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Abstract: Federal rule changes governing natural gas pipelines have made non-destructive tech-
niques, such as instrumented indentation testing (IIT), an attractive alternative to destructive tests for
verifying properties of steel pipeline segments that lack traceable records. Ongoing work from Pacific
Gas and Electric Company’s (PG&E) materials verification program indicates that IIT measurements
may be enhanced by incorporating chemical composition data. This paper presents data from PG&E’s
large-scale IIT program that demonstrates the predictive capabilities of IIT and chemical composition
data, with particular emphasis given to differences between ultimate tensile strength (UTS) and yield
strength (YS). For this study, over 80 segments of line pipe were evaluated through tensile testing, IIT,
and compositional testing by optical emission spectroscopy (OES) and laboratory combustion. IIT
measurements of UTS were, generally, in better agreement with destructive tensile data than YS and
exhibited about half as much variability as YS measurements on the same sample. The root-mean
squared error for IIT measurements of UTS and YS, respectively, were 27 MPa (3.9 ksi) and 43 MPa
(6.2 ksi). Next, a machine learning model was trained to estimate YS and UTS by combining IIT with
chemical composition data. The agreement between the model’s estimated UTS and tensile UTS
values was only slightly better than the IIT-only measurements, with an RMSE of 21 MPa (3.1 ksi).
However, the YS estimates showed much greater improvement with an improved RMSE of 27 MPa
(3.9 ksi). The experimental, mechanical, and metallurgical factors that contributed to IIT’s ability to
consistently determine destructive UTS, and the differences in its interaction with composition as
compared to YS, are discussed herein.

Keywords: IIT; nondestructive testing; integrity; pipelines; materials verification

1. Introduction

In traditional structural design, in-service loads are estimated and compared with
known material properties to determine an appropriate structural configuration. However,
integrity verification of existing structures sometimes presents the inverse problem where
configuration is known but the material properties are unknown. Estimating the mechanical
properties of in-service materials is essential in such cases and underpins recent changes in
regulations governing pipelines in the United States [1].

These regulatory changes for natural gas transmission pipelines have prompted op-
erators to deploy nondestructive testing (NDT) technologies to verify material properties
when traceable, verifiable, and complete (TVC) records do not exist. Pertinent material
properties for pipelines include yield strength (YS), ultimate tensile strength (UTS), fracture
toughness, hardness, chemical composition, and metallographically-determined grain size
and phase fractions. All these parameters can be used to estimate the steel grade (per [2])
for subsequent calculations and for pipeline integrity management.
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Instrumented indentation testing (IIT) has, thus, become a prominent technique for
NDT in the pipeline community, although the specific implementation of the technique
varies a great deal. A method involving a single indentation of pipeline steels and mi-
croscopy of the residual deformation was presented in [3] and updated in [4]. Those authors
also explored various indentation load levels in assessing degradation of API pipeline
samples in [5]. A combination of indentations, with a flat indenter and numerical analysis,
was used in [6] in extracting the full hardening curve from grade X80 pipe, with validation
against tensile data. The same authors used the technique to assess the mechanical proper-
ties of welds in X80 pipe in [7], and an overall review of the flat indenter technique was
presented in [8]. IIT has also been used to measure residual stresses in steels [9].

The Pacific Gas and Electric Company (PG&E, Walnut Creek, CA, USA) has adopted
IIT for nondestructively estimating YS and UTS. PG&E has spent several years developing
an IIT program for its engineering critical assessment activities (see [10–14]). This effort
has included destructive tensile testing of some pipe features for direct comparison to the
IIT measurements (a pipe feature is any contiguous section of pipe between girth welds).
Specifics of the adopted technique are discussed in Section 2.1.

Since the program launched in late 2016, over 5000 IIT measurements have been
obtained across nearly 200 unique line pipe features, spanning a wide range of vintages,
making the dataset presented in this work the largest collection of IIT data on line pipe
steels known to the authors. IIT’s estimate of UTS is particularly robust, exhibiting reduced
scatter compared to previously published correlations of hardness data with UTS [15].
Additionally, whereas hardness has typically been used to estimate only UTS, IIT can be
used to nondestructively measure both UTS and YS.

The strength of steel is known to be strongly influenced by chemical composition.
The base strength of nearly-pure ferritic iron can be relatively low, about 85 MPa [16].
Therefore, steelmaking incorporates one or more approaches to increase strength, including
alloying, controlled cooling, grain size reduction, strain hardening, and precipitation
hardening. The strengthening methods, other than alloying, are not assessed in this article
because they are not easily quantified in the field. For chemical composition estimation (i.e.,
elemental mass fraction) of line-pipe steels, however, PG&E established reliable methods
and relationships between destructive laboratory chemical composition results and non-
destructive composition estimates [17,18].

Line pipe steels of low and moderate strength are typically low-carbon, ferrite-pearlite
steels. Manganese is added to reduce impurities, and both carbon and manganese in-
crease hardness [19]. In the 1930s, Bain estimated that manganese increases the UTS of
ferrite-pearlite steels by about 25 MPa for each 1 weight percent (wt.%) Mn addition [20].
Nearly 50 years later, Pickering, and coauthors from British Steel, reported in [21,22] that
manganese increases YS and published the following empirical relationship:

YS(MPa) = 88 + 37Mn + 83Si + 2918N f + 15.1d−
1
2 (1)

where manganese (Mn) and silicon (Si) are specified in wt.%, N f is free nitrogen, and d is
average grain size (in mm). Equation (1) applies only for low-carbon ferrite-pearlite steels,
and the reported accuracy of Equation (1) was ±31 MPa (4.5 ksi). Both manganese and
carbon increase UTS, as observed by the following relationship developed by the same
authors, because carbon makes up 0.77 wt.% of the microstructural constituent, pearlite,
where pearlite represents the percent pearlite observed via metallographic evaluation [19]:

UTS(MPa) = 294 + 28Mn + 83Si + 3.85(pearlite) + 7.7d−
1
2 (2)

Recent findings [23] have shown that, over the past 100 years, manganese content and
the content of microalloying elements such as vanadium, titanium, niobium, chromium,
and molybdenum in line pipe steels has tended to increase, while carbon content has tended
to decrease. Therefore, these long-accepted empirical relationships in Equations (1) and (2)
may not hold for some contemporary line pipe steels. Researchers have recently attempted
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to use machine learning to establish improved estimates of mechanical properties from
chemical composition by coupling it with indentation data. In [24], a neural network model
was created to determine hardness using a combination of processing parameters and
chemical composition. It was found that the composition data were far more influential in
accurately estimating product hardness than the processing parameters were. A genetic
algorithm was used in [25] to determine the mechanical properties from Vickers indentation
load-depth responses in steels. A comprehensive examination of input parameters and
multiple machine learning techniques was presented in [26] with the objective of predicting
ultimate strength and elongation, although the focus was on tailoring composition and
processing to produce an intended result.

The work presented in this paper stands apart in that chemical composition data is
used to further enhance the accuracy of mechanical properties, derived from IIT measure-
ments, using multivariate linear regressions that were trained on benchmark destructive
tensile data. Taken together, IIT and chemical composition analyses give reliable nonde-
structive estimates of strength, particularly UTS. This paper presents data collected by
PG&E that shows IIT measurements of UTS exhibit about half as much variability as YS.
Chemical composition data and its role in bolstering the raw IIT measurements through
incorporation into a linear regression model, trained against benchmark tensile data, are
presented as well. IIT alone, and IIT together with the chemical composition effect, are
also directly compared to destructive tensile measurements. This paper provides a method
and model by which users of low carbon steels can use non-destructive IIT and chemical
composition information to determine YS and UTS with improved accuracy.

2. Materials and Methods
2.1. Instrumented Indentation Testing

While many implementations of IIT exist, they all involve an indentation process dur-
ing which a shaped indenter is brought into contact with the material of interest through
one or more load and unload cycles. The normal force and displacement are recorded
throughout the indentation process, and the tested materials’ mechanical properties are
estimated from the load-depth response. As described in the international standard govern-
ing IIT [27], IIT sets itself apart from traditional hardness testing through this continuous
recording of load and depth. Doing so enables extraction of a multitude of mechanical
properties and obviates the need for subsequent optical inspection of the indent.

The Frontics AIS 2100 IIT instrument, which was originally developed by engineers at
Seoul National University (SNU, Seoul, Korea) (see [28–31]), was used in this work, and
their loading scheme, as described below, was adopted. This tool employed a 0.5-mm
diameter spherical indenter. A photograph of the Frontics AIS 2100 tool, mounted to a pipe
sample, is shown in Figure 1. The instrument is shown mounted to a 24-inch diameter
(61-cm; note that the pipelines tested in this effort were manufactured in the United States
according to imperial units of measure) pipe by means of a magnetic mounting stand;
the instrument was secured to the stand on flat ground, and then, the whole fixture was
secured to the pipe by engaging the magnets. For pipes with outer diameters (OD) between
8 and 24 inches (20 and 61 cm), the instrument is mounted via a heavy-duty roller chain
that is tightened to a specific torque. Secure mounting of the instrument is critical to ensure
a sufficiently stiff test setup.

The tool was operated in displacement control and indented the sample surface to a
maximum depth of 150 µm, through a series of 15 sequential load/partial-unload cycles,
in increments of 10 µm. In each cycle, the indenter reached its target depth (e.g., 50 µm
during the 5th load cycle) and unloaded to 50% of the force, corresponding to the target
depth, before commencing the next load cycle and re-loading to the next target depth (e.g.,
60 µm). As described below, these 15 discrete points of the load-depth response are used to
obtain the stress and strain at these times, as well as the complete work hardening response.
The resulting load-depth curve, at the conclusion of 15 cycles from a representative IIT
measurement, is depicted in Figure 2.
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The algorithm for extracting stress and strain, and subsequently YS and UTS, from this
load-depth response is detailed in [28] through [31], and it is presented here in summary
form. However, it is noted that those authors also relied on the pioneering work of
Tabor [32].

The representative stress of indentation, σr, is a function of the applied load, F, and the
projected contact area of the indentation, Ac, as shown in Equation (3). Ac can be calculated
from the chordal radius ac of the indentation (see Equation (4) and Figure 3). Ψ is assigned
a value of 3.0 based on the work of Jeon et al. [30].
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σr =
1
Ψ

(
F

Ac

)
(3)

Ac = πa2
c (4)
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Figure 3. Schematic representation of a spherical indentation test and basic nomenclature; contact
radius, ac, and contact depth, hc, highlighted in blue for clarity.

The representative strain, εr, is calculated according to Equation (5), in which the
coefficient, α, is assigned a value of 0.14 based on experiments and analysis. It is worth
mentioning that this equation, published in [28,30], differs from the relationship first
proposed by Tabor in [32].

εr = α

(
ac

R − hc

)
= α tan γ (5)

Equations (1) through (3) introduce new unknowns: the contact radius ac, and the
contact depth hc. These parameters, themselves, are difficult to measure directly in-situ and
are, therefore, estimated afterwards from other measured quantities through an empirical
model. The detailed procedure for extracting mechanical properties from the indentation
response is presented in [28,31]. In brief, a power-law stress-strain relationship is assumed
(Equation (6)), and the strain hardening exponent n is empirically related to the pile up
around the indenter through Equation (7).

σ = Kεn (6)

h∗pile

h − ω F
Si

= a
(

1 + b1n + b2n2
)[

1 + c1
h
R
+ c2

(
h
R

)2
]

(7)

The numerical values of the parameters appearing in Equation (7) were established
in [29] through numerical calibration of the IIT algorithm on a range of metallic materials.
These parameters are presented here in Table 1.

Table 1. Numerical constants used in Equation (7) (values from [29]).

ω a b1 b2 c1 c2

0.75 0.131 −3.423 0.079 6.258 −8.072

An initial trial value for the hardening exponent n is assumed and used to update the
contact parameters ac and hc through Equation (7). This new ratio subsequently changes
the estimated representative stress and strain (σr and εr) at the 15 load maxima points
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from the IIT measurement. A power-law is fit to the final 10 of these updated points, and
the process is repeated until the exponent n converges. Note that only the final 10 of the
15 stress-strain points are used in this study since, from the authors’ experience, the first
5 exhibit greater variability due to the very small loads achieved in those load cycles.

The instrument records the time of each instance of load and depth, and therefore,
the strain rate can be established from the strain at the 10 discrete points. While the rate
varies depending on strains achieved in each test, the typical strain rate over the final 10 of
the 15 load maxima was between 2.5 × 10−3 s−1 and 0.5 × 10−3 s−1. This rate, however,
is not fully analogous to the strain rate under uniaxial tensile loading. First, in general, the
state of strain beneath the indenter in an IIT test is compressive and multiaxial. Second, the
strains achieved just beneath the indenter during IIT exceed the strains reached in tensile
tests due to the early onset of necking in tensile tests.

YS and UTS are then computed from the power-law stress-strain curve. In this work,
YS is defined as

YS = K(0.005)n (8)

where YS, corresponding to a total strain of 0.5%, is consistent with the definition adopted
for line pipe steels in [2]. This definition of YS has an advantage over alternatives, such
as the 0.2% offset yield stress, in that it can be computed without first measuring Young’s
Modulus. By the same token, this definition is only acceptable for materials with Young’s
Modulus within a certain range—for example, some aluminum alloys may not have begun
to yield at 0.5% strain. However, for the line pipe steels under consideration in this work,
0.5% strain is always beyond the elastic limit.

The UTS is taken as the stress at a strain numerically equal to the computed power-law
hardening exponent, i.e., σ(εUTS = n). This equality is derived from the Considère analysis
of an incompressible, power-law material under uniaxial loading. Therefore, this approach
assumes the deformation beneath the indenter is approximated by a uniaxial strain state.
Thus, with the power-law stress-strain relationship established:

UTS = K(n)n (9)

Typically, at least eight measurements, in each of two different locations on the same
pipe sample, are taken. This is partly motivated by regulatory requirements [1], but it is
also done to permit detailed analysis of the uncertainty in the technique, which stems from
the physical measurements and the iterative IIT algorithm that was adopted. Random error
was further mitigated by this replicate sampling.

Through years of experience with this methodology, PG&E has developed several crite-
ria that are used to filter out erroneous measurements. Several of these criteria are detailed
in [33] and include, for example, a method for detecting poor fixturing of the instrument to
the pipe by scanning load-depth curves for indications of excessive compliance.

2.2. Tensile Testing

Uniaxial tension tests were also conducted on many of the same pipe features on
which IIT was conducted to provide benchmark YS and UTS values. In most cases, tensile
tests were performed on both longitudinal and transverse samples. The tensile samples had
nominal dimensions that conformed to Figure 3 in ASTM A370, including a gage length of
5.1 cm (2.0 in.) and a width of 3.8 cm (1.5 in.), as well as a sample thickness consistent with
the pipe wall thickness, 4.8 mm (0.19 in.) to 19 mm (0.75 in.). Specimens also had some
initial curvature since they were extracted from pipelines. The transverse specimens were
flattened in a press prior to tensile testing. The longitudinal tensile specimens were not
flattened prior to testing. An averaging extensometer, with a 5.1-cm (2-inch) gage length
and 2.5-cm (1.0-inch) maximum elongation, was used to calculate average strain and to
facilitate analysis of the full stress-strain response. Specimens were loaded in displacement
control at a displacement rate of 3 × 10−3 cm/s (0.05 in/min), corresponding to a nominal
strain rate of 3.7 × 10−4 s−1. After reaching 1% nominal strain, the displacement rate was
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increased by a factor of 10. Thus, the strain rate in uniaxial tension compared well with the
estimated rate through IIT testing.

Throughout this work, the YS reported from tensile tests is the stress at 0.5% nominal
strain. This definition is consistent with the definition adopted for IIT, but no power-law
model is fitted to the tensile response; YS is read directly from the measured stress-strain
response. The UTS from tensile tests is the true stress, corresponding to the load maximum.

2.3. Chemical Composition Testing

For the chemical composition results presented in this paper, combustion testing
was used for carbon and sulfur, and OES was used for all other elements. Samples (ap-
proximately 2.5 cm × 2.5 cm) were cut out of the pipes and tested. For the combustion
method, a drill was used to remove chips from the sample, and 2–4 combustion replicate
measurements were taken. The OES data represent the average of 2–4 OES burns on the
surface of the sample. In this work, only the elements manganese and carbon were used
for strength prediction because these two elements are specified in [2] for all pipe grade
specifications and are present in amounts large enough for reliable measurement through
the NDT techniques currently under development [17,18]. Other elements, such as silicon,
sulfur and the microalloying elements, vanadium, titanium, niobium, chromium, and
molybdenum, require further validation of the NDT techniques but could be included in
future work.

2.4. Materials

The samples in this study consisted of 197 steel pipe features, including line pipe and
fittings. The feature materials included mostly traditional, low-carbon, moderate-strength
steel, as well as 3–5 thermomechanically controlled processed (TMCP) steel pipes and 3–
5 quenched and tempered (Q&T) steel pipes. As will be described below, the carbon content
ranged from about 0.05% to 0.25% in the steels in this study. YS typically ranged between
275 and 415 MPa (40 and 60 ksi), and UTS was between 415 and 550 MPa (60 and 80 ksi). IIT
measurements were obtained on site on either active or decommissioned pipeline segments,
ranging in diameter from 10.2 cm (4 in.) to 91.4 cm (36 in.), and wall thickness from 4.8 mm
(0.188 in.) to 19 mm (0.75 in.).

Prior to indentation, the pipeline surface was carefully prepared to a “mirror fin-
ish.” The surface was ground with successively finer-grit sandpaper, using a handheld
mechanical sander to a final pass of 2000 grit. The orientation of the sander, relative to the
surface, was changed with each successive pass to mitigate groove-in. This entire process
is designed to remove a minimum of 10 µm of wall thickness from the OD and, therefore,
minimize the presence of any decarburization layer that may exist in the pipe sample.

3. Results
3.1. IIT Measurements and Analysis

In total, 5231 IIT measurements were taken across 197 distinct pipe features. The full
spectrum of YS and UTS values obtained from these measurements is shown in Figure 4a.
YS values typically fall between 275 and 415 MPa (40 and 60 ksi), while most UTS values
fall between 415 and 550 MPa (60 and 80 ksi), though the ranges do overlap to some degree.

To quantify the variability in these measurements, IIT measurements were grouped
according to the specific pipe feature and feature location from which each measurement
was obtained. The mean, standard deviation (SD), and coefficient of variation (COV) were
computed within each of these groupings. The COV, defined as the SD divided by the
mean, provides a normalized measure of the variability. Histograms of SD and COV for
YS and UTS, from IIT measurements, are presented in Figure 5a. These figures show that
UTS tends to exhibit less variability than YS, both in absolute terms (indicated by SD) and
relative terms (indicated by COV). The average SD for YS (12 MPa or 1.8 ksi) is twice that
of UTS (6 MPa or 0.9 ksi), while the average COV for YS (0.037) is three-times greater than
that of UTS (0.012).
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To show how the variability of YS and UTS, from IIT measurements, directly compare
within each grouping, the quantities’ COVs are plotted against each other in Figure 6.
A unity line was also added to the figure for context. Points falling below the unity line
indicate groupings where the COV for YS is greater than the COV for UTS, while points
falling above the unity line indicate grouping where the COV for UTS is greater than the
COV for YS. The trend shown by the histograms in Figure 5a is emphasized in Figure 6.
The superior precision of the UTS measurements is clear: out of 544 test locations, only 6 of
them had a COV for UTS that exceed the COV for YS.

Materials 2022, 15, x FOR PEER REVIEW 8 of 24 
 

 

3. Results 
3.1. IIT Measurements and Analysis 

In total, 5231 IIT measurements were taken across 197 distinct pipe features. The full 
spectrum of YS and UTS values obtained from these measurements is shown in Figure 4a. 
YS values typically fall between 275 and 415 MPa (40 and 60 ksi), while most UTS values 
fall between 415 and 550 MPa (60 and 80 ksi), though the ranges do overlap to some de-
gree. 

 
Figure 4. Histogram of YS and UTS for all (a) IIT and (b) tensile measurements in this study. Figure 4. Histogram of YS and UTS for all (a) IIT and (b) tensile measurements in this study.



Materials 2022, 15, 832 9 of 22

Materials 2022, 15, x FOR PEER REVIEW 9 of 24 
 

 

To quantify the variability in these measurements, IIT measurements were grouped 
according to the specific pipe feature and feature location from which each measurement 
was obtained. The mean, standard deviation (SD), and coefficient of variation (COV) were 
computed within each of these groupings. The COV, defined as the SD divided by the 
mean, provides a normalized measure of the variability. Histograms of SD and COV for 
YS and UTS, from IIT measurements, are presented in Figure 5a. These figures show that 
UTS tends to exhibit less variability than YS, both in absolute terms (indicated by SD) and 
relative terms (indicated by COV). The average SD for YS (12 MPa or 1.8 ksi) is twice that 
of UTS (6 MPa or 0.9 ksi), while the average COV for YS (0.037) is three-times greater than 
that of UTS (0.012). 

 
Figure 5. Histograms of SD (left) and COV (right) for (a) IIT and (b) tensile tests. 

To show how the variability of YS and UTS, from IIT measurements, directly com-
pare within each grouping, the quantities’ COVs are plotted against each other in Figure 
6. A unity line was also added to the figure for context. Points falling below the unity line 
indicate groupings where the COV for YS is greater than the COV for UTS, while points 
falling above the unity line indicate grouping where the COV for UTS is greater than the 
COV for YS. The trend shown by the histograms in Figure 5a is emphasized in Figure 6. 

Figure 5. Histograms of SD (left) and COV (right) for (a) IIT and (b) tensile tests.

Materials 2022, 15, x FOR PEER REVIEW 10 of 24 
 

 

The superior precision of the UTS measurements is clear: out of 544 test locations, only 6 
of them had a COV for UTS that exceed the COV for YS. 

 
Figure 6. UTS COV vs. YS COV for IIT data. 

3.2. Comparison to Destructive Data 
With respect to tensile testing data, 531 tensile tests were executed across 136 distinct 

pipe features. The histogram of YS and UTS measurements, obtained from the tensile test-
ing program, is shown in Figure 4b. YS values typically fell between 275 and 415 MPa (40 
and 60 ksi) (though some values also fell between 480 and 550 MPa), while most UTS 
values fell between 415 and 620 MPa (60 and 90 ksi). Note that these tensile results in 
Figure 4b are plotted on the same x-axis scale as the IIT results in Figure 4a. Though the 
IIT results exhibit a better-defined peak than the tensile results, it is important to note that 
there were ten times more IIT measurements obtained than tensile measurements. 

Histograms of SD and COV for YS and UTS, from the tensile measurements, are pre-
sented in Figure 5b. These values were computed for the tensile data in a manner identical 
to that of the IIT values: the measurements were first grouped by pipe section from which 
each measurement was obtained. The mean and SD were computed within each of these 
groupings, and the COV was also computed. As with the variability displayed by the IIT 
measurements, these figures show that UTS tended to exhibit less variability than YS, both 
in terms of SD and COV. Again, the tensile figures in Figure 5b are plotted with the same 
x-axis range as the IIT data in Figure 5a. This comparison suggests that the tensile meas-
urements exhibited less variability than IIT. 

To compare the variability of IIT measurements with tensile testing measurements 
directly, a subset of the pipe features was analyzed where both IIT and tensile testing were 
performed. In total, 83 distinct pipe features underwent both tensile testing and IIT.  
Figure 7 presents a scatter plot comparing the relative variability (COV) of IIT to that of 

Figure 6. UTS COV vs. YS COV for IIT data.



Materials 2022, 15, 832 10 of 22

3.2. Comparison to Destructive Data

With respect to tensile testing data, 531 tensile tests were executed across 136 distinct
pipe features. The histogram of YS and UTS measurements, obtained from the tensile
testing program, is shown in Figure 4b. YS values typically fell between 275 and 415 MPa
(40 and 60 ksi) (though some values also fell between 480 and 550 MPa), while most UTS
values fell between 415 and 620 MPa (60 and 90 ksi). Note that these tensile results in
Figure 4b are plotted on the same x-axis scale as the IIT results in Figure 4a. Though the
IIT results exhibit a better-defined peak than the tensile results, it is important to note that
there were ten times more IIT measurements obtained than tensile measurements.

Histograms of SD and COV for YS and UTS, from the tensile measurements, are
presented in Figure 5b. These values were computed for the tensile data in a manner
identical to that of the IIT values: the measurements were first grouped by pipe section
from which each measurement was obtained. The mean and SD were computed within
each of these groupings, and the COV was also computed. As with the variability displayed
by the IIT measurements, these figures show that UTS tended to exhibit less variability
than YS, both in terms of SD and COV. Again, the tensile figures in Figure 5b are plotted
with the same x-axis range as the IIT data in Figure 5a. This comparison suggests that the
tensile measurements exhibited less variability than IIT.

To compare the variability of IIT measurements with tensile testing measurements
directly, a subset of the pipe features was analyzed where both IIT and tensile testing
were performed. In total, 83 distinct pipe features underwent both tensile testing and IIT.
Figure 7 presents a scatter plot comparing the relative variability (COV) of IIT to that of
tensile testing for the pipe features where both were performed. Both YS (plotted as N)
and UTS (plotted as •) are shown. A unity line is also shown for context: points lying
below the unity line indicate instances where the strength quantity measured by IIT had a
higher COV than that from tensile testing, and points lying above the unity line indicate
where the strength quantity, measured by tensile testing, had a higher COV. The data in
Figure 7 indicates that IIT measurements consistently displayed greater relative variability
than tensile testing, and COVs for YS were generally greater than COVs for UTS. Note that,
because the calculation of COV requires more than one measurement, Figure 7 consists
of 72 pipe features instead of 83 since only pipe features with more than one tensile test
were considered.
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The next important comparison is shown in Figure 8, where the mean IIT YS and UTS
for each pipe feature is plotted against the mean tensile YS and UTS. Figure 8a plots the
mean IIT YS versus mean tensile YS (mean values are for the pipe feature tested). Figure 8b
plots mean UTS values of IIT against tensile. A linear regression is also shown on both plots,
along with the 95% prediction interval (shaded region). The regression for UTS exhibited
a superior coefficient of correlation (R2) value than YS (0.81 vs. 0.67), as well as a lower
root-mean square error (27 vs. 43 MPa or 3.9 vs. 6.2 ksi). The 95% prediction interval is
also notably tighter for UTS, with a typical height of about 100 MPa (15 ksi) compared to
175 MPa (25 ksi) for YS.
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These results collectively indicate that, overall, IIT measurements of UTS compare
better to direct measurement through tensile testing than YS. Likewise, the relative robust-
ness of UTS measurements compared to YS is not a phenomenon observed strictly in IIT
measurements—the same finding exists within the tensile data as well. The results show
that IIT consistently exhibits greater scatter than tensile testing and that UTS, for both test
methods, exhibits more consistency and less scatter than YS.

3.3. IIT + Composition Machine Learning Model

Since the goal of this effort is to determine the mechanical properties of pipeline
features without TVC records, it is naturally desirable to achieve the most accurate esti-
mate of YS and UTS possible. While chemical composition is conventionally linked with
microstructure and processing parameters to determine mechanical strength a priori, such
an approach would be impossible for pipeline features lacking TVC records, since their
manufacturing information is unknown. It was hypothesized, therefore, that chemical
composition data could be combined with (nondestructive) IIT strength measurements to
improve the correlation of the latter with (destructive) tensile strength.

Among all elements detected through OES and combustion, only carbon and man-
ganese were selected for incorporation into a machine learning model. These two elements
are specified in [2] for all pipe grade specifications, and they are present in amounts
large-enough for reliable measurement through the NDT techniques currently under de-
velopment. Figure 8 shows the feature-mean difference between IIT and tensile YS (the
residuals) plotted against the measured carbon (C) and manganese (Mn) content in each
feature. There are noticeable trends in the residuals for both elements that indicate that
this composition data could be incorporated into a strength prediction model. Note that
manganese and carbon have opposite signed slopes relative to increasing weight percent of
the elements.
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A least-squares regression model was selected for this analysis. Regression is a robust
technique and is the most interpretable of all machine learning methods. It is also readily
deployable: once the regression is complete, the numerical coefficients can be applied to
new data without having to store a trained model. The analysis was completed with the
open-source statistical programing language R, using the Tidymodels package [34]. The
model definition included an interaction term between manganese and carbon (Mn × C)
to account for their opposite-signed relationship, with residuals, seen in Figure 9. If this
was not accounted for in the model, it would violate the assumption of independence of
predictors since the effect of one would be dependent on the value of the other.
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fraction manganese (wt.%) and mass fraction carbon (wt.%).

Plots of the IIT-only YS and IIT + Composition YS, against the tensile YS, are shown in
Figure 10 (note that the data presented in Figure 10a is the same as that shown in Figure 8a).
By graphical inspection, the model that includes chemical composition (C and Mn content)
appears more accurate than IIT-only. The improvement is quantified by the parameters
shown in Table 2. The linear regression’s adjusted R2 improved from 0.67 to 0.87 with
the inclusion of carbon and manganese content, and the root-mean square error (RMSE)
improved from 43 MPa (6.2 ksi) to 27 MPa (3.9 ksi). The adjusted R2 is a modified version of
the regular R2 correlation coefficient that increases when the additional predictors improve
the model by more than chance. Thus, it is a better metric for comparing models of varying
complexity to determine if additional predictors are improving the model performance
rather than over-fitting the model to statistical noise.

Table 2. Comparison of metrics for the YS models.

Model Adjusted R2 RMSE (MPa)

IIT Only 0.67 42.7

IIT + Composition 0.87 27.2

Additional numerical parameters pertaining to the IIT + Composition YS model are
given in Table 3. To make the intercept coefficient more meaningful and remove the effects
of correlated variables, the predictors were centered (subtracting the mean of each). Thus,
the resulting regression equation includes the subtraction of the mean for each predictor so
that it can be applied with an arbitrary data set. The resulting regression equation is:

YS(MPa) = 364 + 0.455I ITYS,ctr + 105Mnctr − 215Cctr − 451Mnctr × Cctr (10)
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wherein Mnctr = Mn − 0.851, Cctr = C − 0.190, I ITYS,ctr = I ITYS − 352, and I ITYS is the
yield strength estimate by IIT (MPa). Of the computed regression coefficients for each
parameter, none are zero or near-zero. A zero or near-zero coefficient would indicate that a
predictor had no effect on the model. The p-value is also shown, which is the probability
of observing the results, under the null hypothesis, that the coefficient is equal to zero for
the input variable. A p-value of less than 0.05 indicates the probability that the observed
changes in the predicted variable, due to chance, are 5% or less with the inclusion of the
predictor variable. Thus, with all p-values well below 0.05, we confidently judge that
the new chemical composition predictors were significant. The significance of the input
variables is also indicated by the fact that the range of confidence intervals exclude zero for
all variables.
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Table 3. YS IIT + Composition model; regression coefficients and parameters (coefficients appear in
Equation (10)).

Estimate p-Value Conf. Int.
(Lower Lim.)

Conf. Int.
(Upper Lim.)

(Intercept) 364 <1 × 10−16 357 370
YS (IIT) 0.455 8.45 × 10−9 0.315 0.595

Manganese 105 3.73 × 10−11 77.6 132
Carbon −215 1.76 × 10−4 −324 −106
Mn × C −451 1.84 × 10−3 −730 −173

A similar regression model was developed for UTS and compared to an IIT-only model:

UTS(MPa) = 512 + 0.611I ITUTS,ctr + 87.6Mnctr + 119Cctr (11)

wherein Mnctr = Mn − 0.851, Cctr = C − 0.190, I ITUTS,ctr = I ITUTS − 525, and I ITUTS is
the ultimate tensile strength estimate by IIT (MPa). Table 4 shows the respective models’
coefficients. The estimated UTS values for the two models are plotted against the tensile
(destructive) UTS values, side-by-side, in Figure 11. Note that the “IIT Only” model
presented in Figure 11a is identical to the unity plot presented in Figure 8b. The inclusion
of manganese and carbon content in the model improved the adjusted R2 for UTS estimates
from 0.81 to 0.88, which is an 8% improvement. This 8% improvement for UTS compares to
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a 29% improvement in adjusted R2 in the YS models. Incorporation of chemical composition
improved the RMSE of UTS by 20%, which contrasts to a 36% improvement in the YS that
was achieved.
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(gray shaded region) and 95% prediction interval (blue shaded region) for (a) IIT alone and (b) IIT +
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Table 4. Comparison of metrics for the UTS models.

Model Adj. R2 RMSE (MPa)

IIT Only 0.81 26.9
IIT + Composition 0.88 21.4

Additional numerical parameters pertaining to the IIT + Composition model for UTS
are given in Table 5. As in Table 3, the p-values are all well below 0.05, indicating that each
predictor makes a significant contribution to the model. A noticeable difference from the
YS model is that the carbon coefficient is positive here, indicating that an increase in carbon
correlates with increased UTS. However, in the YS model, carbon had a negative coefficient.
Carbon also has a relatively wide confidence interval with a lower limit near zero. Finally,
it is worth noting that, since carbon and manganese are positively correlated here, the use
of an interaction term was not necessary in the UTS model.

Table 5. UTS IIT + Composition model; regression coefficients and model parameters (coefficients
appear in Equation (11)).

Estimate p-Value Conf. Int.
(Lower Lim.)

Conf. Int.
(Upper Lim.)

(Intercept) 512 <1 × 10−16 507 516
UTS (IIT) 0.611 1.76 × 10−15 0.488 0.734

Manganese 87.6 2.64 × 10−9 61.6 114
Carbon 119 4.39 × 10−3 38.3 200

In general, the inclusion of carbon and manganese content into a regression model,
along with IIT strength measurements, improved the accuracy of the strength estimates
relative to the tensile measurements. YS values benefitted from chemical composition much
more than UTS. This result demonstrates the robustness of IIT UTS measurements compared
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to YS measurements. However, since each element chosen for this modeling plays a
different role in yield and tensile strength, the exact mechanism behind the observation
remains unclear.

3.4. An Example Measurement

To illustrate how these models might be applied in practice, we briefly present data
from a representative pipe feature that underwent tensile, IIT, and chemical composition
testing. The selected sample was chosen because (1) its mechanical properties were close
to the average mechanical properties of all materials examined in this study, and (2) a
relatively large number of replicate measurements were taken.

The microstructure of this sample is shown in Figure 12, and it is typical of a quenched
and tempered (Q&T) API-5L X42Q line pipe steel. This photomicrograph was produced by
destructive sectioning, polishing, etching, and image capture of the sample’s axial-radial-
oriented face at an original magnification of 1000×. The steel was austenitized at ~910 ◦C,
then quenched, and tempered at ~660 ◦C. The microstructure is similar to the Q&T S690
steel, tempered at 660 ◦C, which is illustrated in [35].
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Figure 12. Micrograph of the cross section (longitudinal orientation; 1000×) of the 16-inch (41 cm)
OD pipe; Q&T API-5L X42Q line pipe steel. For reference, the indenter diameter is 500 µm, while the
image shown is approximately 135 µm wide.

Two longitudinal and seven transverse samples from this pipe underwent tensile tests,
followed by 47 replicate IIT measurements. Since the pipe had an OD of 16 inches (41 cm),
the roller chain mounting fixture was used. The distribution of tensile and IIT measure-
ments of YS and UTS are shown in Figure 13. IIT YS values range from approximately
320 to 420 MPa (46 ksi to 62 ksi), while UTS values range from approximately 515 to 585 MPa
(75 ksi to 85 ksi). Tensile YS values range from approximately 375 to 400 MPa (54 ksi to
57 ksi), while UTS values range from approximately 480 to 525 MPa (70 ksi to 76 ksi). Mean
and SD values, for both IIT and tensile measurements, are shown in Table 6.

Based on the mean measurement value from IIT (357 MPa), the IIT-only model shown
in Section 3.3 results in a YS estimate of 373 MPa (54 ksi) with a 95% prediction interval
range of 288 to 459 MPa (42 ksi to 67 ksi). The model gives a UTS of 532 MPa (77 ksi) with
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a 95% prediction interval range of 479 to 586 MPa (69 ksi to 85 ksi). Table 6 summarizes
these results.

Chemical composition tests yielded measurements of 0.12 wt.% carbon and 0.83
wt.% manganese in this material. Other elements included 0.29 wt.% silicon, 0.013 wt.%
phosphorus, 0.004 wt.% sulfur, 0.11 wt.% chromium, 0.14 wt.% nickel, 0.24 wt.% copper,
0.02 wt.% molybdenum, and 0.03 wt.% vanadium, and the balance was iron (>98%). Using
the IIT + Composition regression models established in Section 3.3 (Equations (10) and
(11)), the estimated YS and UTS are 378 MPa (55 ksi) and 516 MPa (75 ksi), respectively.
Likewise, the 95% prediction interval range is 323 MPa to 434 MPa (47 ksi to 63 ksi) for YS,
and 473 MPa to 559 MPa (69 ksi to 81 ksi) for UTS (see Table 6).
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Table 6. YS and UTS estimates based on the regression models presented in Section 3.3, includ-
ing corresponding mean tensile and IIT measurements, for the 16-inch (41-cm) OD pipe in the
presented example.

YS (MPa) YS Uncertainty * (MPa) UTS (MPa) UTS Uncertainty * (MPa)

Mean Tensile Measurement 387 8.3 511 13.6
Mean IIT Measurement 357 22.6 547 13.5

IIT-Only Trained Estimate 373 288–459 532 479–586
IIT+Composition Trained Estimate 378 323–434 516 473–559

* Note: Uncertainty values for measurements are represented as the standard deviation, while uncertainty values
for estimates are represented as the range of the 95% prediction interval.

Overall, by using the IIT + Composition model in Equation (10), the difference between
the estimated YS and mean tensile YS for this pipe sample material was improved to 9 MPa
from 14 MPa compared to the IIT-only model—a 36% decrease. In addition, the 95%
prediction interval range for YS was reduced by approximately 35%. With respect to UTS,
using the IIT + Composition model in Equation (11) results in a difference between the
estimated UTS and mean tensile UTS of 5 MPa, which is a 76% reduction compared to the
difference using the IIT-only model (21 MPa). Likewise, the 95% prediction interval range
for UTS was reduced by approximately 20%.

4. Discussion

The data is quite clear: IIT provides robust measurements of UTS, especially compared
to measurements of YS on the same pipe features. UTS exhibited less variability than YS in
both a relative sense (COV) and absolute sense (SD). We attribute this finding to variety of
factors: experimental, mechanical, and metallurgical.

4.1. Experimental Factors

Figure 7 showed that UTS was less variable than YS in replicate tensile tests as well as
IIT. Thus, it appears that the relative performance found in the IIT data set is, in fact, not
unique to IIT. However, there may be aspects of the IIT algorithm that further contribute to
this result.

Recall from Section 2.1 and Figure 2 that a power-law hardening curve is fit to the stress
and strain corresponding to the final 10 of the 15 load maximum points. Figure 14 shows
the final computed power-law stress-strain curve from a representative IIT measurement,
along with the discrete values of stress and strain from those final 10 load maximum points.
Note that nominal stress and strain are plotted here for better visualization of the UTS. The
figure shows that the UTS occurs within the discrete points. In contrast, the YS (the stress
at a strain of 0.5%) is reached well before any of the discrete points. In fact, the lowest of
the discrete stress-strain points, to which the power-law was fit, has a strain of about 0.12.
Therefore, obtaining the YS from this power-law stress-strain curve requires a substantial
extrapolation beyond the data to which the power-law was fit. In contrast, the UTS is a
direct interpolation. Small variations in the computed power-law parameters K or n could,
therefore, have a much stronger impact on YS than they would on UTS.

We further note that this extrapolation also contributes to the inferior R2 and RMSE
of the IIT-vs-tensile comparison of YS measurements in Figure 8, compared to the UTS
measurements unity plot. Many of the materials tested in this work exhibited yield-point
elongation (YPE), or a stress plateau, following the elastic limit in tensile tests. A power-law
curve, fit to the hardening portion of the stress-strain response and extrapolated to 0.5%
strain (inside the stress plateau), would lead to an underestimation of the stress at that
strain level. While YPE is not detectable in the IIT measurements we have obtained, its
existence in some of the tensile test data confounds the direct comparisons.
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Among the three contributing factors discussed in this section, this experimental factor
is considered less fundamental to the observed differences in YS and UTS measurements.
As shown in Figure 7, similar trends were observed in data from our tensile testing program.
Thus, the propensity for YS to exhibit greater variability than UTS seems to transcend this
extrapolation effect that is unique to IIT. In contrast, the mechanical and metallurgical
factors described below contribute to both tensile and IIT results. It would appear, then,
that they are more significant in their contributions.

4.2. Mechanical Factors

One factor that likely contributes to the observation of less scatter in UTS than YS,
for both IIT and tensile measurements, is that the tangent modulus, or instantaneous
strain hardening rate, at yield is far greater than it is at UTS. The flow stress in a material
approaching UTS, therefore, is less sensitive to small variations in strain than it is around
yield. This effect can be shown quantitatively.

The tangent modulus for a power-law stress-strain relationship is given by:

dσ

dε
= Knεn−1 (12)

Recall the Considère analysis of an incompressible, power-law material under uniaxial
tension results in the following prediction:

εUTS = n (13)

Therefore, combining Equations (12) and (13), the tangent modulus at UTS is:

dσ

dε

∣∣∣∣
UTS

= Kn nn−1 (14)



Materials 2022, 15, 832 19 of 22

At a strain of 0.5%, where YS is defined in this study, the tangent modulus is:

dσ

dε

∣∣∣∣
YS

= Kn(0.005)n−1 = Kn (200)1−n (15)

The ratio of tangent moduli at yield and UTS is therefore given by:

dσ
dε

∣∣∣
YS

dσ
dε

∣∣∣
UTS

=
(200)1−n

nn−1 = (200 n)1−n (16)

For values of strain hardening exponent n between 0.2 and 0.3, as is typical for steels
assessed in this work, the ratio of the tangent modulus varies between 17.6 and 19.2. It
can be shown that this ratio reaches a maximum value of 19.2 when n takes on a value of
0.211. This important result can be interpreted to indicate that the YS is 17 to 19 times more
sensitive to small variations in strain than the UTS. This sensitivity difference likely drives
some of the observed robustness of UTS compared to YS observed in the measurements.

4.3. Metallurgical Factors

Regarding the greater uncertainty of YS versus UTS, many low-to-mid carbon steel
samples exhibit an abrupt drop at the end of the elastic region of the stress-strain response
called yield point elongation (YPE). The British Steel Corporation showed that YPE is caused
by strain aging, which is the time-and-temperature-dependent migration of nitrogen and
carbon atoms to dislocations [19]. These atoms have a “pinning” effect on the dislocations,
thus raising the critical resolved shear stress for dislocation motion. The YPE, then, is the
aggregate effect of sequentially “unpinning” these locally-pinned dislocations by raising
the local critical resolved shear stress until a sufficient density of dislocations are available
for bulk uniform plastic deformation. The consequence is a stress plateau observed around
yielding in most steels, and a noisy stress-strain response for an unpredictable duration of
plastic deformation (ranging from a fraction of a percent strain to several percent strain).
After YPE, typical power-law work hardening usually ensues.

The line pipe steels in this study varied in terms of the existence and magnitude of
YPE effects, which caused noise in the tensile YS data and degraded the ability to correlate
tensile YS to IIT YS. It remains unclear how YPE manifests in the triaxial, compressive stress
state beneath the indenter in IIT, but it is possible that YPE results in similar experimental
difficulties in the IIT results as well. Certainly, the adoption of a power-law stress-strain
model for IIT would not properly capture this behavior, thus leading to greater differences
between IIT and tensile measurements of YS. The use of a 0.5% elongation-under-load
definition for YS further contributes to the error associated with YPE. If the causes of YPE
can be better understood, including the effects of YPE on IIT, then it could lead to a more
accurate measurement of YS from IIT.

The equation for YS from the linear models, Equation (10), indicates that tensile YS is
not solely dependent on IIT YS. Specifically, the coefficient in the equation for I ITYS,ctr is
0.455 (whereas the coefficient would be 1.0 for a perfectly one-to-one relationship between
IIT YS and tensile YS). Compensating aspects include an intercept of 364 MPa, a positive
coefficient associated with manganese content, and negative coefficients associated with
carbon and manganese multiplied by carbon content. These indicate that the higher the
manganese content in the steel, the more likely IIT is to underestimate the YS. Conversely,
reduction in carbon in the steel would also result in underestimation of YS by IIT. The
existence of these manganese and carbon terms may partially be due to the lack of a term
for grain size, which was important in Equation (1). Aside from the inverse correlation
of carbon content with strength via grain size, high YS steels tend to have lower carbon
contents because of the negative effects of carbon on weldability and toughness [36]. Thus,
the role of carbon could be indirectly predictive of YS.
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Similarly, the equation for UTS from the linear models, Equation (11), indicates that
the tensile UTS is not solely dependent on IIT UTS. The coefficient in the equation for
I ITUTS,ctr is 0.611 (rather than 1.0 for a 1:1 relationship). There is an intercept of 512 MPa,
and positive coefficients associated with manganese content. Again, these indicate that
the higher the manganese content in the steel, the more likely IIT is to underestimate the
UTS. Interestingly, however, whereas the carbon coefficient is negative in Equation (10),
the carbon coefficient in Equation (11) is positive. This result indicates that the higher
the carbon content, the more likely IIT is to underestimate the UTS. There is uncertainty,
however, in the role of carbon as highlighted by the large range of the confidence interval for
the carbon coefficient for UTS in Table 5 (38.3 to 200 per wt.% C). Apparently, the removal
of carbon from the IIT + Composition model for UTS would cause little degradation of
the model performance. Therefore, it is likely that the machine learning model derives
more utility from the manganese content since it relies very little on the carbon content.
Nevertheless, in this sizable dataset, a slight improvement exists with the inclusion of
carbon, which is useful for improving strength estimates.

Incorporation of chemical composition into the machine learning model had a greater
impact on improving the YS estimates than it did on improving the UTS estimates. Thus, we
must consider how composition (specifically manganese and carbon content) could affect
YS differently from UTS. Note that the machine learning model is indifferent to the physical
mechanisms but could reveal interesting and useful correlations that could be related to
causative physical mechanisms. For example, the utility of carbon in the regression model
could stem from a correlative mechanism (as opposed to causative mechanism), such as
that between carbon content and grain size. Recalling Equations (1) and (2), grain size
has been shown to correlate with YS and UTS itself. Thus, although the carbon content
changes do not control YS, carbon content could correlate with some other variable, such
as grain size, that does affect YS. It is also possible that the regression model is utilizing the
elemental variables to compensate for fundamental differences between monotonic tensile
tests and indentation tests. The load application and stress state in the deformed material
are fundamentally different, and the effects of these differences are unclear. However, the
model could be taking advantage of the unique effects of the compositional elements on
the work hardening behavior to improve the YS and UTS predictions.

5. Conclusions

IIT is an established technique for nondestructively estimating the mechanical proper-
ties of materials. PG&E, in response to recent federal regulatory changes, has undertaken a
large pipeline materials verification effort, and IIT is a key tool in this work. In the past
five years, PG&E has performed over 5000 IIT measurements across nearly two-hundred
unique pipeline features. These measurements were performed with the Frontics AIS 2100
IIT instrument using a 0.5-mm diameter spherical indenter.

Results from this effort indicate that IIT’s estimates of UTS exhibit less variability
than YS. Both the SD and COV, associated with replicate measurements on the same pipe
location, are lower for UTS than YS. Thus, UTS exhibits less variability in both an absolute
and relative sense. Interestingly, a similar trend was observed in tensile testing performed
on some of the same pipe samples. This likely stems from the difference in tangent moduli
between YS and UTS, hence the sensitivity of the stress to small changes in strain. Towards
verifying the IIT measurements from this work, YS and UTS measurements, via IIT and
tensile testing, were directly compared. The linear regression between IIT and tensile
measurements for UTS exhibited a superior coefficient of correlation (R2) value than YS
(0.81 vs. 0.67), as well as a lower root-mean square error (27 vs. 43 MPa, or 3.9 vs. 6.2 ksi).
Thus, IIT’s measurements of UTS are not only less variable, but also more-accurately reflect
tensile values, than YS.

IIT measurements were next combined with chemical composition data, which was
collected as part of this project’s materials verification work. Specifically, multivariate
linear regressions combining IIT (YS and UTS separately), carbon, and manganese were
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performed. Both YS and UTS estimates improved relative to the tensile measurements by
combining IIT with these additional data. The YS estimate improved much more so than
the UTS estimate, but the exact mechanisms behind this result remain unclear. Additional
work is needed to clarify whether the observed improvements were due to causal or
correlative factors.

As IIT data collection or post-processing practices advance, the observed difference in
YS and UTS may change. For example, implementation of an automated outlier-detection
algorithm that discards erroneous measurements may alter this trend in YS and UTS. The
adopted IIT algorithm itself could, perhaps, be reevaluated as well. Extrapolation of YS in
the IIT algorithm is necessary in the current technique due the mechanical sensitivity of the
load cell and materials at low load during the first five load cycles. Evaluating alternative
algorithms that do not require such large extrapolation would help in fully evaluating this
behavior and, therefore, remains a longer-term objective.

With respect to using IIT and chemical composition data to determine strength, addi-
tional studies are needed in this area to fully understand the role of chemistry and strength
and how they might behave in models that combine IIT data. For example, nitrogen content
was not measured in these materials, and it may be possible to correlate between elements
such as manganese and the reduction in nitrogen content. Thus, model accuracy could
perhaps be improved by using the content of elements that may not be phenomenologically
responsible for the changes in mechanical properties, but are instead correlated, with the
responsible elements.
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