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Abstract: The objective of this paper is to investigate the coupling effect of cement and organosilicon
hydrophobic agents on the water resistance of phosphogypsum. Different weight ratios of Portland
cement were added to adjust the alkalinity of this system and further improve the work efficiency of
the organosilicon hydrophobic agents. Some macroscopic performances, such as the water absorption,
the compressive strength, the flexural strength, and the softening coefficient, were measured to
characterize the water-resistance of phosphogypsum. The microscopic characteristics were analyzed
via contact angle tests, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy
(XPS) to understand the mechanism of organosilicon hydrophobicity. The results indicated that both
the compressive and flexural strengths of phosphogypsum first increased and then decreased with
the increase of organosilicon hydrophobic agents. Meanwhile, the surface contact angle continued to
increase and the softening coefficient exhibited an obvious increase. When the hydrophobic agent
was combined with Portland cement, the softening coefficient of phosphogypsum further increased
from 0.80 to 0.99, while the water absorption rate was significantly reduced from 16.0% to 0.8%.
Microscopic tests proved that the hydrophobic organic molecules can be polymerized under the
high alkalinity, and promote the formation of a hydrophobic film, thus significantly improving the
water-resistance of phosphogypsum.

Keywords: phosphogypsum; water-resistance; mechanical properties; softening coefficient; hy-
drophobic film

1. Introduction

Phosphogypsum is a massive amount of solid waste in southwest China. The storage
of phosphogypsum not only encroaches on the land, but also causes significant environ-
mental pollution [1]. Although some attempts have been made to use phosphogypsum as
a wallboard and building blocks in the field of construction [2–4], the poor water-resistance
of phosphogypsum severely restricts its widespread application [5]. Many scholars have
carried out researches to solve this problem. In recent years, hydrophobic materials such as
silane, siloxae, fluoropolymers and silicon resin have obtained great attention. Fluoropoly-
mers were bonded to the substrate by an interface layer, while alcohols and organosilicon
were bonded to the substrate surface, mainly by hydrolysis and a polycondensation re-
action. Zhu et al. [6] added polyvinyl alcohol to make the phosphogypsum denser and
improve the water resistance. Sun et al. [7] applied an impermeable paraffin emulsion
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to the surface of the gypsum to prevent water migration. An et al. [8] added a polyvinyl
alcohol-polypropylene emulsion to form a hydrophobic layer over the pores of the gypsum
to make it waterproof. Hydrophobic membranes have a small influence on the strength
of the gypsum while decreasing gypsum’s permeability significantly [9,10]. In order to
broaden the prospect of solid waste utilization of phosphogypsum, it is necessary to over-
come the characteristics of poor water durability. Thus, it is a feasible idea to improve
the water-resistance of phosphogypsum. The hydrophobic agent can be used to form
hydrophobic membranes on the plaster surface. The modified plasters have excellent water-
resistance in the case of a low weight ratio of hydrophobic agents. On the other hand, the
alkalinity of cement can change the hydrolysis and condensation chemistry of organosilicon
compounds [9,10]. Therefore, it may be a good idea to prepare waterproof phosphogypsum
by adding a small amount of cement. However, few studies systematically analyzed the
coupling effect of cement and organosilicon hydrophobic agents on the water-resistance
of phosphogypsum.

This paper is organized into three sections. Section 1 introduces the background,
purpose and novelty of this paper. Section 2 describes the details of raw materials, the
mixing proportion and test methods, the modification of phosphogypsum with different
organosilicon hydrophobic agent content, and the coupling of 0.3% organosilicon hydropho-
bic agent and cement content was systematically studied. The macroscopic performance
of phosphogypsum, including the fluidity, the setting time, the water-resistance and the
mechanical properties, were systematically investigated. Moreover, the surface contact
angle experiment was used to characterize the degree of hydrophobicity. In addition, the
X-ray photoelectron spectroscopy (XPS) test was used to explore the action mechanism
of the silicone hydrophobic agent under different alkalinity environments. The micro-
scopic morphology of phosphogypsum was conducted by SEM qualitatively. Section 3
presents the experimental results and discussion. It would be substantiated that the cou-
pling of an organosilicon hydrophobic agent and cement content is a more effective way to
modify the water-resistance of phosphogypsum. The enhancement of phosphogypsum’s
water-resistance can help accelerate the process of phosphogypsum solid waste utilization.

2. Methodology
2.1. Raw Materials

Phosphogypsum was used as an industrial by-product of the phosphorous gypsum
powder, with a density of 2.52 kg/m3. The ordinary Portland cement 42.5R (P.O. 42.5R),
with a specific surface area of 360 m2/kg, was used in this study. The organosilicon
hydrophobic agent produced by China State Construction Engineering Co., Ltd. (Chengdu)
was used to improve the water-resistance performance. The basic molecular structure is
shown in Figure 1. Organic groups were arranged on the surface of hydrophobic film. It
reacted with by droxyl groups in silicate substrate to form siloxane chains, thus bridging the
surface of cement matrix and preventing the invasion of external water. The polycarboxylic
acid type superplasticizer, supplied by the Western China Construction Materials Science
Research Institute, was used as a water reducing agent, with a solid content of 25%.
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The chemical components of phosphogypsum and cement were tested by X-ray fluo-
rescence (XRF) and are shown in Table 1.

Table 1. Chemical composition of phosphogypsum and cement (wt. %).

Oxide SiO2 MgO Al2O3 Fe2O3 CaO K2O SO3 TiO2 P2O5 Loss

Phosphogypsum 4.62 0.18 2.90 1.13 42.67 0.25 43.04 0.21 2.11 2.89
Cement 21.39 2.82 5.15 3.86 61.04 0.62 3.10 0.85 0.10 1.07

2.2. Mixing Proportion

The mix proportions of phosphogypsum are detailed in Table 2. The hydrophobic
agent content was 0 wt.%, 0.1 wt.%, 0.3 wt.%, and 0.5 wt.% of phosphogypsum. The
alkalinity of the gypsum hydrophobic agent system was adjusted by the weight ratios
of the cement to improve the hydrophobic effects. In the coupling cases of hydrophobic
agents and cement, the fixed hydrophobic agent content was 0.3 wt.% and the cement was
mixed with 0.2 wt. %, 0.4 wt.%, and 0.6 wt.% instead of phosphogypsum.

Table 2. Mix design of modified phosphogypsum.

Number Water-Binder
Ratio Phosphogypsum/% Cement/% Hydrophobic

Agent/% Retarder/% Water Reducing
Agent/%

H00C00 0.4 100.0 0.0 0.0 0.1 0.7
H10C00 0.4 100.0 0.0 0.1 0.1 0.7
H30C00 0.4 100.0 0.0 0.3 0.1 0.7
H50C00 0.4 100.0 0.0 0.5 0.1 0.7
H30C20 0.4 99.8 0.2 0.3 0.1 0.7
H30C40 0.4 99.6 0.4 0.3 0.1 0.7
H30C60 0.4 99.4 0.6 0.3 0.1 0.7

2.3. Test Methods
2.3.1. Water-Resistance

After curing for 7 d, six 40 mm× 40 mm× 160 mm prism blocks were used to test the water
absorption, the flexural strength and compressive strength. Three 40 mm × 40 mm × 160 mm
prism blocks were dried to a constant weight in a 45 ◦C vacuum-desiccant box and then cooled
to room temperature after being removed. The softening coefficient, the water absorption and
the compressive and flexural strength were tested systematically based on the GB/T 23451-2009
Gypsum Block [11]. Softening coefficient (I) is the ratio of compressive strength in a water-
saturated state (σ1) and compressive strength in a dry state (σ0), as expressed in Equation (1).

I =
σ1

σ0
(1)

The water absorption test was performed according to the standard JCJ 70-2009 “Basic
Performance Test Method for Building Mortar” [12]. The compressive and flexural strength
tests were carried out in accordance with the standard GB/T17671–1999 “Cement Mortar
Strength Test Method (ISO method)” [13].

The contact angle was tested by a CA-100D automatic contact angle measuring instru-
ment, which was produced by Shanghai Shanghai Jiazun Instrument Equipment Co., Ltd. in
China, according to the standard GB/T 30447-2013 “Measurement method for contact angle
of nano-film surface” [14]. The size of the tested specimen was 40 mm × 40 mm × 160 mm.
After drying at 45 ◦C to a constant weight, the specimens were removed and cooled to
a constant temperature at 22 ◦C. The fractured gypsum specimens were loaded onto a
flexural strength test instrument, and a high-resolution camera observed the changes in at
a water droplets contact time of 60 s.
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2.3.2. Microstructure

The microstructural samples were immersed into absolute ethyl alcohol solution to
terminate hydration, and dried to a constant weight in the vacuum drying oven at 45 ◦C.
The SEM samples were examined using a TESCAN VEGA2 scanning electron microscope,
which was produced by Tescan (China agent) Co., Ltd. in the Czech republic, with an
acceleration voltage of 20.0 kV. The XPS samples were tested with a Thermo Fly Escalab
250 Xi with a full-spectrum throughput of 100 eV, with a step size of 1.0 eV, and a narrow
spectrum of 30 eV, with a step size of 0.05 eV. The vacuum in the analysis area was
<2.7 × 10−10 mbar.

3. Results and Discussion
3.1. Influence of the Hydrophobic Agent Content on the Properties of Phosphogypsum
3.1.1. Fluidity and Setting Time

Table 3 shows the fluidity and setting time of the phosphogypsum with different
dosages of a hydrophobic agent.

Table 3. Influence of the hydrophobic agent content on the fluidity and setting time of the phospho-
gypsum slurry.

Number Hydrophobic Agent/wt.% Liquidity/mm Initial Set/min Final Set/min

H00C00 0 220 45 61
H10C00 0.1 225 47 64
H30C00 0.3 228 49 65
H50C00 0.5 230 50 65

As shown in Table 3, with an increasing amount of silicone hydrophobic agent, the
fluidity of gypsum was slightly improved, with little difference in the working performance.
The initial and final setting times were slightly improved because the silicone hydrophobic
agent did not affect the crystallization and growth of the gypsum crystals by adsorbing on
the surface of the crystals.

3.1.2. Hydrophobic Agent Water-Resistance and Mechanical Properties

The effects of the silicone hydrophobic agent at different dosages on the softening
coefficient, water absorption rate, compressive strength and flexural strength of phospho-
gypsum at 7 d were studied. The results are shown in Figure 1.

Figure 2a showed that when the hydrophobic agent content was 0–0.5 wt.%, the
softening coefficient of the phosphogypsum increased significantly from 0.50 to 0.99, as
the content of the hydrophobic agent increased. Water absorption decreased from 18.0%
to 0.9%. This was because the hydrophobic agent was adsorbed onto the surface of the
gypsum crystals, and hydrophobic groups faced outward, forming a hydrophobic film and
improving the water-resistance of the phosphogypsum effectively [15].

Figure 2b showed that, compared with that of the reference group, the compressive
strength of the samples decreased as the hydrophobic agent decreased. This was because
the hydrophobic agent was adsorbed onto the surface of the gypsum crystals, hindering
the hydration of gypsum and leading to a decrease in the compressive strength. When
the amount of hydrophobic agent was 0–0.5 wt.%, the flexural strength of gypsum first
decreased and then increased with the increment of the hydrophobic agent. This may be
because when the amount of added hydrophobic agent was low, the hydrophobic film
was not completely formed on the gypsum crystal surface. The small amount of film
adsorption on the surface of the gypsum crystal, limited the hydration reaction and the
formation of gypsum, leading to the reduction in flexural strength. With an increasing
amount of hydrophobic agent, a complete water-repellent film was formed on the surface
of the gypsum paste. This film had a favorable toughening effect and increased the flexural
strength greatly.
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Figure 2. Influence of different hydrophobic agent dosages on the phosphogypsum at 7d. (a) Soften-
ing coefficient and water absorption rate; (b) Compressive strength and flexural strength.

However, within the range of 0.1–0.5 wt.% of an added hydrophobic agent, the com-
pressive strength gradually increased with increasing hydrophobic agent content. This is
because, with the increasing amount of added hydrophobic agent, a complete hydrophobic
film was formed on the surface of gypsum crystals, which gradually reduced the influence
of gypsum crystal formation [16]. In addition, some hydrophobic agents filled the voids in
the gypsum matrix and compacted the matrix, enhancing the strength of the gypsum block.

3.2. The Influence of Cement Content on the Physical and Mechanical Properties
3.2.1. Fluidity and Setting Time

Table 4 showed the extremely fast fluidity and setting times of phosphogypsum with
different cement contents.

Table 4. Effect of cement content on fluidity and setting time of phosphogypsum slurry.

Number Cement Content/wt.% Liquidity/mm Initial Set/min Final Set/min

H30C20 0.2 230 52 67
H30C40 0.4 233 53 69
H30C60 0.6 235 55 70

As shown in Table 4, by increasing the cement content, the fluidity of gypsum increased
because the water demand for cement was less than that of gypsum. The setting time of
the cement-gypsum system increased with an increasing amount of added cement because
the setting time of cement was longer than that of gypsum (4 min for initial setting and
8 min for final setting).

3.2.2. Water Resistance and Mechanical Properties of Hydrophobic Agents

The alkalinity of the gypsum hydrophobic agent system was adjusted with cement,
and the fixed hydrophobic agent content was 0.3 wt.%. The influence of cement content
on the softening coefficient, the water absorption rate, the compressive strength and the
flexural strength of gypsum specimens with a hydrophobic agent were studied. The results
are shown in Figure 2.

Figure 3a showed that when the weight ratio of cement was in the range of 0–0.6 wt.%,
the gypsum softening coefficient increased gradually as the weight ratio of cement in-
creased, and the water absorption rate was significantly reduced. This was due to the in-
creased weight ratio of cement and the subsequent alkalinity in the cement-phosphogypsum
system, promoting the hydrolysis of the hydrophobic agent, as well as polymerization, and
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then causing the hydrophobic agent to form a hydrophobic film on the gypsum crystal
surface. This film prevented moisture from entering, improving the phosphogypsum water
resistance, which was in accordance with Su’s research [17].
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Figure 3. Influence of different cement contents on the phosphogypsum with a hydrophobic agent.
(a) Softening coefficient and water absorption. (b) Compressive strength and flexural strength.

When the cement content was 0.6 wt.%, gypsum had the best water-resistance per-
formance. In this situation, the softening coefficient was 0.99, the water absorption rate
was 0.8%, and the pH of the slurry was 7–8. Figure 3b showed that the increase in cement
admixture lowered the mechanical properties of the gypsum block; namely, the compres-
sive strength and flexural strength further decreased because the cement promoted the
hydrolysis of the organosilicon hydrophobic agent and the polymerization reaction of the
gypsum crystals. More organic silicon hydrophobic agent was added to the surface of the
gypsum slurry, inhibiting the gypsum hydration reaction and interfering with the gypsum
crystal structure, leading to a decrease in the strength of the gypsum block [18].

3.3. The Influence of Cement and Hydrophobic Agents on the Surface Contact Angle
of Phosphogypsum

The influence of different dosages of added silicone hydrophobic agent and different
weight ratios of cement on the surface contact angle of the phosphogypsum block was
studied, and the results are shown in Figure 4. As Figure 4a depicts, the contact angle of
the phosphogypsum reference group was the smallest at only 11.57◦, which was due to
the high hydrophilicity, high water absorption and poor water-resistance of the surface
of the gypsum block. As Figure 4b–d shows, the amount of silicone hydrophobic agent
ranged from 0.1 wt.% to 0.5 wt.%, and the gypsum contact angle gradually increased,
indicating the favorable hydrophobic property of the gypsum block and that the surface
gradually changed from hydrophilic to hydrophobic. As Figure 4d shows, when the
amount of silicone hydrophobic agent was 0.5 wt.%, the surface contact angle of the
phosphogypsum block reached 112.56◦, which suggests that the gypsum block has good
waterproofing properties.

As Figure 4c shows, when the amount of silicone hydrophobic agent in the phospho-
gypsum block was 0.3 wt.%, the surface contact angle was 47.56◦. As Figure 4e–g shows,
the addition of cement can increase the surface contact angle of the phosphogypsum block.
When the cement content was 0.2–0.6 wt.%, the surface contact angle of the phosphogyp-
sum block was greater than 120◦. By increasing the cement content, the surface contact
angle increased further. When the cement content was 0.6 wt.%, the phosphogypsum block
surface contact angle reached 147.23◦, indicating excellent water resistance. The reason
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was that when cement was added to the phosphogypsum system, the alkalinity of the
cement-phosphogypsum system was increased, and the hydrophobic film formed on the
surface of gypsum by the hydrophobic agent was improved because it had an increased
density and tended to be complete. Therefore, the phosphogypsum block became more
hydrophobic, and the surface contact angle of the phosphogypsum block increased.
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3.4. Influence Mechanism of Hydrophobic Agent and Cement
3.4.1. Hydration Products of Phosphogypsum

To further explore the influence mechanism of the dosages of the silicone hydrophobic
agent and the weight ratios of cement on the water resistance performance of the phospho-
gypsum system, XPS was carried out by selecting four mixture ratios: the original solution
of the hydrophobic agent, the reference group of phosphogypsum, phosphogypsum +0.3%
hydrophobic agent, and phosphogypsum +0.3% hydrophobic agent +0.6% cement. Figure 5
shows the total XPS spectrum of the elements in the gypsum samples, and the content of
each element is shown in Table 5.
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Table 5. Contents of each element in gypsum samples.

Samples Ca 2p/% C 1s/%/% O 1s/%/% Si 2p/% S 2p/%

Hydrophobicing agent 0.00 9.57 56.52 33.91 0.00
phosphogypsum 10.65 20.89 50.74 3.57 14.15

Phosphogypsum +0.3
wt.% hydrophobic agent 9.99 21.24 51.28 4.85 12.44

Phosphogypsum +0.3
wt.% Hydrophobic agent

+0.6 wt.% cement
8.78 29.53 45.39 5.92 10.38

Both the XPS spectra in Figure 5 and the element content in Table 5 showed that the
main elements of the silicone hydrophobic agent are C, Si and O, and that Si and O account
for 33.91% and 56.52% of the substance, respectively, indicating that the hydrophobic agent
contained a large number of Si-O bonds and OH-. The main elements in the phospho-
gypsum, phosphogypsum +0.3 wt.% hydrophobic agent, and phosphogypsum +0.3 wt.%
hydrophobic agent +0.6 wt.% cement were O, C, S, Ca and Si (in order of descending quan-
tity). The C content in the gypsum reference group was 21.69% because the water-reducing
agent and retarder used contained C. It indicated that the hydrophobic agent was adsorbed
onto the surface of the gypsum crystal, increasing the content of C. In addition, the reference
group of the phosphogypsum contained 2.57% Si, and the composition analysis of the gyp-
sum raw materials also revealed a small amount of SiO2, which was caused by impurities.
The Si and C contents of the phosphogypsum +0.3 wt.% hydrophobic agent increased,
compared with those of the reference group of phosphogypsum, indicating that the silicone
hydrophobic agent was adsorbed onto the surface of the gypsum crystal. Compared with
that of the reference group of the phosphogypsum +0.3 wt.% hydrophobic agent +0.6 wt.%
cement, the content of Si and C increased more significantly, indicating that the appropriate
alkalinity promoted the absorption of the hydrophobic agent to the surface of gypsum,
which was conducive to the improvement of the water-resistance of phosphogypsum

In the XPS results, the changes in Si 2p and the peak fitting of O 1s in the phosph-
ogypsum, phosphogypsum +0.3 wt.% hydrophobic agent, phosphogypsum +0.3 wt.%
hydrophobic agent and phosphogypsum +0.3 wt.% hydrophobic agent +0.6 wt.% cement
are shown in Figure 6. Figure 6a shows that the addition of the hydrophobic agent sig-



Materials 2022, 15, 845 9 of 13

nificantly increased the relative content of silicon in gypsum compared with that of the
phosphogypsum reference group. This was because the hydrophobic agent used was an
organosilicon hydrophobic agent, and silicon was its main element. The addition of an
organosilicon hydrophobic agent to the surface of gypsum crystals increased the content
of Si in gypsum. The addition of the hydrophobic agent shifted the peak position of the
silicon peak in the gypsum to lower binding energy, indicating that a chemical reaction
occurred between the silicone hydrophobic agent and the gypsum, changing the binding
state of silicon within the XPS spectrum of the phosphogypsum +0.3 wt.% hydrophobic
agent +0.6 wt.% cement or the phosphogypsum +0.3 wt.% hydrophobic agent. The relative
content of Si 2p was higher, and the peak position shift was more obvious, indicating that
the appropriate alkalinity enhanced the chemical reaction between the hydrophobic agent
and gypsum [19].
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Figure 6. XPS spectra of Si 2p and O 1s in the gypsum sample. (a) Change in Si 2p in gypsum samples.
(b) Phosphogypsum reference group O 1s. (c) Phosphogypsum +0.3 wt.% of hydrophobic agent.
(d) Phosphogypsum +0.3 wt.% hydrophobic agent +0.6 wt.% cement.

Figure 6b–d shows the peak fitting results of the O 1s XPS spectra of the three sam-
ples, the phosphogypsum +0.3 wt.% hydrophobic agent and phosphogypsum +0.3 wt.%
hydrophobic agent +0.6 wt.% cement, respectively. Figure 6b showed that the O 1s spec-
trum of the phosphogypsum reference group consisted of 78.74% OH− and 21.26% H2O,
indicating that the hydration product of gypsum contained a large number of hydrophilic
groups OH− on the surface of the calcium sulfate dihydrate crystals, which was also one of
the main reasons for the high water absorption rate of gypsum. After adding the 0.3 wt.%
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hydrophobic agents to phosphogypsum, the content of OH− decreased by 9.3%, and the
lattice oxygen O2

− increased by 5.56%, indicating that the hydrophobic agent participated
in the OH− polymerization reaction on the surface of gypsum crystals and adhered to the
surface of gypsum crystals, forming a continuous water-repellent film and improving the
water resistance of gypsum. The phosphogypsum +0.3 wt.% hydrophobic agent +0.6 wt.%
cement was compared with the phosphogypsum benchmark group. The 21.60% increase
in OH− content and the 12.57% increase in lattice oxygen O2

− showed that the surface of
the gypsum crystals with suitable basicity due to the higher levels of OH−, reacts more
effectively with the hydrophobic agent. With increased basicity, the hydrophobic agent
on the surface of the gypsum crystals increased, and the formation of the hydrophobic
membrane was more complete; therefore, the gypsum contact angle was larger, and the
material was more resistant to water. Thus, the organosilicon hydrophobic agent adhered
to the surface of the gypsum crystal through the polymerization of OH− on the surface
of the gypsum. When the cement was added together with a hydrophobic agent, the
appropriate alkalinity promoted the hydrolysis of the hydrophobic agent. This alkalinity
was conducive to the polymerization of OH− with the hydrophobic agent on the surface of
the gypsum crystal and the formation of a hydrophobic film, significantly improving the
water resistance of the gypsum.

From Figure 6, we can also find that the intensity of OH- decreased obviously com-
pared with that of the pure phosphogypsum group. According to the Chen and Simon’s
studies [20,21], organosilicon had a higher degree of hydrolysis and polymerized gradually,
generating an amount of the silicon hydroxyl key, which can bond with C-S-H gel and gyp-
sum crystal and delay the cement hydration. Due to hydroxide consumption, the surface of
the phosphogypsum crystal was coated with an organosilicon tax layer, which impeded the
migration of free water and the attachment of water on the surface. By adding an amount
of cement, the alkalinity can be adjusted to accelerate the hydrolysis and condensation
process of the organosilicon compounds during the hydration of the phosphogypsum.

3.4.2. Hydrophobic Agent Micromorphology of the Hydration Product

As Figure 7 showed, SEM was carried out on the gypsum blocks for the following sam-
ples: the phosphogypsum reference group, the phosphogypsum +0.3 wt.% hydrophobic
agent, the phosphogypsum +0.3 wt.% hydrophobic agent +0.4 wt.% cement, the phos-
phogypsum +0.3 wt.% hydrophobic agent +0.4 wt.% cement, and the phosphogypsum
+0.3 wt.% hydrophobic agent +0.6 wt.% cement. SEM analysis was performed to study the
effect of different amounts of the silicone hydrophobic agent and cement on the microscopic
morphology of phosphogypsum.

The hydration product of phosphogypsum was calcium sulfate dihydrate. As Figure 7a
shows, the calcium sulfate dihydrate in the reference group was long, columnar, and
randomly distributed in the matrix. They overlap with each other to provide strength for
the hardened material. Figure 7b shows that the addition of the hydrophobic agent had
no obvious effect on the morphology of the calcium sulfate hydrate, and the hydration
products in the matrix also did not change. Meanwhile, the hydrophobic agent formed
a lamellar layer that adhered to the surface of crystals to improve their waterproofing.
The alkalinity of the gypsum system with a 0.3% hydrophobic agent was adjusted by
cement; the addition of cement did not change the main hydration product composition of
the matrix, and the calcium sulfate dihydrate crystal retained its original shape. Crystals
with poor crystallinity were observed as the addition of cement increase the pH of the
system [22]. The aluminate phase in the cement reacted with the phosphogypsum to form
needle-like ettringite, thereby leading to a lower strength. The amount of cement increased,
the calcium sulfate dihydrate coarsened because the cement promoted the hydrolysis and
polymerization reactions of the hydrophobic agent, according to the results of the XPS
spectrum. The hydrophobic agent adsorbed onto the surface of gypsum crystals and made
the crystals denser. This prevents the water from flowing and migrating into the gypsum,
thereby reducing the water absorption.
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4. Conclusions

Based on the experimental results, some conclusions were obtained as follows:

(1) With the increase of the silicone hydrophobic agent dosage from 0.1 wt.% to 0.5 wt.%,
the water absorption of the hardened phosphogypsum was decreased from 18.0% to
0.9%. The softening coefficient was improved to 0.99 when the dosage was 0.5 wt.%.
Meanwhile, the compressive strength and flexural strength of phosphogypsum de-
creased first at 0.1 wt.% and then increased as the amount of added hydrophobic
agent increased.

(2) In the case of 0.3% content of the silicone hydrophobic agent, with the increase in the
weight ratios of cement, the softening coefficient of the phosphogypsum was increased
from 0.80 to 0.99. The water absorption of the phosphogypsum decreased to 0.8%, with
a weight ratio of cement which was 0.6 wt.%. The contact angle of phosphogypsum
increased from 47.56◦ to 147.23◦ under the coupling effect of hydrophobic agents and
cement. However, the compressive and flexural strength of phosphogypsum reduced
consistently with the increase of the weight ratios of cement.

(3) When the cement was added together with the hydrophobic agent, appropriate
alkalinity promoted the hydrolysis of the hydrophobic agent, which was conducive to
the polymerization of the hydrophobic organic on the surface of the gypsum crystal.
When the 0.3 wt.% of cement was used to adjust alkalinity, gypsum crystal coarsening
occurred in the silicone hydrophobic agent–gypsum system. The coarsening of the
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crystals led to a strength decrease in phosphogypsum. Thus, the coupling of the
organosilicon hydrophobic agent and cement exhibited higher mechanical and water-
resistance properties than separate organosilicon addition.

Further investigations are needed to understand the underlying coupling effects of other
dosages of hydrophobic agent and the weight ratios of cement, instead of being limited to
0.3% silicone dosages. More importantly, the polycondensation of organosilicon, to promote
water-resistance, is strongly worth considering to apply to other solid waste materials.
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