. Structure Enhancement Factor Relationships in Single Gold Nanoantennas by Surface-Enhanced Raman Excitation Spectroscopy. J. Am. Chem. Soc. 2013, 135, 301–308. [Google Scholar] [CrossRef]
- Huang, Y.; Ringe, E.; Hou, M.; Ma, L.; Zhang, Z. Near-Field Mapping of Three-Dimensional Surface Charge Poles for Hybridized Plasmon Modes. AIP Adv. 2015, 5, 107221. [Google Scholar] [CrossRef] [Green Version]
- David, C.; García de Abajo, F.J. Surface Plasmon Dependence on the Electron Density Profile at Metal Surfaces. ACS Nano 2014, 8, 9558–9566. [Google Scholar] [CrossRef]
- Krasnok, A.E.; Slobozhanyuk, A.P.; Simovski, C.R.; Tretyakov, S.A.; Poddubny, A.N.; Miroshnichenko, A.E.; Kivshar, Y.S.; Belov, P.A. An Antenna Model for the Purcell Effect. Sci. Rep. 2015, 5, 12956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, J.-H.; Lee, J.; Lee, S. Comparative Study of Plasmonic Resonances between the Roundest and Randomly Faceted Au Nanoparticles-on-Mirror Cavities. ACS Photonics 2018, 5, 413–421. [Google Scholar] [CrossRef]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, T.; Booth, R.A.; Majetich, S.A. Ten-Nanometer Dense Hole Arrays Generated by Nanoparticle Lithography. Nano Lett. 2012, 12, 5873–5878. [Google Scholar] [CrossRef]
- Najiminaini, M.; Vasefi, F.; Kaminska, B.; Carson, J.J.L. Optical Resonance Transmission Properties of Nano-Hole Arrays in a Gold Film: Effect of Adhesion Layer. Opt. Express 2011, 19, 26186–26197. [Google Scholar] [CrossRef]
- Han, J.; Devaraj, V.; Kim, C.; Kim, W.-G.; Han, D.-W.; Hong, S.W.; Kang, Y.-C.; Oh, J.-W. Fabrication of Self-Assembled Nanoporous Structures from a Self-Templating M13 Bacteriophage. ACS Appl. Nano Mater. 2018, 1, 2851–2857. [Google Scholar] [CrossRef]
- Ung, T.P.L.; Jazi, R.; Laverdant, J.; Fulcrand, R.; des Francs, G.C.; Hermier, J.-P.; Quélin, X.; Buil, S. Scanning the Plasmonic Properties of a Nanohole Array with a Single Nanocrystal Near-Field Probe. Nanophotonics 2020, 9, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Cecchini, M.P.; Wiener, A.; Turek, V.A.; Chon, H.; Lee, S.; Ivanov, A.P.; McComb, D.W.; Choo, J.; Albrecht, T.; Maier, S.A.; et al. Rapid Ultrasensitive Single Particle Surface-Enhanced Raman Spectroscopy Using Metallic Nanopores. Nano Lett. 2013, 13, 4602–4609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerman, S.; Chen, C.; Li, Y.; Roy, W.V.; Lagae, L.; Dorpe, P.V. Raman Fingerprinting of Single Dielectric Nanoparticles in Plasmonic Nanopores. Nanoscale 2015, 7, 18612–18618. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, N.; Vavassori, P.; Garoli, D. Magnetic Control of Particle Trapping in a Hybrid Plasmonic Nanopore. Appl. Phys. Lett. 2021, 118, 193102. [Google Scholar] [CrossRef]
- Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G.D.; Moskovits, M. An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons. Nat. Nanotechnol. 2013, 8, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Mascaretti, L.; Dutta, A.; Kment, Š.; Shalaev, V.M.; Boltasseva, A.; Zbořil, R.; Naldoni, A. Plasmon-Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. Adv. Mater. 2019, 31, 1805513. [Google Scholar] [CrossRef]
- Csete, M.; Szalai, A.; Csapó, E.; Tóth, L.; Somogyi, A.; Dékány, I. Collective Plasmonic Resonances on Arrays of Cysteine-Functionalized Silver Nanoparticle Aggregates. J. Phys. Chem. C 2014, 118, 17940–17955. [Google Scholar] [CrossRef]
- DuChene, J.S.; Tagliabue, G.; Welch, A.J.; Cheng, W.-H.; Atwater, H.A. Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes. Nano Lett. 2018, 18, 2545–2550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, X.; Ueno, K.; Oshikiri, T.; Sun, Q.; Sasaki, K.; Misawa, H. Enhanced Water Splitting under Modal Strong Coupling Conditions. Nat. Nanotechnol. 2018, 13, 953–958. [Google Scholar] [CrossRef] [PubMed]
- Cortés, E.; Besteiro, L.V.; Alabastri, A.; Baldi, A.; Tagliabue, G.; Demetriadou, A.; Narang, P. Challenges in Plasmonic Catalysis. ACS Nano 2020, 14, 16202–16219. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devaraj, V.; Choi, J.-W.; Lee, J.-M.; Oh, J.-W. An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications. Materials 2022, 15, 792. https://doi.org/10.3390/ma15030792
Devaraj V, Choi J-W, Lee J-M, Oh J-W. An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications. Materials. 2022; 15(3):792. https://doi.org/10.3390/ma15030792
Chicago/Turabian StyleDevaraj, Vasanthan, Jong-Wan Choi, Jong-Min Lee, and Jin-Woo Oh. 2022. "An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications" Materials 15, no. 3: 792. https://doi.org/10.3390/ma15030792
APA StyleDevaraj, V., Choi, J. -W., Lee, J. -M., & Oh, J. -W. (2022). An Accessible Integrated Nanoparticle in a Metallic Hole Structure for Efficient Plasmonic Applications. Materials, 15(3), 792. https://doi.org/10.3390/ma15030792