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Abstract: High-κ dielectrics are insulating materials with higher permittivity than silicon dioxide.
These materials have already found application in microelectronics, mainly as gate insulators or
passivating layers for silicon (Si) technology. However, since the last decade, the post-Si era began
with the pervasive introduction of wide band gap (WBG) semiconductors, such as silicon carbide (SiC)
and gallium nitride (GaN), which opened new perspectives for high-κmaterials in these emerging
technologies. In this context, aluminium and hafnium oxides (i.e., Al2O3, HfO2) and some rare earth
oxides (e.g., CeO2, Gd2O3, Sc2O3) are promising high-κ binary oxides that can find application as gate
dielectric layers in the next generation of high-power and high-frequency transistors based on SiC
and GaN. This review paper gives a general overview of high-permittivity binary oxides thin films
for post-Si electronic devices. In particular, focus is placed on high-κ binary oxides grown by atomic
layer deposition on WBG semiconductors (silicon carbide and gallium nitride), as either amorphous
or crystalline films. The impacts of deposition modes and pre- or postdeposition treatments are both
discussed. Moreover, the dielectric behaviour of these films is also presented, and some examples of
high-κ binary oxides applied to SiC and GaN transistors are reported. The potential advantages and
the current limitations of these technologies are highlighted.

Keywords: insulators; binary oxides; high-κ dielectrics; power electronics; wide band gap
semiconductors

1. Introduction

Today, it is widely recognized that microelectronic devices have improved the quality
of our daily lives, strongly contributing to the development of human civilization. In the
1940s–1950s, the first microelectronic devices appeared, and they were based on germanium.
However, silicon (Si) gradually began to be the semiconductor of choice, driving the power
electronics revolution with the introduction of the first p-n-p-n transistors in 1956 at Bell
Laboratories [1,2]. About two decades later, the introduction of metal-oxide-semiconductor
field-effect transistors (Si-MOSFETs) set the foundations for the development of the modern
CMOS technology [3]. Hence, for about fifty years, microelectronics have been based
mainly on Si semiconductors. The great success of digital technology may apparently
indicate that Si is still the most suitable material for microelectronic devices. However,
in other fields, such as electronic systems for power transmission or distribution (power
converters, base stations, wireless connections, etc.) and optoelectronics (light emitting
diodes—LEDs, lasers), the achievement of the ultimate silicon performances opened the
route for the post-Si era. In this context, wide band gap (WBG) semiconductors emerged as
the most suitable materials for this technological revolution, especially in high-power and
high-frequency electronics [4–7].

Among the WBG semiconductors, silicon carbide (SiC) and gallium nitride (GaN) are
the most attractive candidates because they already provide a good compromise between
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their theoretical properties (blocking voltage capability, operation temperature, and switch-
ing frequency) and commercial availability [4–6]. Their wide band gaps result in higher
breakdown voltage and operation temperature with respect to Si, so both are excellent can-
didates to replace Si in the next generation of high-power and high-frequency electronics.
Because of their different physical and electronic properties in terms of carrier mobility
and thermal conductivity [8,9], SiC and GaN will cover different market segments in the
post-Si technologies [10]. In particular, SiC is more suitable for high-power applications
based on vertical devices, while GaN is more efficient for high-frequency applications
based on lateral transistors. In any case, both materials can provide superior performances
with respect to the existing Si devices [5,6], although the different technological steps for
transistor fabrication need to be appropriately integrated.

Gate insulators are certainly the most important brick for transistor operation, even
in the post-Si era, since the device performances critically depend on the choice of the
insulating material. However, gate insulator technology is rather different in SiC and
GaN, thus leading to a variety of issues to be faced when developing devices on these two
WBG semiconductors.

Traditional dielectric materials, such as silicon oxide or silicon nitride, have also been
widely investigated [11–14] for applications based on WBG semiconductors. However,
the performance of the ideal Si/SiO2 system has been not achieved, and attention has
been focused on the so-called “high-κ” oxides [15–20]. Among all the high-κ materials,
some binary oxides (such as Al2O3 [21,22], HfO2 [22], NiO [23,24], CeO2 [25], Sc2O3 [26,27],
La2O3 [28], Gd2O3 [28], Y2O3 [28,29], ZrO2, [17,18], Ga2O3 [30], etc.) potentially repre-
sent a suitable solution for the integration in WBG-based devices because of their higher
chemical stability and/or lower fabrication cost. Some other possible materials have been
studied, such as ternary oxides and nitrides, but those materials are beyond the topic of
this review paper.

Table 1 shows a summary of the possible oxide candidates for the replacement of the
SiO2 dielectric material and their principal physical properties, such as dielectric constant
values, band gaps, and crystallization temperatures.

Table 1. Principal physical properties of high-κ gate binary oxides.

Oxide Dielectric Constant Band Gap (eV) Crystallization Temperature Ref

Al2O3 10 9 900 ◦C [17,18]

HfO2 ~20 5.6–5.8 500 ◦C [17,18,22]

NiO 11.7 4 300 ◦C [23,24]

CeO2 26 6 500 ◦C [25]

Sc2O3 12–14 6.0 >400 ◦C [26–29]

Y2O3 10 5.5 >400 ◦C [26,28,29]

Gd2O3 ~20 5.0–5.45 >400 ◦C [26,28]

La2O3 ~20 5.4–5.6 >400 ◦C [17,18,27,29]

ZrO2 25 5.8 >400 ◦C [17,18]

Ga2O3 ~10 5 >500 ◦C [30]

Figure 1a reports the values of the band gaps of different insulators as a function of
their relative permittivity (in units of the vacuum permittivity ε0). The general trend (high-
lighted by the continuous line) is a decrease in the band gap with increasing permittivity.
Hence, the reduced band gap of high-permittivity oxides can represent a concern in terms
of leakage current. For this reason, insulators with appropriate band alignment with the
semiconductor must be preferred. In this context, Figure 1b shows the band alignment
of several high-κ oxides with the semiconductor materials under consideration (i.e., Si,
4H-SiC, and GaN). The offset between the conduction bands of the semiconductors and
insulators is reported in scale.
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Hence, in terms of physical properties, the guidelines for the choice of the ideal gate
dielectric material are: (i) high dielectric constant value; (ii) appropriate alignment of the
band gap with respect to the substrates (in particular, the band offset should be greater than
1 eV); (iii) thermal stability during the fabrication process (many steps have to be carried
out at high temperatures for short periods of time) [17–19].

Moreover, since the gate oxide is directly in contact with the device channel, another
important requirement is good quality of the gate oxide/semiconductor interface in terms
of low roughness and low density of electronic defects [5].

These requirements could be met throughout two possible approaches, i.e., a crys-
talline gate oxide epitaxially grown on the semiconducting substrate or an amorphous
oxide. Electronic defects can be thus minimized either by exactly or randomly saturating
the dangling bonds, respectively. Generally, amorphous oxides are the preferred solution,
since they possess isotropic dielectric constants due to the fluctuation of the polarized
bonds and do not possess rough edges. By contrast, the advantage of the epitaxial oxides is
the abruptness of the interface [17,18].

In general, as schematically illustrated in Figure 2, structural and compositional
defects of binary oxides (e.g., oxygen vacancies, impurities, etc.) can generate the presence
of energetic levels within the band gap or at the interface, and the trapped charges in
these states are undesirable for the following reasons: (i) they are responsible for a shift
in the voltage threshold of the transistor; (ii) they may change over time and determine
the instability of the transistor output characteristics; (iii) they scatter the carriers in the
inversion channel and, consequently, limit the channel mobility; (iv) they compromise the
transistor reliability because they are the main cause of the dielectric breakdown [17,18].

Silicon dioxide (SiO2) [15] was considered an ideal dielectric during the Si era because
it possesses a very low electronic defect density. The reason for this is the low coordination
number, which guarantees the possibility to “repair” the dangling bonds. On the other
hand, alternative high-κ oxides possess chemical bonds that cannot easily relax, thus
inevitability leading to a higher electronic defect density. Hence, there is a need to reduce
the number of electronic defects in these materials by annealing treatments or by optimizing
their deposition processes.
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oxides in a transistor.

In this context, the important role of the growth technique for the deposition of the
high-κ dielectric layers is clear. Certainly, many deposition techniques based on either
physical or chemical principles are available. However, the semiconductor industry cur-
rently demands manufacturing techniques able to achieve good surface coverage on large
areas, high conformity on three-dimensional structures, high growth rate, reliability, and
compatibility with the thermal budget required for the device fabrication [31,32].

Table 2 compares the main features of the common growth techniques used [29] for
the deposition of high-κ oxide thin films for microelectronics applications, considering
the different deposition parameters. High deposition rates and large varieties of available
materials are certainly the main advantages of molecular beam epitaxy (MBE) or chemical
vapor deposition (CVD) methods. By contrast, these techniques are characterized by the
need for high deposition temperatures. Physical vapor deposition (PVD)-based techniques
are generally preferred for metals rather than for insulator deposition and lack uniformity
over large areas.

Table 2. Comparison of the main features of the common deposition techniques for high-κ oxides in
microelectronics [29,31,32].

ALD MBE CVD PVD

Thickness range ≤2000 Å ≤2000 Å ≥100 Å ≥100 Å

Deposition rate Low
1–5 nm/min

High
0.01–0.3 µm/min

High
1–10 µm/h

Medium
0.1–1 µm/h

Step coverage
Aspect ratio

100%
60:1

25–50%
1:1

70%
1:1

25–50%
1:1

Deposition temperature 25–400 ◦C 500–1000 ◦C 300–1100 ◦C 200–500 ◦C

Film type availability High
(limited for metals)

High
(limited for Metals)

High
(limited for metals)

High for metals and
conductive materials

However, judging from the latest industrial trends and looking forward at the
nanometric-scale miniaturization process of electronic devices, the employment of de-
position methods with atomic-level accuracy has become mandatory. From this perspective,
atomic layer deposition (ALD) is the most promising deposition technique, and it is gradu-
ally replacing CVD and PVD techniques in many applications.

ALD is an innovative thin-film growth method that belongs to the general class of
CVD techniques. As in a typical CVD process, films are deposited from gaseous chemical
precursors, one for each element of the desired compound. However, unlike the traditional
CVD mechanism, the ALD process is characterized by “self-limited” reactions, first between
precursor and pristine surface and second on a surface saturated by one “monolayer” of
precursor fragments [31]. This deposition mechanism allows subnanometer control of
film thickness, conformal coating of nonplanar substrates (step coverage ~100%), and
high-quality films deposited at relatively low temperatures [32]. For these reasons, the
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employment of ALD can give several advantages over that of either CVD or PVD. Finally,
the low growth rate of the classical thermal ALD (T-ALD) process has been now significantly
improved by the implementation of plasma enhanced ALD (PE-ALD). PE-ALD is an energy-
enhanced deposition technique based on plasma ignition to enhance the co-reactants’
reactivity. The high reactivity of the plasma species produces a higher density of reactive
surface sites. Consequently, higher growth rates and better properties of the resulting films
in terms of density, impurity content, and electrical parameters can be obtained. Another
advantage of PE-ALD is the possibility to control additional process parameters, such as
the operating pressure, plasma power, and plasma exposure time. Varying the plasma
parameters enable fine tuning the properties of the deposited films.

A great part of the results presented in the following Sections are related to high-κ
oxides grown by ALD techniques.

2. Amorphous High-κ Oxides on WBG Semiconductors

Several amorphous materials have been studied in the last decades as possible high-κ
gate oxides for WBG semiconductors. Among them, because of their high crystallization
temperature, Al2O3 thin films have certainly been the most widely investigated solution as
amorphous dielectric layers. Some studies have reported on Al2O3 formed by reactive ion
sputtering [33–35], oxidation of Al in oxygen ambient at high temperatures [36], and a few
others nonconventional techniques [37,38]. The major drawbacks of these solutions are the
low breakdown fields (around 5–6 MVcm−1) of the deposited films and their poor thickness
uniformity on large areas. These limitations have been overcome by the implementation of
the ALD technique, which has been the method of choice to study the potentiality of Al2O3
thin films [39–44].

However, several issues still remain objects of investigation in order to optimize
the quality of deposited materials and their interfaces with the WBG semiconductors.
Moreover, though the growth of high-κ oxides amorphous films is generally carried out
at low deposition temperatures (in the 200–300 ◦C range), some interfacial interaction
could occur in SiC and GaN substrates, resulting in the presence of unwanted materials or
deposition by products.

In this context, the cleaning of the substrate surface before dielectric deposition, as
well as the postdeposition annealing treatments, are discussed in the next subsections,
illustrating as examples some relevant case studies of amorphous high-κ oxides on SiC and
GaN substrates.

2.1. Growth of Amorphous High-κ Oxides on SiC

Unlike that of thermal silicon dioxide (SiO2), the growth of high-κ oxides on silicon
carbide is much more affected by the quality of the semiconductor surface. In fact, in order
to limit the amount of the interface state density (Dit), appropriate cleaning of the SiC
surfaces is always required.

A variety of SiC surface-cleaning treatments have been proposed, based either on wet
chemical solutions [44–46] or plasma [47–49]. The most used chemical solutions for SiC
cleaning are combinations of diluted sulfuric acid, hydrogen peroxide, isopropanol, diluted
hydrofluoric acid. Suvanam et al. [46] demonstrated that RCA treatment [45], followed by
HF diluted solution and finally isopropanol, was a good route to improve the interfacial
electrical characteristics of Al2O3 films on SiC, obtaining a density of interface states
Dit = 1.5 × 1011 eV−1 cm−2 at EC − Et = 0.2 eV below the 4H-SiC conduction band edge,
which was about two orders of magnitude lower than the values found with thermal SiO2.
In regard to plasma treatment before high-κ deposition, H2 plasma has been also evaluated
in some works [47–49], since it represents an efficient route for the passivation of dangling
bonds on SiC surfaces. Heo et al. [49] measured promising values of interface state density
(Dit = 6 × 1012 eV−1 cm−2 at EC − Et = 0.2 eV) when a 15 min long H2 plasma treatment
was performed before deposition and after the post-metallization step.
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As a matter of fact, besides surface treatments before the dielectric deposition, post-
deposition annealings are of great importance to optimize the dielectric properties. Many
parameters can in principle be varied, such as ambient atmosphere, annealing tempera-
ture and time, etc. However, these processing steps must be ultimately compatible with
complete SiC device fabrication, in which, e.g., the formation of metal contacts is achieved
at high temperatures (900–1000 ◦C) and fixed gas atmospheres (N2 or Ar). Generally, a
large number of high-κ oxides possess crystallization temperatures of about 400–500 ◦C,
with Al2O3 being the most thermally stable at up to 800 ◦C. However, independently of the
chemical nature of the high-κ oxide, the annealing process can improve dielectrical proper-
ties. For instance, Wang et al. [50] demonstrated the beneficial effects of high-temperature
annealings (800–1000 ◦C) performed in O2 atmosphere on Al2O3 films. In particular, they
showed that although Al2O3 films started crystallizing at 900 ◦C, capacitance vs. volt-
age (C–V) measurements revealed their improved electrical characteristics (i.e., reduced
hysteresis phenomena). Hence, the authors concluded that annealing at 900 ◦C repre-
sented the best option in terms of both surface morphology and dielectric quality. On
the other hand, many other papers demonstrated that such high annealing temperatures
induce the formation of a thin stoichiometric or sub-stoichiometric silicon oxide interfacial
layer [33,50–52]. This oxidation phenomenon can have a detrimental impact on the prop-
erties of high-κ/SiC interfaces, including in the case of abrupt Al2O3/4H-SiC interfaces
obtained by ALD growth [40,53–55]. In this context, annealing in N2 atmosphere can be
the preferred solution, although uncontrolled SiOx formation can occur in N2 atmosphere
for high annealing temperatures. Moreover, Avice et al. [42] and Khosa et al. [36] showed
that an additional effect of incomplete SiC oxidation was the formation of C clusters if
not enough oxygen was present to enable the out-diffusion of carbon as carbon monoxide.
The formation of the SiOx interfacial layers was observed independently of the annealing
temperature or ambient. In fact, this phenomenon has been observed even in vacuum or
at only 300 ◦C annealing temperature [55]. Hence, it is expected that the elimination of
residual O2 molecules in the annealing ambient is one the key issues for the limitation of
SiOx formation.

In general, most of the reported postdeposition annealing studies were carried out in
oxidizing (O2 or N2O) or non-oxidizing (Ar, N2 or forming gas) ambient, in the 500–1100 ◦C
temperature range, and for short (1 min) or long (1–2 h) times. An interaction at the interface
has always been observed by the formation of the silicon oxide layers and carbon clusters.
The control of the chemical nature of the interface products, which in turn strongly affects
the electrical characteristics, is not trivial.

In this context, Schilirò et al. [39,40] reported an interesting comparison between the
properties of Al2O3 thin films grown by PE-ALD on bare 4H-SiC and on a 5 nm thermal
SiO2/SiC stack. TEM analyses (shown in Figure 3a,b) showed uniform interfaces and well
adherent films. The surface morphology of the films (determined by AFM) was very similar,
with root-mean-square (RMS) values measured over a 1 µm2 area of 0.670 nm and 0.561 nm
for Al2O3/SiC and Al2O3/SiO2/SiC samples, respectively.

Though the interface structural quality appears analogous, quite different electri-
cal properties were measured on MOS capacitors. In fact, current vs. voltage (I–V)
measurements (Figure 3d) showed a higher leakage current in the Al2O3/SiC than in
the Al2O3/SiO2/SiC stack. Furthermore, the breakdown fields, i.e., 5.7 MV/cm for the
Al2O3/SiC and 7 MV/cm for the Al2O3/SiO2/SiC, demonstrated the better electrical
quality obtained by the introduction of the SiO2 at the interface. Moreover, the relative
permittivity values, evaluated from the C–V curves (Figure 3c), were ε ≈ 6.7 and ε ≈ 8.4 for
the Al2O3/SiC and the Al2O3/SiO2/SiC samples, respectively.

These results can be explained by considering both the larger conduction band offset
between the SiO2 and the SiC substrate (Figure 1b) and the different chemical impact of
the substrate surface on the Al2O3 nucleation process. This latter is schematically depicted
in Figure 4, showing that the presence of the OH species on the SiO2 surface favours the
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nucleation process by increasing the number of nucleation sites and the formation of denser
Al2O3 films.
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Other high-κ oxides have been also grown on SiC substrates as thin amorphous films,
such as HfO2 [56–58], La2O3 [59,60], Ta2O5 [61], and TiO2 [62]. Among these materi-
als, HfO2 thin films have been widely investigated because of their superior theoretical
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properties, such as much higher permittivity. However, the main drawback for their imple-
mentation on SiC-based devices is the imperfect alignment of both conduction and valence
band offsets (about 0.7 and 1.74 eV, respectively) with those of SiC. Cheong et al. [56,57]
reported on HfO2 films with a very high dielectric constant value (20), but the interface
state density Dit was as high as 2 × 1013 eV−1 cm−2, which give no advantage with respect
to the SiO2/SiC system. Moreover, very high leakage current densities of 1 mA cm−2 were
already recorded in an electric field as low as 0.3 MVcm−1 by Afanas’ev et al. [58]. While in
this case, the high leakage current could in principle be mitigated by the introduction of a
SiO2 layer at the SiC interfaces, a further issue to be considered is the low thermal stability
of HfO2 at temperatures higher than 500 ◦C, when crystallization starts to occur.

In order to maintain the best features of HfO2 (i.e., high permittivity) and Al2O3 (i.e.,
high crystallization temperature), these two materials have been evaluated in combined
laminated systems.

In this context, some Al2O3/HfO2 bilayer systems deposited on thermally oxidized
4H-SiC substrate have been studied, the most complex stack being an Al2O3/HfO2 mul-
tilayer laminated system [63]. The Al2O3/HfO2 nanolaminate shown (Figure 5a) had a
total thickness of 38 nm and perfectly distinguishable sublayers, each with thickness of
about 1.4–1.8 nm. After annealing treatment at 800 ◦C in N2 atmosphere, the interfaces
between the sublayers (Figure 5b) became less sharp, and an intermixing process occurred.
Notably, both the as-deposited and annealed samples showed amorphous structures. AFM
investigation pointed to a smooth surface morphology with a low RMS value of 0.6 nm,
which was maintained in the annealed sample. A dielectric constant value of 12.4 was
determined by the accumulation capacitance in MOS capacitors, taking into account of the
SiO2 interfacial layer. However, on the as-deposited sample, a high value of oxide trapped
charge (Not) of 2.7 × 1012 cm−2 was found. Nevertheless, after the annealing treatment at
800 ◦C in N2, the nanolaminated stack showed an improvement of the dielectric proper-
ties, since the dielectric constant value increased to 13.4 and the Not value decreased to
1.15 × 1012 cm−2.
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Few other papers have been dedicated to thin films of simple high-κ oxides such as
La2O3 [59,60], Ta2O5 [61], or TiO2 [62], which, when directly grown on 4H-SiC, showed
analogous results as in the case of simple HfO2 oxide. Generally, they demonstrated good
dielectric constant values, but their high interface state density and low breakdown voltages
made them still far from possible implementation in real devices.

In summary, among the pure high-κ oxides, Al2O3 thin films represent the best
compromise, especially in combination with a very thin SiO2 interfacial layer. Some possible
other high-κ bilayers, such as HfO2/Al2O3 [64], Y2O3/Al2O3 [65], or ZrO2/SiO2 [66],
exhibited some potentiality, although not many reports have been made available to date,
especially regarding devices.



Materials 2022, 15, 830 9 of 29

In regard to dielectric properties, the relevant results on the electrical performances of
high-κ oxides integrated in SiC MOSFETs are reported in more detail in Section 4.

2.2. Growth of Amorphous High-κ Oxides on GaN-based Materials

The surfaces of GaN-based materials (GaN, AlGaN, InGaN, etc.) are typically charac-
terized by the presence of large concentrations of defects (e.g., nitrogen vacancies, struc-
tural/morphological imperfections, residual contaminations, etc.) that can result in large
leakage current and low performance and device reliability. Kerr et al. [67] demonstrated
by density functional theory simulations that the defect sites, such as Ga dangling bonds
and Ga-Al metal bonds, are responsible for the formation of states in the band gap. These
interfacial trap states could be removed by annealing procedures before or after gate dielec-
tric deposition. Moreover, especially from the perspective of high-κ gate oxide deposition,
the removal of contaminations is crucial for increasing the density of precursor nucleation
sites. Hence, pre-deposition surface treatments are needed to improve high-κ oxide quality.
Systematic studies [68–76] have reported on the effect of several pre-treatments, and the
principal cleaning/activation methods have been based on the use of wet chemical solu-
tions [68–72,77,78] or plasma/gas actions [73–76]. Generally, the piranha (H2O2:H2SO4)
solution is used for the cleaning of carbon contaminations, but some oxidation of the nitride
surface can occur [70,71]. On the other hand, chloride acid (HCl) solution is efficient for
the removal of metallic contaminations (eventually present from device processing) or
residual oxygen on the surface. However, chlorine itself could be a residual contamination
of the system [70]. Finally, hydrofluoric acid (HF) treatment is effective for the elimination
of unwanted native oxide formation but is not efficient for carbon contamination [70,71].
Brennan et al. [71] compared the nucleation efficiency of the Al precursor with/without the
cleaning of the surface by sequential use of acetone, methanol, isopropanol, and HF 2% so-
lution. It was clear, from the results of an XPS study after each ALD cycle, that the decrease
in the Ga-O concentration induced by the HF etch resulted in a stronger interaction between
the Al precursor and the Ga surface. Nepal et al. [69] compared the effects of three different
chemical solutions (i.e., piranha, diluted HF, and diluted HCl), finding that: (i) the single
HCl pre-treatment provides 10–30 nm-sized particles, indicating a three-dimensional nucle-
ation; (ii) the HF-based treatments produced an improvement in the electrical behaviour;
(iii) the best dielectric properties, in terms of smaller hysteresis and lower density-trap state
values, were obtained on the piranha-treated surface. Finally, Schilirò et al. [72] showed a
comparison among several chemical solution combinations (i.e., piranha, HCl/ HF, and
piranha/HF). In particular, it was shown that, although the Al2O3 thin films treated with
each solution possessed identical structural properties, adherent, uniform, and amorphous,
there were some intrinsic differences depending on the adopted surface pre-cleaning. In
fact, under a TEM electron beam, the films deposited after piranha treatment showed
the formation of polycrystalline grains, while epitaxial layers were formed for samples
deposited after HF based treatments. This was an indication that in the case of HF-based
treatments, the deposition process occurred on a very clean AlGaN surface, which could
act as seed layer for the formation of epitaxial films. Moreover, investigation of the initial
growth stages by AFM demonstrated that the smallest three-dimensional grain nucleation
resulted in deposition on HF-HCl-treated surfaces, which could ensure a cleaner surface in
order to allow ideal layer-by-layer ALD growth.

It could be concluded that the pre-deposition treatments of GaN-based surfaces with
HF cleaning provided Al2O3 films with the best dielectric properties [69,71,72].

An alternative route to cleaning by chemical solution is represented by “in situ”
cleaning process based on H2/N2 (forming gas) or NH3 plasma actions [68]. The impact of
N2 and forming gas on the growth and interfacial characteristics of Al2O3 on AlGaN/GaN
heterostructures was explored by Qin et al. [73], who demonstrated by XPS investigation
that C contamination was effectively reduced by both N2 and forming gas plasma. The
latter also decreased the number of Ga-O bonds, improving the Al2O3 nucleation. In regard
to plasma action effects before high-κ deposition, the same group contributed with a large
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variety of studies [73,75,76]. In particular, the effects of O2, N2, and forming gas plasma
annealing were evaluated, comparing the electrical behaviour in terms of interface state
density with the results obtained by XPS analyses. The formation of oxynitride bonds (Ga-
O-N) increased the number of interface defects and that among all the studied treatments,
the forming gas action was the most efficient.

In this context, it has to be emphasized that the semiconductor surface preparation
and the deposition conditions may induce different insulting behaviours after the first film
growth stages. As an example, Schilirò et al. [79] recently reported different behaviour in
the early growth stages of Al2O3 thin films deposited on AlGaN/GaN heterostructures
by thermal or plasma-enhanced ALD. In particular, they provided evidence that the PE-
ALD process occurred under ideal layer-by-layer growth because of the efficiency of the
O2-plasma agent, which acted directly on the Al precursor. On the other hand, the T-ALD
approach resulted in a nucleation process of the Al2O3 film similar to the island-growth
model and a higher susceptibility to charge trapping [79].

Summarizing, surface preparation prior to high-κ oxide deposition is a crucial issue,
including in the case of GaN-based materials, and can be carried out by many procedures.
The aim is the cleaning of C residues, which are detrimental for the oxides’ nucleation,
and the elimination of Ga-N-O bonds, which are the main centres of interfacial electronic
defects. These two issues are generally addressed by non-oxidizing plasma action or by
HF treatments.

3. Epitaxial Growth of High-κ Oxides on WBG Semiconductors

While different oxides have been studied as gate insulators on SiC and GaN [15–19],
only some of them can be grown epitaxially on the WBG semiconductor single-crystal
surface [23–25,80–84]. The epitaxial growth of high-κ oxides on WBG semiconductor
substrates can offer some advantages. Generally, the principal improvement is related to
better saturation of interface unbonded atoms. In particular, the most commonly used
SiC and GaN polymorphs for microelectronics applications possess the wurtzite structure,
with hexagonal surface atomic arrangements. However, though in principle this strategy
can be applied to both SiC and GaN technologies, practical studies have been performed
mainly on GaN-based substrates. In fact, the few studies of epitaxial high-κmaterials on
SiC substrates were limited to γ-Al2O3 phase films [80] and direct growth of NiO thin films
by metal organic chemical vapour deposition (MOCVD) [81]. The γ-Al2O3 phase films
were initially grown by Tanner et al. [80] by the ALD process as amorphous layers, and the
epitaxy on 4H-SiC substrate was obtained under a post-annealing crystallization process
at a very high (1100 ◦C) temperature. The epitaxy was observed for the alignment of the
γ-Al2O3 (111) planes with the (001) 4H-SiC substrate, having a lattice mismatch of about
8.8%. On the basis of the performed reflection high-energy electron diffraction analysis, the
(111) γ-Al2O3 oriented films showed quite good structural properties for film thickness up
to 20 nm, even though some twinned grains were present. Moreover, upon increasing the
film thickness, the crystallization process was no more efficient, and amorphous regions
were observed under TEM investigation.

Epitaxial NiO films, by contrast, have been directly grown onto 4H-SiC epilayers at
the deposition temperature of 550 ◦C [81,85]. A high-resolution TEM micrograph of the
NiO/4H-SiC interface (Figure 6a) confirmed the presence of an axially-oriented (111) NiO
film, but a “non-ideal” interface was observed, because a discontinuous amorphous SiO2
layer was detected, probably formed during MOCVD growth. Furthermore, the presence
of Moiré fringes generated by the superposition of twinned NiO grains was observed.
The C–V characteristics of NiO/4H-SiC capacitors (Figure 6b) were used to calculate the
dielectric constant, the value of which, at 6.2, was much lower than the theoretical 11.9.
This result was justified by the presence of the discontinuous silicon oxide interfacial layer.
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Figure 6. (a) High-resolution cross-section TEM image of a NiO film deposited by MOCVD on 4H-SiC
at 500 ◦C; (b) C-V curve acquired on a NiO/4H-SiC MOS capacitor. Reproduced with permission
from [81]. Copyright © 2013 Elsevier Ltd.

More studies on growing epitaxial oxides have been carried out on GaN-based ma-
terials. The materials under investigation comprise some lanthanide oxides, such as
gadolinium [82], scandium [83,84], and lanthanum [83] oxides, as well as nickel [23,24,81]
and cerium oxides [25,81]. The lanthanides oxides possess bixbyite symmetry, while NiO
and CeO2 are face cubic centred (fcc) oxides. However, the (111) planes of the latter two
possess a hexagonal oxygen structure, which is suitable for epitaxy with the (0001) GaN
superficial planes. Their structural and physical properties are summarized in Table 3.

Table 3. Physical and structural properties of high-κ oxides epitaxially grown on GaN.

Oxide Dielectric Constant Lattice Constant (Å) Mismatch to (0001) GaN (%) Deposition Technique Ref.

Gd2O3 9 10.813 20.1 MBE [82]

Sc2O3 13–14 9.845 9.2 PVD and MBE [83,84]

La2O3 18–27 4.211 6.5 MBE [83]

CeO2 15–26 5.411 6 MOCVD [25,81]

NiO 11.9 4.177 5 Thermal oxidation or MOCVD [23,24,81]

The epitaxial growth of Sc2O3 thin films was performed on a GaN substrate at about
700 ◦C by the pulsed laser deposition (PLD) technique [84]. Herrero et al. [84] demonstrated
that the most critical deposition parameter to obtain perfectly stoichiometric and epitaxial
Sc2O3 thin films was the oxygen partial pressure. In particular, above 50 millitorr oxygen
partial pressure, more than one preferential growth direction was observed. The epitaxial
growth of Sc2O3 was also evaluated by Jur et al. [83] by the MBE technique. Their investi-
gation extended to La2O3, which in principle can provide a dielectric constant of 26 in its
hexagonal structure. Nevertheless, La2O3 growth was demonstrated not to be trivial, since
La2O3 is a hygroscopic material and tends to form an amorphous layer at the interface
with the GaN substrates. Nevertheless, the authors demonstrated that it was possible to
inhibit the water diffusion by the introduction of a thin Sc2O3 layer between GaN and the
growing La2O3 films. The MBE technique was also used for the growth of Gd2O3 epitaxial
gate oxide on an AlGaN/GaN heterostructure [82]. Sakar et al. [82] showed the impact of
a Gd2O3 epitaxial oxide layer on the electrical performance of an HEMT device. Gd2O3
films were deposited at 650 ◦C. The authors demonstrated that the Gd2O3 layer underwent
phase transition upon increasing its film thickness. The first layers, up to about 3 nm,
possessed hexagonal structure, which changed to monoclinic phase when the thickness
of 15 nm was reached. This phase transformation had a great impact on the electrical
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properties, especially in terms of interface trap density, which showed a minimum value of
2.98 × 1012 cm−2 eV−1 in Gd2O3 film 2.8 nm thick. The authors’ conclusion was that the
epitaxial lattice strain also positively affected the two-dimensional electron gas density at
the AlGaN/GaN interface by about 40%.

Nickel and cerium oxides (NiO and CeO2) have also been deposited onto AlGaN/GaN
systems. The first report on NiO-oriented film as a gate insulating layer in AlGaN/GaN
devices was related to thermal oxidation of Ni metal layers [86]. In particular, the fabrication
process relied on a heating treatment, in the 300–600 ◦C temperature range for 5 min in
air ambient, of a 10 nm-thick Ni metal layer. Besides the observation of a colour change
from the dark Ni metal layer to the transparent NiO film, no details were provided on the
structural or compositional characteristics of the formed NiO layers. Generally, the thermal
oxidation of Ni metal layers can lead to the formation of voids in the oxide layer and/or
of randomly oriented films, since the process initiates at the grain boundaries and then
expands in all directions. The growth kinetics of NiO film seem to depend on the texture
and crystallite size of the initial Ni metallic layer [87]. It has been shown that the strong
(111) texture of the Ni layer results in slow NiO growth. These slow oxidation kinetics are
related to the stronger resistance to oxidation of the Ni (111) planes [88]. Therefore, the NiO
growth proceeds mainly from other crystallographic planes, mostly located at the grain
boundaries. Indeed, most of the Ni grains have a (111) texture. This nonuniform growth
results in increased surface roughness after oxidation.

The growth of NiO and CeO2 thin films on AlGaN/GaN heterostructures was carried
out by MOCVD at 500 ◦C [23–25]. TEM analysis demonstrated the formation of 16 nm-thick
NiO (Figure 7a,b) and 20 nm-thick CeO2 (Figure 7c,d), both compact and uniform films.
Since no intermediate layers were visible at the interface, the occurrence of any interaction
and/or oxidation of the substrate during the growth process was ruled out. Moreover, the
(111) NiO planes were perfectly parallel to the (0001) planes of the AlGaN/GaN substrate.
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The selected area electron diffraction (SAED) pattern (Figure 7b) indicated that the
external spots related to the NiO were perfectly aligned to the internal ones from the AlGaN.
In particular, the white spots at 2.77 Å and 1.59 Å plane distances could be related to the
(100) and (110) AlGaN/GaN planes and represented the typical 0001 zone axis pattern for
a hexagonal single crystal, while the red spots forming the hexagonal pattern at 1.47 Å can
be related to the (220) NiO plane; thus, only the 111 NiO zone axis is visible. The NiO spots
are perfectly aligned to the AlGaN/GaN spots at 1.59 Å. Hence, it is possible to conclude
that an epitaxial growth of the (111) NiO planes on the (0001) substrate plane occurred. The
occurrence of the epitaxial growth can be explained by considering the threefold symmetry
of the (111) NiO, which makes possible an epitaxial relationship between the hexagonal
(0001) planes from the AlGaN substrate and the (111) planes of the NiO film. In particular,
the lattice mismatch between the two hexagonal arrangements from the NiO and AlGaN,
calculated from the electron diffraction images, was about 5%. Moreover, it is worth
noting that the XRD peak position of the NiO (111) reflection was very close to that of bulk
NiO, thus indicating that relaxed NiO thin films with strong diffraction intensity could be
obtained under the described operating conditions. Hence, it can be concluded that NiO
deposited samples were epitaxial and stress-free films and possessed excellent interface
quality. TEM analysis also defined the structural relationship between the deposited CeO2
films and the AlGaN/GaN substrate. A TEM cross-section image showed the formation
of 20 nm-thick CeO2 film and an almost perfect film/substrate interface (Figure 7c). The
presence of differently oriented grains is evident, as can be deduced by the appearance of
Moiré fringes. In-plane SAED was also recorded, and diffraction patterns of three different
zone axes were visible. The 0001 zone axis pattern of the substrate is represented by the
white circles in Figure 7d. The CeO2 SAED pattern demonstrated that the CeO2 film grew
along two different orientations, namely, the (111) and (100) directions. In fact, the 111 zone
axis pattern is represented by the red spots lying at 1.93 Å plane distances, and the 100 zone
axis pattern is represented by dots lying at the vertex and at the centre of each side of the
yellow squares at 1.93 Å and 2.70 Å plane distances, respectively. The 100 CeO2 zone axis
is represented by three equivalent configurations 30◦ rotated in the plane.

Hence, the NiO films (111) epitaxially grew on (0001) AlGaN/GaN substrate, while
the CeO2 film was not a single crystal epitaxial layer but formed by two sets of differently
oriented grains (namely, (111)-oriented and (100)-oriented grains) aligned in the (0001)
substrate plane of AlGaN.

The electrical characteristics of the oriented NiO and CeO2 thin films allowed deter-
mining their experimental permittivity values. In fact, from the analysis of the C–V curves,
it was possible to estimate permittivity values of 11.7 and 26 for NiO and CeO2 films,
respectively. These values were very close to those of the NiO and CeO2 bulk permittivity
(11.9 and 26) and properly higher than that of AlGaN alloys. These good values were
probably due the oriented growth of the two films, which represented almost an “ideal”
bulk system, in contrast to amorphous and/or polycrystalline films, which generally show
lower values with respect the bulk materials.

Another key parameter to be considered in dielectric material integration onto WBG
semiconductors is the effective density of the trapping states. The maximum of the trapping
states determined in the AlGaN/GaN metal insulator semiconductor (MIS) diodes were
5 × 1012 cm−2eV−1 for the CeO2 films and 6 × 1011 cm−2eV−1 for the NiO films. The
trapping states of the CeO2 were higher than those of the NiO, which could be attributed
to the better structural characteristics of the NiO/AlGaN interface. While (111) NiO thin
insulating layers seem to be an appealing choice as an epitaxial gate oxide, their integration
into a real transistor has not been attempted yet.

4. Application of High-κ Oxides as Gate Dielectrics in SiC and GaN Transistors

As already mentioned in the introduction, most powered electronic devices based on
silicon have used silicon dioxide (SiO2) as a gate dielectric. However, the use of SiO2 in
modern devices based on WBG semiconductors can be a bottleneck for the full exploitation
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of the intrinsic properties of these materials because of the low value of the dielectric
permittivity of SiO2.

Figure 8 shows the schematics of common insulated gate transistors based on wide
band gap semiconductors (SiC and GaN), i.e., a 4H-SiC metal oxide semiconductor field
effect transistor (MOSFET) (Figure 8a), an AlGaN/GaN metal insulator semiconductor
high electron mobility transistor (MISHEMT) (Figure 8b), and a recessed gate hybrid
AlGaN/GaN MISHEMT (Figure 8c).
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A first advantage of using a high-κ dielectric in a power device is related to the
distribution of the electric field at the gate dielectric region. In particular, according to
Gauss’s law, the electric field in a gate dielectric Eins that is placed on a semiconductor
substrate, e.g., in the gate of a transistor, is given as:

Eins =
κs

κins
Es (1)

where κs and κins are the relative dielectric permittivity values of the semiconductor and
insulator, respectively, and Es is the electric field in the semiconductor [89].

Considering as an example that the relative dielectric permittivity of 4H-SiC is 9.7 while
that for SiO2 is 3.9, according to Equation (1), the electric field in the gate oxide is about
a factor of 2.5 times that in the semiconductor. Hence, when the critical electric field of
4H-SiC is reached, the maximum electric field in the oxide exceeds 9 MV/cm, thus meaning
that the insulator is subjected to a significant stress, and the device reliability is penalized.
In recognition of this problem, it has been proposed to replace the conventional SiO2 gate
dielectric by a high-κ insulator, with a permittivity comparable to that of SiC, so that
the electric field in the gate dielectric would become closer to that in the semiconductor.
In this way, the maximum electric field in the gate dielectric could be reduced, which
should be satisfactory for reliable device operation. Moreover, the changes in the electric
field distribution have a strong impact on the drift layer thickness required to sustain
the targeted drain bias. In fact, using a high-permittivity gate dielectric allows using
the optimal semiconductor drift region for the targeted breakdown, thus minimizing the
specific on-resistance of the device.

Moreover, considering always the case of a SiC MOSFET (Figure 8a), the total specific
on-resistance Ron,sp of the device is given by the sum of different contributions [89]:

Ron,sp = Rch + Ra + RJFET + Rdrift + Rsub (2)

where Rch is the channel resistance, Ra is the accumulation region resistance, RJFET is the
resistance of the JFET region, Rdrift is the resistance of the drift region after the current
spreading from the JFET region, and Rsub is the resistance of the n-type doped substrate.

Ra and RJFET can be minimized by appropriately scaling the device layout, and Rsub
can be reduced by thinning the substrate. Hence, the control of the channel resistance
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contribution Rch is a critical point in 4H-SiC MOSFET fabrication. In particular, the channel
resistance contribution Rch is given by:

Rch =
(Lch·p)

µinvCox(VG − Vth)
(3)

where p is the pitch of the MOSFET elementary cell, Lch is the channel length, µinv is the
mobility for electrons in the channel (inversion layer), Cox is the specific capacitance of the
gate oxide, Vth is the threshold voltage, and VG is the applied gate bias. The gate oxide
capacitance term Cox increases with the insulator permittivity. Hence, it has a direct impact
on the channel resistance and ultimately on the device’s total resistance.

As pointed out by theoretical works [89,90], the use of high-κ is ideally desirable for
future application in trench MOSFET technology [91].

One of the interesting features of the GaN semiconductor and its related AlGaN alloys
is the possibility of growing AlGaN/GaN heterostructures. AlGaN/GaN heterostruc-
tures are characterized by the presence of a two-dimensional electron gas (2DEG) formed
at the interface and possessing a high sheet charge density (in the order of 1013 cm−2)
and a high mobility (above 1000 cm2V−1s−1) [92,93]. Moreover, GaN-based materials
have a high critical electric field (above 3 MV/cm). Thanks to these unique properties,
high-electron mobility transistors (HEMTs) based on AlGaN/GaN heterostructures with
excellent performances have been demonstrated in recent years and are suitable candidates
for high-frequency applications [94,95]. These devices are based on a Schottky barrier at
the gate electrode to modulate the channel current. However, particularly for high-voltage
applications in which the gate electrode is strongly reverse biased with respect to the drain,
a high gate leakage current at the Schottky junction can limit the performance of these
transistors [96]. Hence, a dielectric must be introduced under the gate in order to reduce the
leakage current, creating a metal–insulator–semiconductor high-electron mobility transistor
(MISHEMT), as schematically shown in Figure 8b. In this case, however, the choice of
the gate dielectric represents a key issue for improving device performance [21,97,98] and
optimizing the parasitic capacitance and the gate leakage current [19,99].

Similarly, the benefits of using high-κ materials on the characteristics of insulated gate
transistors in SiC and GaN can be understood from the theoretical calculations shown
in Figure 9a,b. In particular, Figure 9a shows our calculation of the threshold voltage as
a function of the thickness of different high-κ dielectrics for 4H-SiC MOSFETs. As the
gate dielectric thickness is increased to reduce the gate leakage current, the threshold
voltage of the device (Vth) also increases. Hence, while an improvement in the off-state
characteristics of the MOSFET is achieved, this is accompanied by a degradation in the on-
state performance. However, using high-κ dielectrics as insulating gate materials instead
of the conventional SiO2, the rate of increase in the threshold voltage with the dielectric
thickness is reduced. In this way, the leakage can be reduced, with a minor side effect on
the output current.

Figure 9b shows the calculation of the threshold voltage of a GaN-based MISHEMT
as a function of the gate dielectric layer thickness of different high-κ insulators. In this
case, the Vth of the device is negative because of the inherent normally-on nature of these
devices [92]. The negative value of Vth increases with increasing thickness of the gate
insulator. However, the rate of this negative shift is reduced with increasing dielectric
permittivity [100]. Hence, the use of high-κ gate insulators in GaN-based MISHEMTs is
beneficial for reducing the power consumption of the devices.
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4.1. Binary High-κ Oxides in 4H-SiC MOSFETs

Since the band gap for SiC is three times larger than that for Si, the band offset at the
SiO2/SiC interface is smaller than that in the SiO2/Si system. Hence, in SiC MOS-based
systems, a higher tunnelling current than in Si is expected for a given oxide thickness [8].

Because of its high permittivity (20), hafnium oxide (HfO2) has been widely used in
Si technology. Hence, this material has attracted also the attention of the SiC scientific
community. In particular, the investigation started by studying the electronic structure
of the HfO2/SiC interface [101]. However, it was clear that HfO2 alone is not suitable for
SiC because of the low conduction band offset (in the range 0.5–0.7 eV)) at the HfO2/SiC
interface, which may not provide an adequate barrier height for electron injection from
the substrate [101,102]. Because of the intrinsic limitation of the band alignment, attention
moved to the study of the HfO2/SiO2/SiC system [102].

Moreover, other high-κ binary oxides with larger band gaps and more favourable
band alignment with SiC, such as Al2O3 [101], La2O3 [59,103], and ZrO2 [104,105], have
been investigated.

In general, in order to mitigate the fundamental limitations of high-κ binary ox-
ides, the introduction of a SiO2 interlayer between the high-κ material and SiC is often
adopted [58,102].

A good survey of the literature on high-κ dielectrics for SiC was recently reported by
Siddiqui et al. [106].

As described before, using high-κ dielectrics in 4H-SiC MOS-based devices can be
beneficial to fully exploit the properties of the material and reduce the device’s on-resistance.
However, combined interaction with the SiOx layer can give further improvements. As an
example, high channel mobility in 4H-SiC MOSFETs with Al2O3 gate insulators fabricated
at low temperatures by MOCVD (64 cm2V−1s−1) can be obtained when the Al2O3 gate
insulator is deposited at 190 ◦C. According to Hino et al. [107], this result could be further
improved up to an extremely high field-effect mobility of 284 cm2V−1s−1 when the 4H-SiC
MOSFET was fabricated with an ultrathin thermally grown SiOx layer inserted between
the Al2O3 and SiC interface [107].

On this particular aspect, the impact of a thin SiO2 layer thickness inserted between
Al2O3 and SiC on the channel mobility in Al2O3/SiC MOSFETs was investigated by
Hatayama et al. [108]. They demonstrated that the peak value of the field-effect mo-
bility in Al2O3/SiO2/SiC MOSFETs could reach 300 cm2V−1s−1 for an SiO2 thickness of
1 nm. On the other hand, when the SiO2 layer increased up to 2 nm, the field-effect mobility
drastically reduced to 40 cm2V−1s−1 [108], as illustrated in Figure 10.

Another possible approach is employing a semiconductor surface treatment prior to
gate insulator deposition. Lichtenwalner et al. [43] reported the use of a NO annealing at
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1175 or 1100 ◦C for 20 min of a 4H-SiC semiconductor in an attempt to control the interface
state density Dit. This procedure allowed obtaining a peak field-effect mobility in 4H-SiC
MOSFETs of 106 cm2V−1s−1 using an Al2O3 film deposited by ALD as gate dielectric with
postdeposition annealing at 400 ◦C for 30 s.

Materials 2022, 14, x FOR PEER REVIEW 17 of 30 
 

 

On this particular aspect, the impact of a thin SiO2 layer thickness inserted between 
Al2O3 and SiC on the channel mobility in Al2O3/SiC MOSFETs was investigated by 
Hatayama et al. [108]. They demonstrated that the peak value of the field-effect mobility 
in Al2O3/SiO2/SiC MOSFETs could reach 300 cm2V−1s−1 for an SiO2 thickness of 1 nm. On 
the other hand, when the SiO2 layer increased up to 2 nm, the field-effect mobility drasti-
cally reduced to 40 cm2V−1s−1 [108], as illustrated in Figure 10. 

 
Figure 10. (a) Comparison between the field-effect mobility obtained in 4H-MOSFETs fabricated 
using Al2O3 insulators with and without an ultrathin thermally grown SiOx layer inserted between 
the Al2O3 and SiC interface. (b) Peak value of the field-effect mobility obtained using SiOx layers 
with different thicknesses. The data are taken from [107,108]. 

Another possible approach is employing a semiconductor surface treatment prior to 
gate insulator deposition. Lichtenwalner et al. [43] reported the use of a NO annealing at 
1175 or 1100 °C for 20 min of a 4H-SiC semiconductor in an attempt to control the interface 
state density Dit. This procedure allowed obtaining a peak field-effect mobility in 4H-SiC 
MOSFETs of 106 cm2V−1s−1 using an Al2O3 film deposited by ALD as gate dielectric with 
postdeposition annealing at 400 °C for 30 s. 

However, a key aspect is the channel mobility at the operative gate bias. In fact, the 
remarkable peak values of the field-effect mobility are often accompanied by a rapid de-
crease due to an increase in the gate bias close to the value at which the device should 
operate. This particular phenomenon can be understood analysing the single components 
limiting the channel mobility. As an example, a rapid decrease in the field-effect mobility 
is associated with a dominant phonon-scattering mechanism, while a smooth decrease 
with an increase in the gate bias is associated with coulombic scattering [109,110]. In par-
ticular, Arith et al. [111] demonstrated a process for forming aluminium oxide (by ALD) 
as a gate insulator in 4H-SiC MOSFET that did not involve the insertion or formation of 
SiO2 at the interface, eliminating traps that may be present in SiO2. This was achieved with 
hydrogen plasma pre-treatment followed by annealing in forming gas. Hydrogen treat-
ment was effective at reducing Dit at the interface of aluminium oxide and SiC without a 
SiO2 interlayer. 

Clearly, because of the large differences in the mobility behaviour of the MOSFETs 
processed under different conditions, this topic has been strongly debated. In particular, 
Yoshioka et al. [47] demonstrated optimization of the interface of aluminium oxide and 
SiC without a SiO2 interlayer, resulting in a low Dit for the metal oxide semiconductor 
(MOS) capacitor of 1.7 × 1012 cm−2eV−1 at EC − Et = 0.2 eV and a peak field-effect mobility of 
57 cm2V−1s−1 that was quite constant with the variation of the gate bias. Other works have 
tried to figure out the right combination of semiconductor surface pre-treatments and 
postdeposition annealing in order to improve the electrical properties of Al2O3/SiC inter-
faces [41,46]. 

Figure 10. (a) Comparison between the field-effect mobility obtained in 4H-MOSFETs fabricated
using Al2O3 insulators with and without an ultrathin thermally grown SiOx layer inserted between
the Al2O3 and SiC interface. (b) Peak value of the field-effect mobility obtained using SiOx layers
with different thicknesses. The data are taken from [107,108].

However, a key aspect is the channel mobility at the operative gate bias. In fact,
the remarkable peak values of the field-effect mobility are often accompanied by a rapid
decrease due to an increase in the gate bias close to the value at which the device should
operate. This particular phenomenon can be understood analysing the single components
limiting the channel mobility. As an example, a rapid decrease in the field-effect mobility
is associated with a dominant phonon-scattering mechanism, while a smooth decrease
with an increase in the gate bias is associated with coulombic scattering [109,110]. In
particular, Arith et al. [111] demonstrated a process for forming aluminium oxide (by ALD)
as a gate insulator in 4H-SiC MOSFET that did not involve the insertion or formation of
SiO2 at the interface, eliminating traps that may be present in SiO2. This was achieved
with hydrogen plasma pre-treatment followed by annealing in forming gas. Hydrogen
treatment was effective at reducing Dit at the interface of aluminium oxide and SiC without
a SiO2 interlayer.

Clearly, because of the large differences in the mobility behaviour of the MOSFETs
processed under different conditions, this topic has been strongly debated. In particular,
Yoshioka et al. [47] demonstrated optimization of the interface of aluminium oxide and SiC
without a SiO2 interlayer, resulting in a low Dit for the metal oxide semiconductor (MOS)
capacitor of 1.7 × 1012 cm−2eV−1 at EC − Et = 0.2 eV and a peak field-effect mobility of
57 cm2V−1s−1 that was quite constant with the variation of the gate bias. Other works
have tried to figure out the right combination of semiconductor surface pre-treatments
and postdeposition annealing in order to improve the electrical properties of Al2O3/SiC
interfaces [41,46].

Other processing steps have been explored to improve the performance of 4H-SiC
MOSFETs, e.g., by appropriate manipulation of the SiO2/SiC interface. In particular,
Yang et al. [112] deposited 30 nm of SiO2 by ALD and subsequently performed a postdepo-
sition annealing (PDA) in a nitrous oxide (N2O) ambient. The highest electron mobility of
26 cm2V−1s−1 was achieved by performing PDA at 1100 ◦C for 40 s. The gate oxide could
withstand effective fields up to 6 MV/cm within a leakage current range of 1 × 10−7 A/cm2.
This value of maximum electric field was small compared to that of thermally grown SiO2,
which can typically withstand up to 10 MV/cm. In another work, Yang et al. [113] inserted
1 nm of lanthanum silicate (LaSiOx) between ALD-deposited SiO2 and 4H-SiC to form a
gate stack. Peak mobility of 132.6 cm2V−1s−1 was found, with three times larger current
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capability compared to gate oxide without La2O3, but no field oxide data were given.
Figure 11 shows a summary of the discussed results.
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It has to be mentioned that ternary insulators have also been investigated for MOSFET
application in 4H-SiC. In particular, AlON films provided interesting and reliable results
both in MOS and MOSFET applications [114–116]. However, ternary elements are not the
focus of this review.

Very recently, Jayawardhena et al. [117] pointed out the relevance of the appropriate
pre-treatment of the semiconductor to achieve reliable and stable electric characteristics
by employing ALD Al2O3 films directly in contact to the bare 4H-SiC surface with no
interlayers. In particular, their best results were obtained with the preparation of a nitrided
surface via NO annealing, i.e., a process known to passivate surface defects, and a hydrogen
exposure followed by Al2O3 deposition on the bare 4H-SiC surface [117].

A summary of the most relevant 4H-SiC MOSFETs with different high-κ gate dielectrics
is reported in Table 4.

Table 4. Survey of literature data on 4H-SiC MOSFETs with different high-κ gate dielectrics.

Gate Insulator Thickness (nm) Vth (V) µFE (cm2V−1s−1) Dit (cm−2eV) at EC − Et = 0.2 eV Ref.

Al2O3 35 2.8 64 8 × 1011 [108]

Al2O3 33 0.5 -3 52 1 × 1011 cm−2 (integral) [117]

Al2O3 on SiO2

35 + 2 2.8 18 8 × 1011 [108]
35 + 0.7 2.8 300 5 × 1011 [108]
40 + 0.7 2 120 6 × 1011 [111]
25 + 1.8 0.8 106 - [43]

SiO2 on La2O3 30 + 1 3 132 - [113]

AlON 60 + 10 > 0 26.9 1 × 1011 [115]

4.2. Binary High-κ Oxides for GaN-based MISHEMTs

Standard AlGaN/GaN MISHEMTs (see Figure 8b) are obtained by insertion of the
dielectric between the metal gate and the AlGaN layer. The introduction of the gate
dielectric, instead of a standard Schottky barrier gate, gives the advantage of reducing the
leakage current that could limit the off-state and the gate voltage swing of the device [118].
A typical example of gate current reduction observed in HfO2 or CeO2 MISHEMTs is
displayed in Figure 12a. Indeed, a gate leakage reduction of several orders of magnitude
can be observed in both forward and reverse characteristics. This achievement allows a
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higher voltage swing in the device, which in turn results in a higher maximum drain current
saturation value (IDSmax). Another great advantage is the very high ION/IOFF current
ratio. Indeed, high ION/IOFF current ratios between 106 and 108 have been reported in
AlGaN/GaN MISHEMTs. In Figure 12b, the ION/IOFF current ratio was plotted as function
of the IDSmax. Interesting, two families of MISHEMTs can be observed depending on the
leakage current level. Despite their non-outstanding IDSmax, some devices can exhibit very
high ION/IOFF current ratios because of their very low leakage current. On the other hand,
in other cases, despite slightly higher leakage current, extraordinary IDSmax values have
been demonstrated. Table 5 summarizes a survey of the most promising results obtained
in normally-on AlGaN/GaN MISHEMTs using different high-κ dielectrics. Indeed, not
only are Al2O3 [119–121] and HfO2 [122–125] indicated as suitable dielectrics, but many
other gate oxide layers (Y2O3 [126], HZO [127], Ta2O5 [128], La2O3 [125], ZrO2 [129–131],
Gd2O3 [132]) have shown promising results when integrated into GaN HEMT technology.
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Figure 12. (a) Comparison of the gate current–voltage characteristics of AlGaN/GaN HEMTs (Schot-
tky gate) and MISHEMTs employing HfO2 and CeO2 gate insulators. The data are taken from [25,118].
(b) ION/IOFF versus IDSmax for MISHEMTs using different gate oxides. The data are taken from Table 6
and references therein.

Table 5. Survey of literature data on normally-on AlGaN/GaN MISHEMTs with different high-κ
gate dielectrics.

Dielectric Thickness (nm) Vth (V) IDmax (mA/mm) IG-leak (mA/mm) ION/IOFF Ref.

Al2O3
25 −7.0 150 5.0 × 10−5 3.0 × 106 [119]
15 −7.0 750 8.0 × 10−5 1.0 × 108 [120]
30 −8.0 40 1.0 × 10−8 3.0 × 1010 [121]

HfO2

20 −1.1 440 2.2 × 10−7 1.0 × 1010 [122]
12 −8.0 386 1.1 × 10−9 1.1 × 109 [123]
23 −6.0 830 3.0 × 10−6 3.0 × 108 [124]
8 −3.7 585 6.5 × 10−5 6.9 × 106 [125]

Y2O3/HfO2 1/12 −5.0 600 3.0 × 10−9 6.0 × 1011 [126]

Ta2O5 24 −9.7 600 1.0 × 10−5 6.0 × 107 [128]

La2O3 8 −2.9 409 1.0 × 10−4 9.7 × 105 [125]

ZrO2

30 −7 1168 5.4 × 10−4 2.3 × 107 [129]
10 −4.2 900 2.0 × 10−4 4.5 × 106 [130]
10 −3.9 790 3.0 × 10−5 2.6 × 107 [131]

HfZrOx 20 −12 705 6.0 × 10−4 1.0 × 107 [127]

Gd2O3 4 −6.5 700 1.0 × 10−6 3.5 × 107 [132]
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A relevant concern often characterizing the behaviour of high-κ binary oxides is the
occurrence of charge-trapping phenomena upon bias stress [39], which can be the cause
of reliability issues in GaN insulated gate transistors. Nevertheless, the electron trapping
inside the Al2O3 gate insulator in GaN MISHEMTs can be used to intentionally induce
a positive shift in the threshold voltage and finally obtain a normally-off operation [121].
In this context, Fiorenza et al. [133] recently studied the temperature stability of these
effects, demonstrating the presence of two competitive electron trapping/de-trapping
mechanisms in Al2O3 films, which were likely related to the presence of oxygen vacancies
in the material.

Slightly different is the case of normally-off recessed gate hybrid MISHEMTs (see
Figure 8c). In this case, the AlGaN layer below the gate region is removed, interrupting the
2DEG channel and resulting in a positive threshold voltage. The gate region is formed by a
metal/oxide/GaN (MOS) interface, which requires a positive gate voltage to accumulate
electrons at the oxide/GaN interface to restore the channel device. Though this approach
seems to solve the crucial issue of normally-off behaviour, the complexity of these systems
generates additional concerns. As an example, the lack of a 2DEG channel in the gate
region causes a notable increase the channel resistance, leading to a high final on-resistance
(RON) and a reduced IDSmax. To avoid this problem, it is very important to achieve high
electron mobility values [134]. Hence, the oxide/GaN interface quality is clearly a key
aspect to ensure a high mobility, as are the morphology of the recessed gate region and
the presence of electrically active defects [135]. In this context, the choice of dielectric
gate becomes crucial. The use of SiO2 resulted into a poor interface quality displaying
fast (interface) and slow (border) traps [136]. Dielectrics such as AlN [137], SiN [138], and
their combination [139] have been also investigated as beneficial solutions to passivate
surface N-vacancy, especially after recess etching damage in the gate region [140]. However,
despite the good quality of the achieved interface and improved electron mobility, it was
very difficult to obtain positive threshold voltages Vth well beyond the zero [137]. For these
reasons, an increasing number of studies are focused on high-permittivity binary oxide
layers for normally-off behaviour of AlGaN/GaN MISHEMTs. Table 6 shows the most
promising results obtained in recessed gate hybrid MISHEMTs. ALD-deposited Al2O3
is one of the most diffused solutions for normally-off recessed gate hybrid MISHEMTs
[141–147]. However, an excessive threshold voltage instability has been observed for Al2O3
gate insulators [121,148]. This phenomenon has been attributed to the large number of
negative fixed charges incorporated in the gate stack [148,149]. As an alternative solution,
ALD gate oxides with even higher dielectric constants, such as HfO2 [150] or ZrO2 [151–153],
have been investigated for normally-off recessed MISHEMTs. Furthermore, in this case,
trapped or fixed charges result in Vth instability issues. Other opportunities have been
found in ternary oxide layers, such as HfSiOx [154] or LaHfOx [155].

Another important challenge in normally-off recessed gate hybrid MISHEMTs is the
possibility of obtaining a very high saturation current IDSmax with a well positive Vth value.
In Figure 13, experimental values of IDSmax are plotted as a function of the threshold voltage
Vth. However, the values of IDSmax seem to decrease in correspondence with an increase in
Vth, thus suggesting the existence of a trade-off between a high output current and a more
positive threshold voltage. In this context, a partial recession of the AlGaN barrier layer
has also been explored to realize normally-off hybrid MISHEMTs. In this way, a higher
2DEG channel density is obtained. On the other hand, a more uniform and accurate AlGaN
etching process is required to obtain a positive threshold voltage and normally-off devices.

Finally, to achieve normally-off behaviour in GaN-based HEMTs, the use of appropri-
ate gate oxides with p-type semiconducting behaviour has been proposed. In fact, similarly
to the most diffused p-GaN gate approach [156], the use of a p-type semiconducting oxide
can lift up the conduction band at the AlGaN/GaN interface, resulting in the depletion of
the 2DEG. By applying a positive gate bias VG, it is possible to realign the conduction band
of the structures, restoring the 2DEG and the channel conduction. Among these p-type
semiconducting oxides, oxides such as NiO and CuO have been taken in consideration for
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normally-off HEMT fabrication [157–159]. The origin of the p-type doping of these oxides
is still debated. The existence of negatively charged Cu or Ni vacancies and the presence of
interstitial oxygen [160,161] have both been considered as possible causes. Moreover, the
possibility of epitaxial CVD growth on an AlGaN or GaN template makes this approach
for threshold voltage engineering in GaN technology interesting [23].
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Table 6. Survey of literature data on normally-off recessed gate hybrid MISHEMTs with different
high-κ dielectrics.

Dielectric Thickness (nm) VTH (V) Mobility (cm2/Vs) RON (Ωmm or mΩcm2) IDSS (mA/mm) Ref.

Al2O3

30 2 225 7.8 Ωmm 353 [141]
38 3.5 55 27 Ωmm 336 [142]
10 1.7 251 9.8 Ωmm 528 [143]
20 2.9 148 7.2 Ωmm 585 [144]
30 3.5 170 9.5 Ωmm 355 [145]
30 2.5 192 9.6 Ωmm 620 [146]
23 0.4 396 13.3 Ωmm 356 [147]

HfO2 30 1.8 (partial recessed) 876 5.2 mΩcm2 411 [150]
3.6 (total recessed) 118 12.2 mΩcm2 146

HfSiOx 15 2.2 520 10.1 Ωmm 519 [154]

LaHfOx 8 0.35 9.4 Ωmm 648 [144]

ZrO2

20 3.99 210 24 Ωmm 286 [151]
23 2.2 (partial recessed) 850 9.2 Ωmm 590 [152]
16 1.55 (partial recessed) 1450 7.1 Ωmm 730 [153]

5. Conclusions

High-permittivity binary oxides for silicon carbide (SiC) and gallium nitride (GaN)
electronic devices have attracted significant interest in the last decade because of the po-
tential benefit they can bring in the device performances. In particular, special attention
has been placed on the most suitable deposition techniques for their synthesis and on their
implementation in real device fabrication, in which all the processes must be compatible
with industrial environments and scalable to large areas. Surely the most widely inves-
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tigated binary oxide is Al2O3, as well as its combination with HfO2 and other materials.
In fact, Al2O3 provides a good compromise among all the basic physical properties to
be fulfilled by the gate dielectric for wide band gap semiconductors, namely, a dielectric
constant close to that of the semiconductor, a large band gap, an appropriate band offset,
a high critical electrical field, and good thermal stability. On the other hand, HfO2 and
other oxides possess higher dielectric constants than Al2O3, but their band alignments and
crystallization temperatures represent a concern in application. The most affirmed method
for their synthesis has been demonstrated to be the ALD approach, which can be considered
the deposition technique of choice for the fabrication of very thin films with high uniformity
and conformal growth on large areas. All these capabilities render ALD as very appeal-
ing for industrial implementation. In this context, beyond the fundamental study on the
impact of the deposition parameters on the films’ properties, the pre- and post-deposition
conditions are relevant features for the development of a reliable high-κ technology for
SiC and GaN. Cleaning treatments before high-κ thin film deposition, e.g., based on wet
chemical solutions are the most suitable approach for both SiC and GaN substrates in order
to limit the creation of interface defects. In spite of the “gentle” nature of the wet cleaning,
interface states, as well as fixed charges within the binary oxides, still represent a great
concern in practical applications. Hence, post-deposition and post-metallization annealing
treatments need to be optimized in order to achieve the desired device performance. A
common problem in SiC technology is the formation of an uncontrolled SiOx layer at the
interface as well as residual carbon. Hence, the intentional Al2O3/SiO2 combination has
been proposed as a possible solution, although the presence of the SiO2 interfacial layer
partially reduces the advantage offered by the high-κ Al2O3. For that reason, the search
for other material combinations and/or post-deposition treatments limiting the interfacial
interaction has become mandatory.

In regard to GaN-based devices, the implementation of Al2O3 thin films is also the
most investigated and promising solution. The interaction at the interface is limited to
a partial oxidation of the substrate, which in turn might be source of electrically active
defects when oxynitride bonds are present. In this case, the epitaxial growth of crystalline
oxides has also been widely explored as a possible route to gate insulation in GaN-based
devices, considering other oxides, such as lanthanide oxides (Gd2O3, Sc2O3, and La2O3)
or NiO and CeO2. However, the main limitations of the epitaxial oxides’ implementation
are the number of structural defects occurring after the initial layers and the presence of
preferential leakage current paths at the grain boundaries.

In terms of practical device application, high-κ binary oxides have already been
implemented in both 4H-SiC MOSFETs and GaN-based MISHEMTs, with Al2O3 being the
most widely used system. In this case, while promising results in terms of channel mobility
and RON have been reported, charge-trapping effects occurring in these oxides remain a
limiting factor that has to be addressed by appropriate surface preparation techniques and
post-annealing conditions. In particular, the integration of high-κ oxides as gate insulators
in 4H-SiC MOSFETs will require optimization of the process flow, with particular attention
to the thermal budget required for ohmic contact formation, which must be compatible
with the crystallization temperature of the oxide.
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