Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Activated Carbon
2.3. Characterization
2.4. Batch Adsorption Experiments
3. Results and Discussion
3.1. Structure and Morphologies
3.2. Pore Structure
3.3. Adsorption Kinetics
3.4. Adsorption Isotherm
3.5. Post-Analyses Investigation
3.6. Practical Implications of This Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, G.; Chen, H.; Li, X. Magnetic biochar catalyst derived from biological sludge and ferric sludge using hydrothermal carbonization: Preparation, characterization and its circulation in Fenton process for dyeing wastewater treatment. Chemosphere 2017, 191, 64–71. [Google Scholar] [CrossRef]
- Lawagon, C.P.; Amon, R.E.C. Magnetic rice husk ash ’cleanser’ as efficient methylene blue adsorbent. Environ. Eng. Res. 2019, 25, 685–692. [Google Scholar] [CrossRef]
- Al-Mokhalelati, K.; Al-Bakri, I.; Wattar, N.A.S.A. Adsorption of methylene blue onto sugarcane bagasse-based adsorbent materials. J. Phys. Org. Chem. 2021, 34, 4193–4201. [Google Scholar] [CrossRef]
- Dinh, V.-P.; Huynh, T.-D.-T.; Le, H.M.; Nguyen, V.-D.; Dao, V.-A.; Hung, N.Q.; Tuyen, L.A.; Lee, S.; Yi, J.; Nguyen, T.D.; et al. Insight into the adsorption mechanisms of methylene blue and chromium(iii) from aqueous solution onto pomelo fruit peel. RSC Adv. 2019, 9, 25847–25860. [Google Scholar] [CrossRef] [Green Version]
- Saratale, R.; Saratale, G.D.; Chang, J.; Govindwar, S. Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. Eng. 2011, 42, 138–157. [Google Scholar] [CrossRef]
- Kabdaşlı, I.; Arslan, T.; Olmez-Hanci, T.; Arslan-Alaton, I.; Tünay, O. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. J. Hazard. Mater. 2009, 165, 838–845. [Google Scholar] [CrossRef]
- Divyapriya, G.; Singh, S.; Martínez-Huitle, C.A.; Scaria, J.; Karim, A.V.; Nidheesh, P. Treatment of real wastewater by photoelectrochemical methods: An overview. Chemosphere 2021, 276, 130188–130219. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Huang, R.; He, L.; Zhang, T.; Li, D.; Tang, P.; Zhao, Y.; Feng, Y. Fabrication and Adsorption Behavior of Magnesium Silicate Hydrate Nanoparticles towards Methylene Blue. Nanomaterials 2018, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.M.; Carr, C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere 2018, 209, 201–219. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Juang, R.-S. Treatment of waters and wastewaters containing sulfur dyes: A review. Chem. Eng. J. 2013, 219, 109–117. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, X.; Kang, Y.; Zhang, J. Biomass-Derived Carbon Sorbents for Cd (II) Removal: Activation and Adsorption Mechanism. ACS Sustain. Chem. Eng. 2017, 5, 4103–4109. [Google Scholar] [CrossRef]
- Sahraei, R.; Pour, Z.S.; Ghaemy, M. Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: Removal of heavy metals and dyes from water. J. Clean. Prod. 2017, 142, 2973–2984. [Google Scholar] [CrossRef]
- Ahmed, S.; Guo, Y.; Huang, R.; Li, D.; Tang, P.; Feng, Y. Hexamethylene tetramine-assisted hydrothermal synthesis of porous magnesium oxide for high-efficiency removal of phosphate in aqueous solution. J. Environ. Chem. Eng. 2017, 5, 4649–4655. [Google Scholar] [CrossRef]
- Cha, J.S.; Park, S.H.; Jung, S.-C.; Ryu, C.; Jeon, J.-K.; Shin, M.-C.; Park, Y.-K. Production and utilization of biochar: A review. J. Ind. Eng. Chem. 2016, 40, 1–15. [Google Scholar] [CrossRef]
- Mousavi, D.V.; Ahmadipouya, S.; Shokrgozar, A.; Molavi, H.; Rezakazemi, M.; Ahmadijokani, F.; Arjmand, M. Adsorption performance of UiO-66 towards organic dyes: Effect of activation conditions. J. Mol. Liq. 2020, 321, 114487–114496. [Google Scholar] [CrossRef]
- Olszewski, R.; Nadolska, M.; Łapiński, M.; Prześniak-Welenc, M.; Cieślik, B.M.; Żelechowska, K. Solvent-Free Synthesis of Phosphonic Graphene Derivative and Its Application in Mercury Ions Adsorption. Nanomaterials 2019, 9, 485. [Google Scholar] [CrossRef] [Green Version]
- Abdellaoui, Y.; El Ibrahimi, B.; Oualid, H.A.; Kassab, Z.; Quintal-Franco, C.; Giácoman-Vallejos, G.; Gamero-Melo, P. Iron-zirconium microwave-assisted modification of small-pore zeolite W and its alginate composites for enhanced aqueous removal of As(V) ions: Experimental and theoretical studies. Chem. Eng. J. 2021, 421, 129909–129924. [Google Scholar] [CrossRef]
- Toprak, A.; Hazer, B. Novel porous carbon microtubes and microspheres produced from poly(CL-b-VbC) triarm block copolymer as high performance adsorbent for dye adsorption and separation. J. Mol. Liq. 2018, 314, 113565–113574. [Google Scholar] [CrossRef]
- Xiao, L.; Ye, F.; Zhou, Y.; Zhao, G. Utilization of pomelo peels to manufacture value-added products: A review. Food Chem. 2021, 351, 129247–129264. [Google Scholar] [CrossRef]
- Wang, Z.; Zheng, P.; Guo, J. Pomelo peel-derived lamellar carbon with surface oxygen functional groups for high-performance supercapacitors. Appl. Surf. A 2021, 5, 127–323. [Google Scholar] [CrossRef]
- Sun, N.; Liu, H.; Xu, B. Facile synthesis of high performance hard carbon anode materials for sodium ion batteries. J. Mater. Chem. A 2015, 3, 20560–20566. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Yu, J.; He, J.; Yang, H.; Ye, Y.; Song, Y. A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing. Sens. Actuators B Chem. 2017, 239, 172–179. [Google Scholar] [CrossRef]
- Lu, L.; Yu, J.; Wu, Z.; Fan, J.; Lei, W.; Ouyang, Y.; Xia, X.; He, G.; Hao, Q. Shaddock peel derived nitrogen and phosphorus dual-doped hierarchical porous carbons as high-performance catalysts for oxygen reduction reaction. Int. J. Hydrogen Energy 2019, 44, 26982–26991. [Google Scholar] [CrossRef]
- Huang, Z.; Xiong, C.; Zhao, M.; Wang, S.; Zhou, Y.; Dai, L.; Zhang, L. Surface-functionalized pomelo peel-derived biochar with mercapto-1,2,4-triazloe for selective elimination of toxic Pb (II) in aqueous solutions. Adv. Powder Technol. 2021, 31, 1013–1022. [Google Scholar] [CrossRef]
- Dong, F.-X.; Yan, L.; Zhou, X.-H.; Huang, S.-T.; Liang, J.-Y.; Zhang, W.-X.; Guo, Z.-W.; Guo, P.-R.; Qian, W.; Kong, L.-J.; et al. Simultaneous adsorption of Cr (VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism. J. Hazard. Mater. 2021, 416, 125930–125941. [Google Scholar] [CrossRef]
- Li, H.; Sun, Z.; Zhang, L.; Tian, Y.; Cui, G.; Yan, S. A cost-effective porous carbon derived from pomelo peel for the removal of methyl orange from aqueous solution. Colloids Surf. A 2016, 489, 191–199. [Google Scholar] [CrossRef]
- Liang, H.; Song, B.; Peng, P.; Jiao, G.; Yan, X.; She, D. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr (VI). Chem. Eng. J. 2019, 367, 9–16. [Google Scholar] [CrossRef]
- Sudha, R.; Srinivasan, K.; Premkumar, P. Removal of nickel (II) from aqueous solution using Citrus Limettioides peel and seed carbon. Ecotoxicol. Environ. Saf. 2015, 117, 115–123. [Google Scholar] [CrossRef]
- Jin, J.; Li, S.; Peng, X.; Liu, W.; Zhang, C.; Yang, Y.; Han, L.; Du, Z.; Sun, K.; Wang, X. HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresour. Technol. 2018, 256, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Block, I.; Günter, C.; Rodrigues, A.D.; Paasch, S.; Hesemann, P.; Taubert, A. Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water. Materials 2021, 14, 3996. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.A.F.; Perez, J.P.H.; Block, I.; Sagu, S.T.; Celis, P.S.; Taubert, A.; Rawel, H.M. Preparation of Activated Carbons from Spent Coffee Grounds and Coffee Parchment and Assessment of Their Adsorbent Efficiency. Materials 2021, 9, 1396. [Google Scholar] [CrossRef]
- Kamedulski, P.; Gauden, P.A.; Lukaszewicz, J.P.; Ilnicka, A. Effective Synthesis of Carbon Hybrid Materials Containing Oligothiophene Dyes. Materials 2019, 12, 3354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Zimmerman, A.R.; Hu, X.; Yu, Z.; Huang, J.; Gao, B. One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl2. Chemosphere 2020, 254, 126866–126871. [Google Scholar] [CrossRef]
- Ozdemir, I.; Şahin, M.; Orhan, R.; Erdem, M. Preparation and characterization of activated carbon from grape stalk by zinc chloride activation. Fuel Process. Technol. 2014, 125, 200–206. [Google Scholar] [CrossRef]
- Nassar, H.; Zyoud, A.; El-Hamouz, A.; Tanbour, R.; Halayqa, N.; Hilal, H.S. Aqueous nitrate ion adsorption/desorption by olive solid waste-based carbon activated using ZnCl2. Sustain. Chem. Pharm. 2020, 18, 100335–100343. [Google Scholar] [CrossRef]
- Yağmur, H.K.; Kaya, I. Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. J. Mol. Struct. 2021, 1232, 130071–130082. [Google Scholar] [CrossRef]
- Guo, Z.; Huo, W.; Cao, T.; Liu, X.; Ren, S.; Yang, J.; Ding, H.; Chen, K.; Dong, F.; Zhang, Y. Heterojunction interface of zinc oxide and zinc sulfide promoting reactive molecules activation and carrier separation toward efficient photocatalysis. J. Colloid Interface Sci. 2020, 588, 826–837. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Zhang, S.; Lu, W.; Xu, H. Pyrolysis Behavior and Pore-Forming Mechanism During Reuse of Textile Waste Flax by Activation. Waste Biomass Valoriz. 2020, 11, 4259–4268. [Google Scholar] [CrossRef]
- Sharma, M.; Joshi, M.; Nigam, S.; Shree, S.; Avasthi, D.K.; Adelung, R.; Srivastava, S.K.; Mishra, Y. ZnO tetrapods and activated carbon based hybrid composite: Adsorbents for enhanced decontamination of hexavalent chromium from aqueous solution. Chem. Eng. J. 2019, 358, 540–551. [Google Scholar] [CrossRef]
- Huang, R.; Wu, M.; Zhang, T.; Li, D.; Tang, P.; Feng, Y. Template-free Synthesis of Large-Pore-Size Porous Magnesium Silicate Hierarchical Nanostructures for High-Efficiency Removal of Heavy Metal Ions. ACS Sustain. Chem. Eng. 2017, 5, 2774–2780. [Google Scholar] [CrossRef]
- Sangwichien, C.; Aranovich, G.; Donohue, M. Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloids Surf. A 2002, 206, 313–320. [Google Scholar] [CrossRef]
- Li, L.; Wu, M.; Song, C.; Liu, L.; Gong, W.; Ding, Y.; Yao, J. Efficient removal of cationic dyes via activated carbon with ultrahigh specific surface derived from vinasse wastes. Bioresour. Technol. 2021, 322, 124540–124572. [Google Scholar] [CrossRef]
- Zhou, D.; Li, D.; Li, A.; Qi, M.; Cui, D.; Wang, H.; Wei, H. Activated carbons prepared via reflux-microwave-assisted activation approach with high adsorption capability for methylene blue. J. Environ. Chem. Eng. 2020, 9, 104671–104681. [Google Scholar] [CrossRef]
- Islam, A.; Ahmed, M.; Khanday, W.; Asif, M.; Hameed, B. Mesoporous activated coconut shell-derived hydrochar prepared via hydrothermal carbonization-NaOH activation for methylene blue adsorption. J. Environ. Manag. 2017, 203, 237–244. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T.; Hashim, R.; Said, N.; Akhtar, M.N.; Mohamad-Saleh, J.; Sulaiman, O. Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye. Surf. Interfaces 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zang, H.; Chen, L.; Meng, Z.; Li, H.; Ci, L.; Du, Q.; Wang, D.; Wang, C.; et al. ZnCl2-activated carbon from soybean dregs as a high efficiency adsorbent for cationic dye removal: Isotherm, kinetic, and thermodynamic studies. Environ. Technol. 2018, 41, 1–24. [Google Scholar] [CrossRef]
- Yang, J.; Qiu, K. Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal. Chem. Eng. J. 2010, 165, 209–217. [Google Scholar] [CrossRef]
- Maia, L.S.; Duizit, L.D.; Pinhatio, F.R.; Mulinari, D.R. Valuation of banana peel waste for producing activated carbon via NaOH and pyrolysis for methylene blue removal. Carbon Lett. 2021, 31, 749–762. [Google Scholar] [CrossRef]
- Wong, K.T.; Eu, N.C.; Ibrahim, S.; Kim, H.; Yoon, Y.; Jang, M. Recyclable magnetite-loaded palm shell-waste based activated carbon for the effective removal of methylene blue from aqueous solution. J. Clean. Prod. 2016, 115, 337–342. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Yusop, M.F.M.; Zakaria, R.; Karim, J.; Yahaya, N.K.E.; Yusoff, M.A.M.; Hashim, N.H.F.; Abdullah, N.S. Adsorption of methylene blue from aqueous solution by peanut shell based activated carbon. Mater. Today Proc. 2021, 47, 1246–1251. [Google Scholar] [CrossRef]
- Tu, W.; Liu, Y.; Xie, Z.; Chen, M.; Ma, L.; Du, G.; Zhu, M. A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. J. Colloid Interface Sci. 2021, 593, 390–407. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Z.; Cheng, Q.; Ren, H.; Wang, S.; Zhao, Y.; Li, J.; Zhu, J.; Kong, L.B. One-step preparation of environment-oriented magnetic coal-based activated carbon with high adsorption and magnetic separation performance. J. Magn. Magn. Mater. 2021, 521, 167517–167523. [Google Scholar] [CrossRef]
Samples | Surface Area (m2/g) | Average Pore Size (nm) | Pore Volume (cm3/g) | Samples | Surface Area (m2/g) | Average Pore Size (nm) | Pore Volume (cm3/g) |
---|---|---|---|---|---|---|---|
2:1-600 | 764.30 | 2.10 | 0.40 | 0-1000 | 1280.51 | 2.53 | 0.81 |
2:1-700 | 789.10 | 2.07 | 0.41 | 1:1-1000 | 1663.74 | 2.27 | 0.94 |
2:1-800 | 881.20 | 2.65 | 0.58 | 2:1-1000 | 2398.74 | 3.04 | 1.82 |
2:1-900 | 988.90 | 2.23 | 0.55 | 4:1-1000 | 1810.08 | 3.59 | 1.62 |
2:1-1000 | 2398.74 | 3.04 | 1.82 | 6:1-1000 | 1560.85 | 4.07 | 1.31 |
Sample | Hg Intrusion Pore Volume (mL/g) | Porosity (%) |
---|---|---|
0-1000 | 3.43 | 74.72 |
1:1-1000 | 3.32 | 67.78 |
2:1-1000 | 7.61 | 79.26 |
4:1-1000 | 3.88 | 75.28 |
6:1-1000 | 3.28 | 74.26 |
Sample | qe,exp (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
qe,cal (mg/g) | k1 | R2 | qe,cal (mg/g) | k2 | R2 | ||
2:1-600 | 324 | 313.55 | 0.03838 | 0.7184 | 325.87 | 3.436 × 10−4 | 0.8935 |
2:1-700 | 366 | 341.80 | 0.08742 | 0.6893 | 364.01 | 3.998 × 10−4 | 0.9066 |
2:1-800 | 417 | 373.27 | 0.01104 | 0.7854 | 404.09 | 4.048 × 10−4 | 0.9469 |
2:1-900 | 617 | 609.43 | 0.1979 | 0.6909 | 615.85 | 6.104 × 10−4 | 0.9152 |
2:1-1000 | 879 | 849.55 | 0.2952 | 0.9809 | 871.87 | 7.567 × 10−4 | 0.9979 |
Sample | qe,exp (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
qe,cal (mg/g) | k1 | R2 | qe,cal (mg/g) | k2 | R2 | ||
0-1000 | 704 | 670.45 | 0.3701 | 0.9747 | 685.56 | 1.310 × 10−3 | 0.9908 |
1:1-1000 | 771 | 736.28 | 0.2198 | 0.9714 | 762.22 | 5.541 × 10−4 | 0.9958 |
2:1-1000 | 879 | 849.55 | 0.2952 | 0.9809 | 871.87 | 7.567 × 10−4 | 0.9979 |
4:1-1000 | 822 | 802.70 | 0.3849 | 0.9895 | 817.13 | 1.320 × 10−3 | 0.9981 |
6:1-1000 | 803 | 793.32 | 0.3879 | 0.9946 | 805.43 | 1.490 × 10−3 | 0.9992 |
Samples | Langmuir Isotherm | Freundlich Isotherm | ||||
---|---|---|---|---|---|---|
qm (mg/g) | KL (L/mg) | R2 | KF (mg/g) | n | R2 | |
0-1000 | 523.96 | 0.02141 | 0.9420 | 139.99 | 0.2067 | 0.9383 |
1:1-1000 | 829.90 | 0.05261 | 0.9663 | 309.22 | 0.1673 | 0.8448 |
2:1-1000 | 859.81 | 2.9518 | 0.9429 | 663.85 | 0.05437 | 0.8535 |
4:1-1000 | 841.48 | 0.07507 | 0.9167 | 377.04 | 0.1378 | 0.6932 |
6:1-1000 | 787.23 | 0.2988 | 0.9825 | 543.48 | 0.06735 | 0.9181 |
Adsorbent | Activating Agent | Carbonizatin Temperature (°C) | Specific Surface Area (m2/g) | Adsorption Capacity (mg/g) | Ref. |
---|---|---|---|---|---|
Corncob AC | KOH | 700 | 1405.00 | 636.94 | [45] |
Coconut AC | NaOH | 600 | 876.14 | 200.01 | [46] |
Wood AC | H3PO4 | 500 | 1161.29 | 159.89 | [47] |
Soybean dregs AC | ZnCl2 | 500 | 643.58 | 225.10 | [48] |
Walnut shells AC | ZnCl2 | 450 | 1800.00 | 315.00 | [49] |
Banana peel AC | NaOH | 400 | 432.00 | 232.50 | [50] |
Palm shell AC | - | - | 731.50 | 163.30 | [51] |
Peanut shell AC | NaOH | 800 | 868.75 | 555.60 | [52] |
Sewage sludge and Coconut shell AC | KOH | 700 | 873.54 | 623.37 | [53] |
Magnetic coal-based AC | KOH | 1000 | 1188.00 | 238.56 | [54] |
Shaddock peel AC | ZnCl2 | 1000 | 2398.74 | 859.81 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhong, H.; Jiang, Y.; Li, H.; Tang, P.; Li, D.; Feng, Y. Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior. Materials 2022, 15, 895. https://doi.org/10.3390/ma15030895
Zhao H, Zhong H, Jiang Y, Li H, Tang P, Li D, Feng Y. Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior. Materials. 2022; 15(3):895. https://doi.org/10.3390/ma15030895
Chicago/Turabian StyleZhao, Hongxia, Haihong Zhong, Yu Jiang, Huiyu Li, Pinggui Tang, Dianqing Li, and Yongjun Feng. 2022. "Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior" Materials 15, no. 3: 895. https://doi.org/10.3390/ma15030895
APA StyleZhao, H., Zhong, H., Jiang, Y., Li, H., Tang, P., Li, D., & Feng, Y. (2022). Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior. Materials, 15(3), 895. https://doi.org/10.3390/ma15030895