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Abstract: It is of great interest and importance to resource utilization of waste biomass to produce
porous carbon for environmental treatments. Pore structure and properties of the obtained carbon
mainly relate to carbonization conditions and biomass types. In this work, a series of porous,
biomass-activated carbons (AC) were prepared using shaddock peel, with ZnCl2 as a pore-forming
agent. The effect of carbonization temperature and the mass ratio between ZnCl2 and shaddock peel
were thoroughly investigated. The material composition, surface chemical properties, and surface
structures of samples were carefully characterized. The specific surface area and adsorption capacity
to methylene blue (MB) of adsorbents were changed with the carbonization temperature and the mass
ratios between ZnCl2 and shaddock peel; when the temperature was at 1000 ◦C and the mass ratio
was equal to 2:1, the resulting adsorbent had the largest specific surface area of 2398.74 m2/g and
average pore size of 3.04 nm, which showed the highest adsorption capacity to MB to be 869.57 mg/g.
The adsorption processes of biomass AC adsorbent matched the pseudo-second-order kinetic model
and Langmuir isotherm model. This efficient and environmentally friendly biomass AC adsorbent
from shaddock peel, activated by ZnCl2, is a promising candidate for the treatment of water pollution.

Keywords: biomass carbon; adsorption; porous structure; ZnCl2-activated carbon

1. Introduction

Organic dyes have greatly enriched human life, with widespread applications in
textile, papermaking, leather [1], and printing industries [2]. Due to excessive use and
uncontrollable discharge, dye pollution is threatening human health and the ecological
system. According to statistics, ca. 7 × 105 tons of dye is produced in the world every
year [3]. Among them, methylene blue (MB), a heterocyclic aromatic chemical compound
(C16H18ClN3S3H2O), is one kind of toxic cationic dye [4] that not only cause diseases, such
as heart disease, tissue necrosis, emesis, shock, and others [5], but also has a negative impact
on aquatic animals and plant growth due to the reduced photosynthesis [6]. Therefore, it
is critical to limit new discharges and remove existing pollution from water bodies using
various technologies.

Many technologies, such as electrochemical [7], photoelectrochemical [8], microbial
degradation [9], ions exchange [10,11], Fenton reaction [2], membrane separation [12],
adsorption [13], and so on, have been developed to remove organic dyes from polluted
water. In comparison, adsorption technology is widely used due to its low cost, ease of
operation, and high efficiency [14]. Metal oxides [15], carbon materials [16], metalorganic
frameworks (MOF) [17], graphene [18], zeolites [19], and polymers [20] have all been used
as adsorbents in the treatment of polluted water. Among them, activated carbon (AC) is
one of the most commonly used adsorbents, which is one kind of low-cost adsorbent, and
the corresponding adsorption performance is primarily determined by the carbon pore
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structure, which is derived by the carbon resource and carbonization process. Recently,
shaddock peel, a type of biomass resource, has piqued the interest of AC investigators
due to its abundant supply, low cost, and abundant functional groups [21]. Various types
of carbon adsorbents have been synthesized from shaddock peel and used in the energy
storage [22,23], gas detection [24], catalysis [25], and adsorption fields [26–28]. Usually, the
chemical activation method can contribute to the porous structure and chemical properties
of carbon surface. KOH [29], H2SO4 [30], HNO3 [31], CaCO3 [32–34], and so on, have
been used as activating agents for the preparation of biomass carbon. Recently, ZnCl2 has
attracted increasing interest as a high-performance chemical activation agent for fabricating
porous carbon materials from various biomass, because ZnCl2 acts as a Lewis acid and
can be used as a dehydration agent to selectively remove the H and O from biomass to
restrain the formation of tar and contribute to the formation of high surface area and
porous structure [35,36]. As examples, ZnCl2 was used to activate olive solid waste to
produce AC with a 10 times higher specific surface area of 1480 m2/g and enhanced nitrate
adsorption capacity of 5.5 mg/g [37]; ZnCl2 was used to activate coconut shell to produce
active, magnetic, activated carbon with a more than 275 times improved specific surface
area of 935.46 m2/g, and an increased maximum adsorption capacity of 156.25 mg/g for
MB [38]. Therefore, ZnCl2 is a potential activating agent to improve the specific surface
area and porosity of carbon materials. It is of great necessity and importance to investigate
the influence of ZnCl2 in the carbonization of shaddock. Particularly, the adsorption
performance of these adsorbents, activated by ZnCl2, remains to be improved; moreover,
optimizing the pore structure of carbon from shaddock peel and the enhancement of its
adsorption performance remains a significant challenge, and few reports on the activation
behavior of ZnCl2, based on shaddock peel, have been published to date.

In this study, a series of porous ACs were prepared from shaddock peel with ZnCl2
as an activating agent. The effects of carbonization and ZnCl2 dosage were investigated
to get porous structure activated carbon adsorbents. The obtained AC adsorbents with
high specific surface area and porous structure were applied for the removal of MB in
aqueous solution, and the kinetic and isotherm adsorptions were carefully investigated. The
carbonization temperature and ZnCl2 dosage are important in optimizing pore structure
and enhancing adsorption performance. The use of shaddock peel as a carbon precursor,
and of ZnCl2 as an activating agent, is a low-cost and environmentally friendly method for
practical applications of sewage treatment.

2. Materials and Methods
2.1. Materials

The zinc chloride (ZnCl2) used in this study was of analytical grade, received from Beijing
Tongguang Fine Chemical Co., and was used without further purification. Deionized water
was used throughout.

2.2. Preparation of Activated Carbon

A series of porous AC adsorbents were prepared using shaddock peel as the carbon
resource and ZnCl2 as the activation agent, with carbonization temperatures ranging
from 600 to 1000 ◦C, and the mass ratios of ZnCl2 to shaddock peel at 0 to 6:1. Prior to
carbonization, shaddock peel without yellow skin was washed with deionized water, cut
into ca. 1 × 1 cm2 pieces, and dried in a 90 ◦C oven at for 12 h. For instance, 10.00 g
ZnCl2 was dissolved in 150 mL deionized water to form a ZnCl2 solution, and then 5.00 g
shaddock peel was added to the above solution. The resulting suspension was then kept
for another 4 h with vigorous magnetic stirring. Later, the mixed suspension was dried in
an oven at 90 ◦C for another 12 h. The dried sample was placed in a tube furnace under N2
atmosphere and carbonized at 800 ◦C for 2 h with a heating rate of 5 ◦C/min. The obtained
biomass carbon was washed with deionized water, until no Cl− was detected using a
1 wt.% AgNO3 aqueous solution. It was ground into a 100 µm powder by a mortar, and
collected as 2:1-800, indicating that the collected AC sample was synthesized with a ZnCl2
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to shaddock mass ratio of 2:1 and a carbonization temperature of 800 ◦C. Some samples
were fabricated at different carbonization temperatures ranging from 600 to 1000 ◦C at
a mass ratio 2:1, following the same procedure, and recoded as 2:1-600, 2:1-700, 2:1-800,
2:1-900, 2:1-1000. Others were performed at 1000 ◦C with different mass ratios between
ZnCl2 and shaddock peel, such as 0 (without ZnCl2), 1:1, 2:1, 4:1, and 6:1, and labeled as
0-1000, 1:1-1000, 2:1-1000, 4:1-1000, and 6:1-1000, respectively.

2.3. Characterization

Crystalline structures were characterized on Bruker D8 Advance powder X-ray diffrac-
tometer (Cu Kα1 radiation, λ = 0.15406 nm) from 10 to 70◦/2θ at a scan speed of 10◦ min−1.
Morphologies were captured using a Hitachi S-4700 scanning electron microscope (SEM)
operating at 30 kV, which was also used to record the elemental mapping and spectrum of
energy dispersive X-ray spectrometry (EDXS). The transmission electron microscopy (TEM)
images were obtained on a HITACHI HT 7700 transmission electron microscope with an
accelerating voltage of 100 kV. Specific surface area and pore properties were calculated
based on low-temperature N2 adsorption–desorption isothermal curves, recorded at 77 K
on Micromeritics ASAP 2460 (Norcross, GA, USA), where the specific surface area was eval-
uated by the Brunauer–Emmett–Teller (BET) method from the adsorption curve, and both
the pore size distribution and the pore volume were analyzed using the density functional
theory (DFT) method. Micromeritics Auto Pore IV 9500 (Norcross, GA, USA) was used to
characterize the macroporous structure. Fourier transform infrared spectra (FT-IR) curves
were collected from Bruker Vector 22 spectrophotometer (Karlsruhe, Germany) with mass
ratio between sample and potassium bromide at 1:100 following homogeneous mixture.

2.4. Batch Adsorption Experiments

The adsorption kinetic experiments on the fabricated AC towards MB were performed in
100 mL conical beakers in a thermostated shaker at 30 ◦C. Typically, 0.020 g AC powder was
dispersed in 40 mL MB aqueous solution with initial concentration of 500 mg/L at nature pH
with a shaking speed of 150 rpm, then 1.0 mL of the suspension was extracted after certain time
intervals (e.g., 5, 10, 20, 30, 45, 60, 120, 180, 240, 300, 360, and 420 min) through a microfiltration
membrane (Φ = 0.22 µm, pore diameter) and the MB concentration in the filtrate was tested by
UV-vis spectrophotometer at λmax = 664 nm. The adsorption quantity of the AC towards MB at
time t, qt (mg/g) was calculated by the following equation:

qt =
(C0 − Ct)× V

m
(1)

where C0 (mg/L) represents the initial MB concentration, Ct (mg/L) is the MB concentration
at time t, V (L) is the volume of MB solution, and m (g) refers to the mass of AC.

In addition, the adsorption isotherm experiments of AC to MB were carried out in conical
beakers by dispersing 0.01 g of the AC in each 20 mL MB solution with an initial concentration
ranging from 300 to 700 mg/L. After 7 h of shaking at a speed of 150 rpm at 30 ◦C, the concen-
tration of MB in the solution was measured using a UV-vis spectrophotometer at λmax = 664 nm,
the adsorption quantity of the AC to MB at equilibrium, qe (mg/g), was calculated as follows:

qe =
(C0 − Ce)× V

m
(2)

where C0 (mg/L) represents the initial concentration of MB solution, Ce is the equilibrium
concentration of MB solution, and V (L) and m (g) refer to the volume of MB solution and
the mass of the AC, respectively.

All of the adsorption experiments were repeated three times, and the corresponding
average values were used for analysis.
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3. Results and Discussion
3.1. Structure and Morphologies

A series of porous AC adsorbents were synthesized using shaddock peel as the carbon
resource and ZnCl2 as the activation agent at various carbonization temperatures (T)
ranging from 600 to 1000 ◦C, and with mass ratios between ZnCl2 and shaddock peel
scaling from 0 to 6:1. Figure 1 shows powder X-ray diffraction (PXRD) patterns of all the
prepared AC adsorbents. As the temperature rises from 600 ◦C to 800 ◦C, a series of typical
Bragg diffraction peaks for ZnO in the range of 10–70◦/2θ were observed, as marked in
the graph, which matched well to PDF card No. 79-2205 [39]. Furthermore, the intensity
of the related diffraction peak decreased with increasing T from 700 ◦C to 800 ◦C, owing
to the production of Zn from the reduction between ZnO and carbon [40]. When the T
was beyond 900 ◦C, a broad peak at 2θ = 23◦ occurred in all AC adsorbents, which was
assigned to the (002) plane of carbon carbonized from shaddock peel; a peak at 2θ = 43.8◦

corresponded to the (100) plane of graphite crystal, and no diffraction peak of ZnO was
detected [41], implying complete volatilization of Zn, as reported in the literature [40]. This
phenomenon is also verified by the EDXS mapping results in Figure S1 and Table S1; Zn
was observed in the samples prepared below 900 ◦C, when the carbonization increased
to 1000 ◦C, no Zn was observed, and only carbon adsorbents appeared. The 2 diffraction
peaks at 23 and 43.8◦ also existed in all AC samples at different mass ratios when the
temperature was fixed at 1000 ◦C.
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Figure 1. Powder X-ray diffraction patterns (PXRD) of different AC adsorbents prepared at different
carbonization temperatures (a) and mass ratios (b).

Figure 2 furthermore demonstrates the FT-IR spectra of all AC adsorbents in the range of
4000–400 cm−1. In all cases, 2 main typical adsorption bonds were observed: 1 at 3433 cm−1

attributed to stretching vibration of the hydroxyl group, the other at 1044 cm−1, which belonged
to the stretching and vibration peak of C-O for alcohols, phenols, or ester groups. For the
3 samples at T = 600–800 ◦C, 1 adsorption band centered at 529 cm−1, which is described as the
vibration of the Zn-O bond, which is consistent with the results shown in Figure 1.

Furthermore, Figure 3 shows SEM images of all the AC samples as a function of car-
bonization temperature and mass ratios between ZnCl2 and shaddock peel, with significantly
different morphologies and pore structures. On the one hand, a high carbonization temperature
favors the formation of large pore. For example, the carbon surface was smooth and dense at
T = 600 and 700 ◦C; at T from 800 to 1000 ◦C, the carbon surface varied from crude to porous
and the pore size increased with carbonization temperature, with the increase in temperature,
the dehydration and gasification of Zn also showed gradually increasing tendency. On the other
hand, increasing the use of ZnCl2 aided in the production of more macrospores at 1000 ◦C. For
instance, when no ZnCl2 was used, there were fewer pores; when the mass ratio was increased
from 1:1 to 6:1, more hierarchical pores with varying pore sizes, particularly micrometer-level
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macrospores, were observed. Besides, Figure S2 shows the TEM images of AC adsorbents. Some
differences were observed but it was difficult to distinguish them. We may pay special attention
to this issue in the future. Generally, macrospores provide transport channels and increase the
exposure of active adsorption sites, since more macrospores may improve adsorption rate and
increase adsorption capacity [42]. Enhancing carbonization temperature and a suitable ZnCl2
dosage is beneficial for the formation of an optimized porous structure.
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3.2. Pore Structure

In the case of porous adsorbents, pore structure is crucial in terms of adsorption
rate and maximum adsorption capacity, which are related to pore size and size distri-
bution, as well as surface area. Figure 4 further displays the low-temperature nitrogen
adsorption–desorption isotherm curves of AC adsorbents determined at 77 K and a pore
diameter distribution graph, as calculated based on the desorption curve from the DFT
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method. Table 1 also lists the corresponding BET results derived from the desorption
curves. According to IUPAC, the isotherm curves of 2:1-600, 2:1-700, 2:1-800, and 2:1-900
(c.f., Figure 4a,b) exhibit a typical IV with a H3 hysteresis loop, indicating that the pore
structures were irregular; the isotherm curves in Figure 4c,d show a typical IV with an
H4 hysteresis loop for 0-1000, 1:1-1000, 2:1-1000, 4:1-1000, and 6:1-1000, indicating that
the pore structures were mainly composed of micropores and mesopores, as observed
from the calculated pore diameter distribution [43]. In the case of the 2:1 T samples, the
specific surface area increased from 764.30 to 2398.74 m2/g and the pore volume increased
from 0.40 to 1.82 cm3/g as the temperature rose from 600 to 1000 ◦C; for the mass ratios
ranging from 0 to 6:1 at 1000 ◦C, the specific surface area first increased from 1280.51 m2/g
to 2398.74 m2/g and then decreased to 1560.85 m2/g—the optimized mass ratio was 2:1,
based on specific surface area and pore volume. In addition, the pore diameter distribution
of all the adsorbents can be divided into three ranges: (1) 0.3–2, (2) 2–10, and (3) 10–100 nm,
as shown in Figure 4e,f.
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Table 1. BET results of various AC adsorbents with different carbonization temperatures and mass ratios.

Samples Surface Area
(m2/g)

Average Pore
Size (nm)

Pore Volume
(cm3/g) Samples Surface Area

(m2/g)
Average Pore

Size (nm)
Pore Volume

(cm3/g)

2:1-600 764.30 2.10 0.40 0-1000 1280.51 2.53 0.81
2:1-700 789.10 2.07 0.41 1:1-1000 1663.74 2.27 0.94
2:1-800 881.20 2.65 0.58 2:1-1000 2398.74 3.04 1.82
2:1-900 988.90 2.23 0.55 4:1-1000 1810.08 3.59 1.62

2:1-1000 2398.74 3.04 1.82 6:1-1000 1560.85 4.07 1.31

The calcined temperature is important in forming richly porous structures before the
volatilization temperature of Zn metal, and the addition of ZnCl2 favors the formation of
mesopores and macropores after the volatilization temperature. For example, the pore
diameter of the adsorbents was mainly located at the range of 2–10 nm and expanded
to 0.3–2 nm at 1000 ◦C, which is favorable for the increase in specific surface area and
adsorption quantity. The adsorbents synthesized at 1000 ◦C with a mass ratio of 2:1
exhibited the highest specific surface area of 2398.74 m2/g with an average pore diameter
of 3.04 nm. To some extent, the high specific surface area and appropriate pore diameter
distribution will contribute to the adsorption process.

As shown in Figure 3, macropore structure existed in AC adsorbents synthesized at
1000 ◦C with different mass ratios. Therefore, the mercury intrusion method was employed
to evaluate the macropore structure of AC adsorbents. The corresponding results and
pore parameters are shown in Figure 5 and Table 2. From 0.1 µm to 900 µm, the pore size
distribution was divided into 3 sections: (1) 0.1–6 µm, (2) 6–50 µm, and (3) 50–900 µm.
The 2:1-1000 sample had the highest Hg intrusion volume of 7.61 mL/g, the strongest
porosity of 79.26%, and the maximum cumulative volumes at all 3 pore size sections.
Therefore, the 2:1-1000 showed perfect hierarchical porous structure and possessed the
largest macroporous volume, which contributed to the adsorption performance on MB,
because the macropore exposes more adsorption sites and provides transport channels for
adsorbate, thereby accelerating the mass transfer into the inner surface of adsorbent [42].

Table 2. The pore parameters of AC adsorbents from different mass ratios at 1000 ◦C.

Sample Hg Intrusion Pore Volume (mL/g) Porosity (%)

0-1000 3.43 74.72
1:1-1000 3.32 67.78
2:1-1000 7.61 79.26
4:1-1000 3.88 75.28
6:1-1000 3.28 74.26

3.3. Adsorption Kinetics

The adsorption behavior of all AC adsorbents towards MB in aqueous solution, synthe-
sized at different temperatures and mass ratios, was thoroughly investigated. Figure 6a,c
show the effects of contact time on the adsorption of all AC adsorbents toward MB. The
adsorption quantity increased with contact time, and all samples reached equilibrium
when the contact time surpassed 120 min. However, the adsorption rate increased with
carbonization temperature, indicating that the carbonization temperature had an effect on
the adsorption property.
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The nonlinear and linear fitting of kinetics adsorption were described by frequently
used, pseudo-first-order and pseudo-second-order adsorption kinetics models, as follows:

lg
(
qe − qt

)
= lg

(
qe
)
− k1

2.303
t (3)

t
qt

=
1

k2 × qe
2 +

t
qe

(4)

where the qt (mg/g) represents the adsorption quantity at time t (min), qe (mg/g) is the
equilibrium adsorption quantity, and k1 (min−1) and k2 (mg g−1 min−1) are the adsorption
rate constants of pseudo-first-order and pseudo-second-order kinetics models, respectively.

To determine the optimal carbonization temperature, the adsorption kinetic experi-
ments of AC adsorbents toward MB were carried out. Figure 6a,b show the nonlinear fitting
results for two kinetic models, as well as the linear fitting results of the pseudo-second-
order kinetic model on MB by AC at various carbonization temperatures, while Figure S3a
demonstrates the linear fitting of pseudo-first-order kinetic model. The corresponding
adsorption kinetic parameters are listed in Tables 3 and S2. According to the adsorption
kinetic parameters, the pseudo-second-order kinetic model is more suitable for the descrip-
tion of the adsorption performance of the AC adsorbents, since it displays a higher R2 value
than the pseudo-first-order kinetic model, which is better suited to describe the adsorption
behavior of adsorbents synthesized at different temperatures. In addition, the theoretical
adsorption quantity values (qe,cal) of the pseudo-second-order kinetic model are closer to
the experimental values (qe,exp) than that of the pseudo-first-order model. The adsorption
rate increased as the carbonization temperature rose from 600 to 1000 ◦C, and the 2:1-1000
AC adsorbent reached equilibrium adsorption sooner than that at other temperatures.
Moreover, the calculative adsorption quantity increased from 325.87 to 870.37 mg/g as the
temperature rose from 600 to 1000 ◦C, which was in accordance with the increased specific
surface area from 764.30 m2/g to 2398.74 m2/g. More adsorption active sites for MB were
provided by the higher specific surface area and more porous structure.

Table 3. Nonlinear fitting parameters of pseudo-first-order and pseudo-second-order adsorption
kinetics of AC adsorbents with different carbonization temperatures for MB adsorption.

Sample qe,exp (mg/g)
Pseudo-First-Order Pseudo-Second-Order

qe,cal (mg/g) k1 R2 qe,cal (mg/g) k2 R2

2:1-600 324 313.55 0.03838 0.7184 325.87 3.436 × 10−4 0.8935
2:1-700 366 341.80 0.08742 0.6893 364.01 3.998 × 10−4 0.9066
2:1-800 417 373.27 0.01104 0.7854 404.09 4.048 × 10−4 0.9469
2:1-900 617 609.43 0.1979 0.6909 615.85 6.104 × 10−4 0.9152
2:1-1000 879 849.55 0.2952 0.9809 871.87 7.567 × 10−4 0.9979

Furthermore, the mass ratio of AC adsorbents at 1000 ◦C was optimized. Here, Figure 6c,d
exhibit the nonlinear and linear fitting results of pseudo-second-order adsorption kinetic curves
of AC adsorbents synthesized from different mass ratios, respectively, while Figure S3b displays
the linear fitting of pseudo-first-order kinetic model. Table 4 and Table S3 list the calculated
adsorption kinetic parameters. The adsorption quantity increased with time and the adsorption
reached an equilibrium at ca. 100 min. Based on the R2 values of the two models, the pseudo-
second-order model matched the adsorption kinetic process more closely, and the theoretical
adsorption quantity values (qe,cal) of the pseudo-second-order kinetic model were closer to the
experimental values (qe,exp). The equilibrium adsorption quantity firstly increased with the
mass ratios from 0 to 2:1, then decreased from 2:1 to 6:1. Among the 5 samples investigated,
the largest equilibrium adsorption capacity of 870.37 mg/g was achieved at a mass ratio of 2:1,
which was consistent with the results of specific surface area, so the appropriate mass ratio
between ZnCl2 and shaddock peel was determined at 2:1.
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Table 4. Nonlinear fitting parameters of pseudo-first-order and pseudo-second-order adsorption
kinetics of biomass carbon adsorbents with different mass ratios for MB adsorption.

Sample qe,exp (mg/g)
Pseudo-First-Order Pseudo-Second-Order

qe,cal (mg/g) k1 R2 qe,cal (mg/g) k2 R2

0-1000 704 670.45 0.3701 0.9747 685.56 1.310 × 10−3 0.9908
1:1-1000 771 736.28 0.2198 0.9714 762.22 5.541 × 10−4 0.9958
2:1-1000 879 849.55 0.2952 0.9809 871.87 7.567 × 10−4 0.9979
4:1-1000 822 802.70 0.3849 0.9895 817.13 1.320 × 10−3 0.9981
6:1-1000 803 793.32 0.3879 0.9946 805.43 1.490 × 10−3 0.9992

3.4. Adsorption Isotherm

The adsorption isotherm experiments on MB of AC adsorbents synthesized with
different mass ratios were carried out, as described in the experimental section. The
nonlinear and linear adsorption isotherm fitting results were described by the widely used
Langmuir (5) and Freundlich (6) isotherm models.

Ce

qe
=

1
KLqm

+
Ce

qm
(5)

lgqe = lgKF +
1
n

lgCe (6)

where qe (mg/g) and qm (mg/g) are the equilibrium and maximum adsorption quantity,
Ce (mg/L) is the concentration at equilibrium time, KL (L/mg) and KF are the Langmuir
and Freundlich adsorption constants, respectively, and n is the adsorption intensity.

Figure 7 shows the nonlinear and linear fitting results of the Langmuir and Freundlich
isotherm models and Figure S4 describes the linear fitting of Freundlich isotherm for
AC adsorbents with varying mass ratios. Tables 5 and S4 list the adsorption isotherm
parameters of nonlinear and linear adsorption isotherm. The adsorption quantity increased
with the increase in equilibrium concentration from 13.31 to 333.79 mg/g, then remained
constant. This is due to the fact that the initial concentration was the primary driving force
for breaking through the mass transfer resistance between the solid and liquid phases.
Because a low concentration of MB cannot occupy all the adsorption sites in the early stage
of adsorption, the adsorption quantity was low; as the MB concentration increased, the
adsorption quantity increased gradually. However, when the concentration increased to
a certain value, the adsorption sites of AC adsorbents became saturated, leading to the
unchanged adsorption quantity. According to the adsorption isotherm parameters listed
in Tables 5 and S4, the Langmuir model exhibited higher R2 value compared with that
of the Freundlich model for both nonlinear and linear fitting modes, implying that the
Langmuir model is better suited to describe the adsorption process of the AC adsorbents,
demonstrating the monolayer adsorption process of the AC adsorbents [44]. The AC
adsorbent synthesized at the mass ratio of 2:1 exhibited a maximum adsorption quantity
(qm) of 859.81 mg/g. This result was in line with the largest specific surface area and
appropriate pore size of the 2:1-1000 AC adsorbent’s honeycomb hierarchical porous
morphology, which is beneficial for the adsorption behavior toward MB.
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Table 5. Nonlinear fitting parameters of Langmuir and Freundlich adsorption isotherm of AC
adsorbents with different mass ratios for MB adsorption.

Samples
Langmuir Isotherm Freundlich Isotherm

qm (mg/g) KL (L/mg) R2 KF (mg/g) n R2

0-1000 523.96 0.02141 0.9420 139.99 0.2067 0.9383
1:1-1000 829.90 0.05261 0.9663 309.22 0.1673 0.8448
2:1-1000 859.81 2.9518 0.9429 663.85 0.05437 0.8535
4:1-1000 841.48 0.07507 0.9167 377.04 0.1378 0.6932
6:1-1000 787.23 0.2988 0.9825 543.48 0.06735 0.9181

Table 6 lists the specific surface area and adsorption quantity for MB by different
adsorbents synthesized from different carbon sources in other publications. As can be seen,
the 2:1-1000 AC adsorbent synthesized from shaddock peel in this work shows a superb
specific surface area of 2398.74 m2/g and a high adsorption capacity of 859.81 mg/g, which
is the highest adsorption quantity found among the literature listed. As a result of the high
specific surface area, as well as the appropriate pore size, the adsorbent synthesized in our
method shows a promising removal performance toward MB.

3.5. Post-Analyses Investigation

In order to further investigate the adsorption behavior toward MB, the 2:1-1000 AC
adsorbent was characterized by FT-IR and BET before and after MB adsorption. As depicted
in Figure 8a, compared with the FT-IR spectra before adsorption, the FT-IR spectrum of
2:1-1000 adsorbent after adsorption of MB exhibits new characteristic peaks at 873, 1320,
and 1381 cm−1, which belong to the characteristic adsorption peak of =C-H (aromatics
ring) and C-N stretching vibration peaks. Besides, after adsorption, the intensity of the
peak at 1595 cm−1, attributing to the characteristic adsorption peak of C=C (aromatic
ring), increases. These four characteristic peaks also can be found in the same location
of the FT-IR spectrum of MB [10]. Therefore, this result indicates that the MB has been
successfully adsorbed on the adsorbents via physical adsorption through the abundant
porous structure.
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Table 6. Comparison the adsorption capacity of different adsorbents for MB.

Adsorbent Activating
Agent

Carbonizatin
Temperature (◦C)

Specific Surface
Area (m2/g)

Adsorption
Capacity (mg/g) Ref.

Corncob AC KOH 700 1405.00 636.94 [45]
Coconut AC NaOH 600 876.14 200.01 [46]

Wood AC H3PO4 500 1161.29 159.89 [47]
Soybean dregs AC ZnCl2 500 643.58 225.10 [48]
Walnut shells AC ZnCl2 450 1800.00 315.00 [49]
Banana peel AC NaOH 400 432.00 232.50 [50]
Palm shell AC - - 731.50 163.30 [51]

Peanut shell AC NaOH 800 868.75 555.60 [52]
Sewage sludge and Coconut shell AC KOH 700 873.54 623.37 [53]

Magnetic coal-based AC KOH 1000 1188.00 238.56 [54]
Shaddock peel AC ZnCl2 1000 2398.74 859.81 This work
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Figure 8b–d shows the N2 adsorption–desorption isotherm, pore size distribution,
and pore volume distribution of 2:1-1000 AC adsorbent. The isotherms of 2:1-1000 before
and after MB adsorption show a typical IV with a H4 hysteresis loop, indicating that the
micropores and mesopores pores remained in the AC adsorbent, even after MB adsorption.
Indeed, after MB adsorption, the specific surface area of 2:1-1000 AC adsorbent decreased
from 2398.74 to 899.30 m2/g, with a decreased average pore size from 3.04 to 2.67 nm,
suggesting that MB had been adsorbed in the inner pore of 2:1-1000 AC adsorbent and
occupied the pore space. As shown in Figure 8d, after MB adsorption, the population of
the microspore and mesoporous pores decreased dramatically, especially the mesoporous
pore. These results reveal that the porous structure, especially the size range of 2–10 nm,
makes a significant contribution to the MB adsorption process.
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3.6. Practical Implications of This Study

Globally, humans have been facing the great challenges of environmental pollution
and excessive waste biomass. Novel treatment technologies will be explored including high-
efficiency adsorption and separation, which mainly depend on porous adsorbents. It is one
of the promising routes of resource utilization of waste biomass to produce porous materials
for pollution treatments. Undoubtedly, this work provides a revealing paradigm on the
design of efficient adsorbents based on waste biomass in pollution treatment applications.

4. Conclusions

In this work, we synthesized a series of activated carbon (AC) adsorbents from shad-
dock peel by using zinc chloride (ZnCl2) as a pore-forming agent, with various carboniza-
tion temperatures and mass ratios between ZnCl2 and shaddock peel. All of the synthesized
AC adsorbents showed good adsorption performance toward MB, and the adsorption pro-
cess followed the pseudo-second-order kinetics model and Langmuir adsorption isotherm
model. The 2:1-1000 AC adsorbent, synthesized at a temperature of 1000 ◦C and a mass
ratio of 2:1, had the highest specific surface area of 2398.74 m2/g, a suitable average pore
size of 3.06 nm, and the highest MB adsorption capacity of 859.81 mg/g. This demonstrates
the importance of a high specific surface area and a proper pore structure for MB adsorption.
To summarize, the AC adsorbent, prepared from shaddock peel with ZnCl2 as the activator,
shows potential for treating water pollution in an economical and efficient manner.
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