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Abstract: This paper reports the results of the next stage of the authors’ investigations into the effect of
the elastic action of support nodes on the lateral torsional buckling of steel beams with a bisymmetric
I-section. The analysis took into account beam elastic restraint against warping and against rotation in
the bending plane. Such beams are found in building frames or frame structures. Taking into account
the support conditions mentioned above allows for more effective design of such elements, compared
with the boundary conditions of fork support, commonly adopted by designers. The entire range of
variation in node rigidity was considered in the study, namely from complete freedom of warping to
complete restraint, and from complete freedom of rotation relative to the stronger axis of the cross
section (free support) to complete blockage (full fixity). The beams were conservatively assumed
to be freely supported against lateral rotation, i.e., rotation in the lateral torsional buckling plane.
Calculations were performed for various values of the indexes of fixity against warping and against
rotation in the beam bending plane. In the study, formulas for the critical moment of bilaterally fixed
beams were developed. Also, approximate formulas were devised for elastic restraint in the support
nodes. The formulas concerned the most frequent loading variants applied to single-span beams.
The critical moments determined in the study were compared, with values obtained using LTBeamN
software (FEM). Good compliance of results was observed. The derived formulas are useful for the
engineering design of this type of structures. The designs are based on a more accurate calculation
model, which, at the same time offers simplicity of calculation.

Keywords: critical moment of lateral torsional buckling; elastic supports; elastic restraint against
warping; elastic restraint against rotation in the beam bending plane

1. Introduction

Lateral torsional buckling (LTB) of steel beams commonly used in general or industrial
construction is an issue that has been examined by researchers for many years. A vast
majority of publications focus on fork-supported beams, whereas real building structures
generally have more complex boundary conditions. The reason is that the model of fork
support allows for the use of simple functions, usually trigonometric ones, which spec-
ify beam displacements caused by the LTB phenomenon. Such an approach facilitates
an analysis of other parameters that affect the LTB critical moment. Idealised boundary
conditions of that type were taken into account to investigate the effect of the following:
(a) the distribution of the bending moment over the beam length, e.g., [1–6], (b) the coor-
dinates of the points of transverse load application over the height of the cross section,
e.g., [1,7–10], (c) discrete (point-based) restraint against displacement and/or the cross
sections’ torsion over of the beam length, e.g., [11–18], (d) LTB of monosymmetric cross
sections [2,4,8,19], (e) the use of complete and incomplete (inserted) end plates [20–22],
(f) coped beams [20,21,23–27], effect on the LTB critical moment, (g) modification of the en-
ergy equation leading to a nonlinear analysis of eigenvalue problem [28], and (h) interaction
between buckling and LTB of beam columns [29–32].

Materials 2022, 15, 1275. https://doi.org/10.3390/ma15041275 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15041275
https://doi.org/10.3390/ma15041275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-0249-8685
https://orcid.org/0000-0003-1653-0324
https://doi.org/10.3390/ma15041275
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15041275?type=check_update&version=3


Materials 2022, 15, 1275 2 of 26

For actual frames, framework, or grate structures, the fork support adopted in the
computational model is considered a conservative approach, although in some cases of
coped beams, a nodal element is weakened relative to the fork support [20–25,27]. The
issue cannot be overlooked because oversimplification of the mounting node connection
may lead to a considerable reduction in structural resistance, resulting from the condition
of spatial loss of stability.

Contemporary design methods aim to provide the most accurate representation of
the structural element behaviour in the computational model. Consequently, it is possible
to take account of the reserves of LTB resistance of those beams, for which the boundary
conditions are stronger compared with the theoretical fork support. In this way, the
structural reliability is better accounted for because it is not based on unknown resistance
reserves, but on objective measures.

This approach harmonises with the sustainable development principles. The structural
system behaviour, which is decisive for structural reliability, is described in the computa-
tional models. Consequently, they need to be as accurate as possible. The created resistance
reserve is measurable. It is not hidden in unknown resistance reserves resulting from
the simplification of the boundary conditions of the member under examination. This
approach allows for a more optimal design of steel structures. Taking into account the
potential reserves of structure resistance puts a demand on the diligence of the designer,
who needs to employ adequate computational models. Consequently, it is important to
have an option of verifying computations with the use of simplified analytical methods.
The dual approach to the reliability of computational procedures improves the safety of
buildings already at the design stage.

In contemporary steel structures, including frames and frameworks or grates, complex
boundary conditions are usually found. They are related to the following: (1) the beam
elastic restraint against rotation relative to the higher rigidity axis of the cross section (the
so-called major axis), (2) elastic restraint against warping in nodes, and (3) elastic restraint
against rotation in the LTB plane, which particularly refers to grate structures.

In order to enhance beam resistance to LTB, systems of support ribs for beams (spandrel
beams) were developed. They were meant to increase the deplanation rigidity of support
cross sections [33–38]. Methods for analysing beams discretely braced along their span
were discussed in [39–42]. For example, [39–43] investigated the critical resistance of single-
span or multispan beams, and beams with cantilevers, ribbed in support cross sections
and discretely braced over their length. It was indicated that ribs (especially closed ones)
and discrete elastic bracings considerably affect the values of critical loads. The authors
of [20,23,33,34,36,37,43–46], analysed the impact of elastic restraint against warping of
support cross sections for single-span beams with bisymmetric cross sections. The impact
of elastic restraint against warping of the cantilever beam free end on its critical resistance
caused by the LTB condition was examined in [47]. In addition, the impact of flat ribs on
the critical moment of a beam with a convergent web was investigated in [48].

In [49], the authors analysed the impact of the elastic restraint of beam warping in the
support nodes on the LTB critical moment. A constant or linearly varying distribution of
the bending moment was considered. Formulas for the index of elastic warping restraint
kw and the coefficient C1, the value of which depends on the bending moment distribution
and the rigidity of the elastic warping restraint cw, were proposed. Beam critical resistances
were determined for different end plate thicknesses. The resultant critical moments were
compared with the FEM results (LTBeamN, ANSYS) and with the values obtained from the
approximate formulas derived in [50]. A good congruence of results was observed.

In all the studies quoted above, the deplanation function of a thin-walled section was
developed in accordance with the Vlasov theory [51]. Such an approach seems sufficient
in the case of engineering calculations, e.g., [2,6,7,10,14,18,20,23,50,52] in the analysis of
beams with a homogeneous steel cross section, especially hot-rolled ones. That can be
seen in European standards for the design of metal structures [53–55]. It was assumed in
the standards that the “shear lag” effect should be primarily considered for those plate
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girder sections or cold-formed elements, in which a substantial width of the cantilever or
spanning chords (e.g., decks in steel bridges) were found. Detailed guidelines are given in
Section 3 of the standard [55].

A more general formulation of the warping function for cross sections of structural
members is given in [56]. The formulation is particularly applicable to composite structures.
The paper proposed a new theory termed Generalized Warping Beam Theory (GWBT),
which takes into account the effect of nonuniform warping of the cross section. That was
done using a single, independent parameter for each warping type. Shear warping in
each direction, and also primary as well as secondary torsional warping, were considered.
This approach accounted for shear lag in both the element bending and in torsion. Many
examples of computations were included to confirm the effectiveness of the method.

The effect of the elastic action of nodes with respect to the LTB critical moment in
beams, analysed in accordance with the thin-walled bar theory [51], was investigated by
Giżejowski [23] as well as Giżejowski and Bródka [57]. The solution [23], a modification of
the Lindner proposal [20] and the extension of the formula specified in ENV 1993-1-1 [58],
used the concept of buckling length coefficients. Like for axially compressed elements, the
coefficients were applied to flexural buckling (relative to the cross section minor axis) and
torsional buckling (relative to the bar longitudinal axis). The coefficients were determined
in the same way as for the buckling of braced frame columns. It was concluded that taking
into account the additional rigidity of complete end plates combined with other elements
of a framework structure contributed to an increase in the LTB critical moment.

According to the authors’ knowledge, apart from [23,57], the literature on the subject
does not offer unambiguous analytical formulas for the LTB critical moment, which would
simultaneously take account of the effect of elastic restraint against warping and elastic
restraint against rotation relative to the major axis in support cross sections.

Obviously, such calculations can be performed using the finite element method,
e.g., LTBeam or LTBeamN software employing finite bar elements, or by utilising more
advanced 3D modelling, e.g., Abaqus software with shell or solid elements. However, it
should be emphasised that, in order to improve the safety of structures already at the design
stage, FEM calculations should be verified by at least a simplified analytical estimation.
Such approximate formulas could also facilitate more advanced preliminary design. As
regards basic static schemes, the formulas can be applied at the principal design stage. An
expert analysis revealed cases in which designers less experienced in FEM modelling made
mistakes when constructing a numerical model (e.g., modelling the boundary conditions in
the beam support nodes). Then, relatively simple approximate formulas make it possible
to correct calculations.

A good example of such an approach is offered in [59]. The authors developed
approximate analytical formulas to determine local buckling stress for a large group of hot-
rolled sections under complex load conditions. The calculations can also be performed using
FEM software, e.g., Abaqus or FSM, e.g., CUFSM. However, the possibility of verifying the
results of numerical calculations with relatively simple approximate formulas encouraged
the authors to carry out extensive research in this field.

As already mentioned, many studies show that, in an analysis of LTB of beams with
fork support, in order to approximate the function of beam displacements (angle of twist,
lateral deflection), the researchers usually use trigonometric functions, which provide
a good approximation of the critical resistance. However, in the analysis of elastically
restrained beams, this approach causes difficulties when describing the degree of elastic
fixity of beam support cross sections. Therefore, in their previous studies [50,52,60], the
authors utilised an alternative method for the description of beam displacements upon
a loss of stability, namely employing power polynomials with a simple physical (static)
interpretation. As indicated before, this approach facilitates the description of the torsion
angle function and beam lateral deflection when the conditions of its elastic restraint
against warping and lateral rotation in the support nodes are taken into account. A detailed
discussion of the approach is given in [50,52]. Power polynomials proved successful in a
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stability analysis of thin-walled members [61], and also in studies into local buckling of the
thin-walled elements with open cross sections subjected to warping torsion [62].

In the first stage of their research [60], the authors verified that it is correct to use power
polynomials when approximating the function of the twist angle (ϕ) and lateral deflection
(u) of a beam with fork support. Computational algorithms for MLTB were developed
using Mathematica® software, and approximate formulas were provided to estimate the
beam critical resistance. The beam loading schemes most commonly found in engineering
practice were taken into consideration. A comparative analysis of the results obtained [60]
against the values generated by the LTBeam software [63] (FEM) and by formulas available
in the literature [1,58] indicated the correctness of the applied solution.

The next stage of research [52] took into account the elastic restraint of warping in the
support cross sections of a beam simply supported in the bending plane. In this case, the
innovative “coupling” of the power polynomials, which describe the deflection function of
the simply supported beam and the deflection function of a bilaterally fixed beam, was used
to approximate the twist angle function (ϕ). Computational algorithms were developed
for MLTB,EL (Mathematica®), and approximate formulas were devised. Elastic restraint
of warping was included by means of the fixity index κω. A comparative analysis of the
results obtained [52] and the values provided by LTBeam [63] and Abaqus (FEM) software,
as well as formulas available in the literature [34], was performed. The analysis indicated
the effectiveness of the applied solution.

The issues related to the interaction of beam elastic restraint against warping and
against lateral rotation (in the LTB plane) were discussed in [50]. The beam was assumed
to be simply supported in the bending plane. Such elements are found, e.g., in certain
types of steel grates. In the analytical solution to the problem, the coupling of polynomials
proposed in [52] was applied to approximate both the function of the twist angle (ϕ) and
the function of lateral deflection (u). Such an approach allowed for alterations in the form
of the function of displacements (the angle of twist and lateral deflection), depending on
the degree of elastic restraint against warping and against lateral rotation on the supports.
Computational algorithms were developed for MLTB,EL,2 (Mathematica®), and approximate
formulas were proposed. Elastic restraint against warping and against lateral rotation was
included by introducing fixity indices κω and κu, respectively. A comparative analysis of
the results produced [50] and the values obtained through LTBeam software [63] (FEM)
showed it was correct to apply the solution mentioned above.

From a technical standpoint, another issue that considerably affects the LTB critical
moment in beams is the elastic restraint against rotation in the bending plane (i.e., rotation
relative to the major axis of the cross section) in the support nodes.

The application range of approximate formulas proposed in [50,52,60] can be extended.
This study is a positive step in this direction. The study deals with the LTB of single-span
beams with a bisymmetric I-section, which are elastically restrained in the support nodes
against warping and against rotation in the bending plane. Elements of this class are found
in frames or framework structures (e.g., in supporting structures for technological devices
of industrial buildings). A conservative assumption was made that the conditions of hinged
support occur during lateral rotation on supports (in the LTB plane). Elastic restraint in
the LTB plane is considered to be important in grates with complex nodes, while in frames
and framework structures it is less significant. The simultaneous effect of elastic restraint
against warping, rotation relative to the major axis, and relative to the minor axis of the
cross section in the support nodes will be the subject of the authors’ further research.

In this study, formulas were derived for the LTB critical moment (Mcr,u) of bilaterally
fixed beams (in the bending plane) for any degree of elastic restraint against warping in
the support nodes. Formulas for Mcr,o of simply supported beams were developed in [52].
Based on the limit values of critical moments for simply supported Mcr,o and fully fixed
beams Mcr,u, approximate formulas for Mcr were devised for beams elastically restrained in
the support nodes. Detailed calculations were performed for beams with various indices
of fixity against warping κω and against rotation in the bending plane κν. Symmetrical
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boundary conditions relative to the midspan of a beam were adopted. The results obtained
were compared with those from FEM (LTBeamN).

In this study, the following assumptions were made: (1) over its length, the single-
span beam has a constant, bisymmetrical hot-rolled I-section, or its welded equivalent,
(2) boundary conditions, symmetrical with respect to the beam midspan, are found,
(3) three load distributions, most common in engineering practice, are considered,
(4) the conditions of the beam elastic support concern the following: (a) restraint of rotation
with respect to the major axis of the cross section, (b) limitation of the cross section warping
(warping function in accordance with [51]).

Compared with the solutions discussed in the literature, this study offers a novel
approach, which involves the following:

(i) Approximate formulas were derived for the LTB critical moment (Mcr,u) of steel beams
with bisymmetrical cross section that are bilaterally fixed against bending (My) and
elastically restrained against warping. The LTB critical moment represents the upper
limit of the critical resistance in the elastic range.

(ii) Approximate formulas were derived for Mcr, for any degree of elastic restraint against
rotation about the section major axis, and against warping at the support nodes. That
was done based on the indexes of fixity that are independent of one another.

(iii) A solution was obtained that allows for a more accurate representation of the actual
LTB behaviour of a steel beam using a relatively simple analytical model
(cf. calculation example in Section 5.4).

2. Beam Elastic Restraint against Warping and against Rotation in Its Bending Plane

The static scheme, adopted in this study, of a beam elastically restrained against
warping and against rotation in its bending plane in the support nodes is shown in Figure 1.
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Figure 1. Static scheme of a beam: (a) the bimoment B and moment My on a support, (b) elastic
restraint against warping (αω) and against rotation in the bending plane of the beam (αν), (c) angle of
twist ϕ(x) and lateral deflection u(x) of the beam.

The degree of elastic restraint of the beam in the support nodes (Figure 1) was ac-
counted for by the use of dimensionless indices of fixity against warping κω [50,52] and
against rotation in the bending plane κν.

As regards elastic restraint against warping, the fixity index κω has the following
form [50,52]:

κω =
αω L

2EIω + αω L
, (1)

where L—beam span, E—Young’s modulus, Iω—warping constant, and αω—rigidity of
elastic restraint against warping [35,37,50,52] according to:

αω = − B
dϕ/dx

, (2)
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where B—bimoment at the support point of the beam, ϕ—angle of twist, and dϕ/dx—warping
of the section.

The index of elastic fixity against warping changes is from κω = 0 for complete warping
freedom to κω = 1 for full prevention of warping.

The κν index of elastic fixity of the beam support section against rotation in the bending
plane (i.e., against rotation relative to the major axis of the cross section) is expressed by
the equation:

κν =
ανL

4EIy + ανL
, (3)

where Iy—second moment of inertia in bending about the y-axis; αν—rigidity of elastic
restraint against rotation in the beam bending plane according to the equation:

αν =
My

dν/dx
, (4)

where My—bending moment relative to the major axis of the support cross section, ν—vertical
deflection, and dν/dx—rotation relative to the y axis in the support cross section.

The index of fixity against rotation in the bending plane of the beam ranges from
κν = 0 for complete freedom of rotation (hinge support) to κν = 1 for complete prevention
of rotation (fixity).

The rigidities of elastic restraint against warping αω (Equation (2)) and against rotation
αν (Equation (4)) can be expressed as a function of the fixity indices (κω, κν) according to
the equations:

αω =
2κωEIω

(1− κω)L
; αν =

4κνEIy

(1− κν)L
. (5)

3. LTB Critical Moment of a Fixed Beam
3.1. Function of the Twist Angle

A program for numerical calculations (MLTB,EL) was proposed in [52]. With the
program, it is possible to determine the LTB critical moment of a beam, which in its support
nodes is simply supported in the bending plane, and elastically restrained against warping.
In MLTB,EL software, the function of the beam twist angle (ϕ) was approximated using the
innovative “coupling” of power polynomials. This was done according to the equation [52]:

ϕ(x) = ∑3
i=1 ai((1− κω) ·WPi + κω ·WUi), (6)

where ai—free parameters of the twist angle function, κω—elastic restraint index according
to Equation (1); WPi—polynomials describing the deflection function of a simply supported
beam; and WUi—polynomials describing the deflection function of a fixed beam.

The power polynomials (WPi, WUi) used in [52], along with their physical interpreta-
tion, are shown in Table 1 (where ρ = x/L).

The deflection polynomials adopted for the twist angle function fulfil the boundary
conditions for the freedom of warping WPi (ϕ = 0, ϕ” = 0 for x = 0 and x = L), and for the
complete prevention of warping WUi (ϕ = 0, ϕ’ = 0 for x = 0 and x = L) in the support
nodes, respectively.

In [50,52], it was demonstrated that the twist angle function—Equation (6) together
with the polynomials (WPi and WUi) shown in Table 1—makes it possible to model elastic
restraint against warping for any value of the fixity index from a range of 0 < κω < 1.
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Table 1. Application of polynomials.

Item Polynomials Physical Interpretation

I II III

1 WP1 = ρ− 2ρ3 + ρ4
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3.2. Determination of Mcr,u with the Energy Method

The elastic LTB critical moment of a bilaterally fixed (Mcr,u), bisymmetric I-beam was
determined using the energy method [9]. The elastic restraint against warping in the
support nodes was taken into account.

The degree of elastic restraint of nodes in the beam bending plane is not a typical
boundary condition for lateral–torsional buckling. However, it strongly affects the longi-
tudinal distribution of the bending moment My. As a result, in order to determine Mcr,u
for beams fixed in the bending plane and elastically restrained against warping on the
supports, the work done by external forces for this type of support and load should be
taken into account in the functional of the total potential energy. In such an approach,
complete prevention of rotation of the beam cross section in the precritical bending plane is
represented by the support moments of restraint. It should be noted that in the precritical
state (My < Mcr), the bending of a beam proceeds relative to the y–y axis, while in the
post-critical state (My > Mcr), due to lateral deflection and the angle of twisting after LTB,
the bending of the beam is biaxial.

Boundary conditions corresponding to LTB should be separated from boundary condi-
tions that affect the distribution of support moments My (fixity in the bending plane). This
is important in the case of elastic restraints of nodes. Such restraints occur in modern node
structures, especially in framework systems, where simplified connection details are used.
The separation of the boundary conditions of LTB from the static scheme of the support is
also found in the LTBeamN software.

As a result, the load critical value was calculated from the equation:

∆Π = ∆Us,1 + ∆Us,2 − ∆T, (7)

where ∆Us,1—elastic energy of beam bending and torsion, ∆Us,2—energy of beam elastic
restraint against warping in the support nodes, and ∆T—work done by external forces.

The elastic energy of beam bending and torsion was determined based this equation
from [9]:

∆Us,1 =
1
2

(
EIz

∫ L

0

(
d2u
dx2

)2

dx + GIt

∫ L

0

(
dϕ

dx

)2
dx + EIω

∫ L

0

(
d2 ϕ

dx2

)2

dx

)
, (8)

where Iz—second moment of inertia in bending about z-axis, It—Saint Venant’s torsion
constant, G—shear modulus, and u—the lateral deflection function.
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The energy of elastic restraint against warping in the support nodes was determined
from the following equation [52]:

∆Us,2 =
αω

2

((
dϕ

dx

)2

x=0
+

(
dϕ

dx

)2

x=L

)
. (9)

The work done by external forces ∆T depends on the beam static scheme, and is
a function of the zg coordinate of the point of transverse load application. Equations
expressing the work done by external forces in the most common loading variants of
bilaterally fixed beams are listed in Table 2.

Table 2. Work done by external forces for selected static schemes.

Item Static Scheme The Work of External Forces

I II III

1
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Equation (8) and the equations listed in Table 2 include the function of lateral deflec-
tions (u) relative to the minor axis z–z (see Figure 1), and the function of the twist angle 
(φ). To be able to describe the behaviour of the beam using only one function (φ), Equation 
(10) was selected out of three equilibrium equations for a beam with LTB [9]: 𝐸𝐼௭ ௗమ௨ௗ௫మ = 𝑀௭. (10) 

Following the pathway proposed in [52], Equation (7) and the function of the twist 
angle—Equation (6) together with the polynomials listed in Table 1—were used to de-
velop computational programs. The programs were designed in the environment of the 
Mathematica® package. MLTB,EL,u software makes it possible to determine the LTB critical 
moments for many variants. They concern geometrical parameters of bisymmetric I-sec-
tions, schemes of bilaterally fixed beams (Table 2), any coordinate (zg) of the transverse 
load application point, and any value of the fixity index κω according to Equation (1). 

Examples of the calculations performed using the MLTB,EL,u software are given in Sec-
tion 5. 

3.3. Approximate Equation for Mcr,u in a Bilaterally Fixed Beam 
In [52], based on symbolic computations, relatively simple approximate equations 

were developed to find the LTB critical moment for simply supported beams with a bi-
symmetric I-section, elastically restrained against warping on supports. That involved the 
use of the first (i = 1) term of the twist angle function (Equation (6)) (i.e., of the “coupled” 
polynomials WP1 and WU1 from Table 1). The results obtained showed very good agree-
ment with the FEM findings (LTBeam). 

The equation for the LTB critical moment Mcr was worked out in [52]. The equation 
took into account the beam elastic restraint against warping (κω) in the support nodes, and 
also any ordinate (zg) of the point of transverse load application, relative to the shear centre 
of the cross section. The equation is as follows [52]: 

Pz
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qz L2
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Equation (8) and the equations listed in Table 2 include the function of lateral deflec-
tions (u) relative to the minor axis z–z (see Figure 1), and the function of the twist angle (ϕ).
To be able to describe the behaviour of the beam using only one function (ϕ), Equation (10)
was selected out of three equilibrium equations for a beam with LTB [9]:

EIz
d2u
dx2 = Mz. (10)

Following the pathway proposed in [52], Equation (7) and the function of the twist
angle—Equation (6) together with the polynomials listed in Table 1—were used to de-
velop computational programs. The programs were designed in the environment of the
Mathematica® package. MLTB,EL,u software makes it possible to determine the LTB crit-
ical moments for many variants. They concern geometrical parameters of bisymmetric
I-sections, schemes of bilaterally fixed beams (Table 2), any coordinate (zg) of the transverse
load application point, and any value of the fixity index κω according to Equation (1).

Examples of the calculations performed using the MLTB,EL,u software are given in
Section 5.

3.3. Approximate Equation for Mcr,u in a Bilaterally Fixed Beam

In [52], based on symbolic computations, relatively simple approximate equations were
developed to find the LTB critical moment for simply supported beams with a bisymmetric
I-section, elastically restrained against warping on supports. That involved the use of the
first (i = 1) term of the twist angle function (Equation (6)) (i.e., of the “coupled” polynomials
WP1 and WU1 from Table 1). The results obtained showed very good agreement with the
FEM findings (LTBeam).

The equation for the LTB critical moment Mcr was worked out in [52]. The equation
took into account the beam elastic restraint against warping (κω) in the support nodes, and
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also any ordinate (zg) of the point of transverse load application, relative to the shear centre
of the cross section. The equation is as follows [52]:

Mcr =
−B1EIzzg +

√
EIz

(
B3GItL2 + B4EIω + B2

1EIzz2
g

)
B2L2 , (11)

where zg—ordinate of the point of transverse load application with respect to shear centre
(see Figure 2) and B1, B2, B3, B4—coefficients according to Table 3.
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Figure 2. The static scheme of a beam elastically restrained in the support nodes (κω , κν) under the
load of a force concentrated (Pz) at the midspan.

Table 3 lists the B1, B2, B3, and B4 coefficients for beams simply supported against
bending My, and the most common loading schemes [52].

Table 3. Coefficients B1, B2, B3, B4 for simply supported beams (Mcr,o) and selected loading schemes.

Item Static Scheme Coefficients

I II III

1
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The procedure adopted in this study is the same as that employed in [52]. The
McrLT_fix_sym.cal.nb program was developed in the Mathematica® package to carry out
symbolic transformations. Like in [50,52], the function of the twist angle was approximated
only by the first (i = 1) term of the series (Equation (6)) using the polynomials WP1 and
WU1 (Table 1). As a result, it was possible to devise a relatively simple approximate
equation concerning the LTB critical moment for an I-beam, bilaterally fixed (for bending
My) and elastically restrained against warping. The equation was transformed into the
form of Equation (11). Coefficients B1, B2, B3, and B4 for the most common variants of load
application in bilaterally fixed beams are shown in Table 4.
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Table 4. Coefficients B1, B2, B3, and B4 for selected static schemes of fixed beams (Mcr,u).

Item Static Scheme Coefficients
I II III

1
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Calculations for particular cases of critical moments for a simply supported Mcr,o and
fixed beam Mcr,u depending on the κω index are provided in Section 5. The calculations
were carried out using Equation (11), and the coefficients listed in Tables 3 and 4.

4. Approximate Equations for the LTB Critical Moment in an Elastically Restrained Beam

In the section, the scope of approximate Equation (11) is extended to include the case
of elastic restraint of a beam against rotation in the bending plane (Figure 2).

As already mentioned, the degree of elastic restraint of nodes in the beam bending
plane is not a typical boundary condition for lateral–torsional buckling. However, it
strongly affects the longitudinal distribution of the bending moment My. Therefore, it
indirectly influences Mcr, which can be used when constructing the approximate equations.

Additionally, in the engineering computational model, the design value of the critical
moment Mcr was assumed to be associated with the extreme value of the moment My over
the length of the beam, regardless of the sign of this moment. Because of this, for a simply
supported beam under a uniform load, the maximum bending moment My,max = ql2/8
occurs at the midspan and causes compression of the top flange. However, in the case of
a fully bilaterally fixed beam under the same load, My,max = ql2/12 occurs on the support
and causes maximum compression of the bottom flange. That further complicates the
solution to the problem. It happens because a change in the place of the extreme moment
occurrence, associated with the engineering interpretation of the critical moment, leads
to a kink (bend in the curve) in the Mcr(κv) graph. A similar situation is also found for a
triangularly distributed load, where, for a simply supported beam, the maximum bending
moment My,max = ql2/(9

√
3) occurs at 1/

√
3 of the span, causing compression of the top

flange. With respect to a fully bilaterally fixed beam under the same load, My,max = ql2/20
occurs on the support under maximum load, resulting in the maximum compression of the
bottom flange.

Figure 3 shows exemplary trends in Mcr(κν) variation for an IPE300 beam with a span
of L = 5 m, under the load of: (a) a concentrated force, (b) a uniform load, (c) a triangularly
distributed load, for the κω index = 0.6, determined through LTBeamN software (FEM).

The bends in the curves for cases (b) and (c), observed in Figure 3, result from a change
in the point of the maximum moment occurrence. This phenomenon was discussed above.
In addition, when the load is applied to the top flange, within the variation range of the
index 0 < κν < 0.6 (for a uniform load) and for 0 < κν < 0.564 (for a triangular load), an
apparent fall in Mcr is observed. That results from a change in My distribution as a function
of κν. It is obvious that, in each of the cases above, an increase in κv is accompanied by an
increase in the value of the respective critical resistance measured by the external load of
the beam (qcr, qTcr).
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This effect can be seen in Figure 4. The example concerned an IPE300 beam with a
span of L = 5 m, under a uniform load at the height of the top flange, for κω = 0. The solid
line (Figure 4a) represents a graph of the critical moment variation as a function of the κν

index determined according to LTBeam (FEM). The broken line indicates a graph of the
so-called equivalent moment Me defined in Figure 4b. The symbols M1 and M2 represent
the critical moments for a simply supported (κν = 0) and completely fixed (κν = 1) beam,
respectively. A kink in the graph of the Mcr(κν) curve illustrates a change in the place of
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occurrence of the My maximum absolute value. A similar effect is also observed for other
values of the κω index from a range of (0–1).
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The decrease in the value of Mcr despite an increase in the κν index also occurs in the
case of a load with a concentrated force. This applies to the entire variation range of κν. The
reason is that, with κν < 1, the My maximum value always occurs in the span (for κν = 1,
the absolute values of the span and the support moment are equal), and the point of Mymax
occurrence does not change.

Based on the analyses of the issues mentioned above, the authors decided to search
for approximate equations containing the values of Mcr,o and Mcr,u, which should be
determined depending on the index of elastic restraint against warping (κω).

The approximate equation for the LTB critical moment of a beam elastically restrained
in the support nodes has the following form:

Mcr(κω, κv) = Mcr,o(κω, κv = 0) + [Mcr,u(κω, κv = 1)−Mcr,o(κω, κv = 0)]·η(κv), (12)

where Mcr,o(κω, κv = 0)the LTB critical moment for a simply supported beam and a given
value of the κω index, Mcr,u(κω, κv = 1)the LTB critical moment for a fully fixed beam and
a given value of the κω index, η(κv)—the coefficient of interaction.

Equation (12) can be converted to a simplified form:

Mcr = Mo + (Mu −Mo)·η, (13)

where the following were substituted: Mo = Mcr,o(κω, κv = 0), Mu = Mcr,u(κω, κv = 1),
η = η(κv).

Adopting the above makes it easier to solve the problem, and offers a relatively simple
estimation of Mcr at a technically sufficient level of accuracy (±5%).

A similar concept of the so-called coefficient of interaction was employed earlier while
devising approximate equations that involved the local buckling of hot-rolled sections, as
discussed in [59].

Equations for the coefficient of interaction η(κν) were developed for three loading
schemes of a single-span beam, which are most commonly found in practice: (a) a force
concentrated at the midspan P, (b) a uniformly distributed load q, and (c) a triangu-
larly distributed load qT. For each of the load types mentioned above, the η coefficients
were determined for three typical coordinates of the point of transverse load application,
i.e., (a) a load applied to the top flange—TF (zg = +h/2), (b) to the centre of gravity of the
cross section—CG (zg = 0), and (c) a load applied to the bottom flange—BF (zg = −h/2).
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The development of approximate equations for the coefficient of interaction η was
preceded by numerical simulations for large sets of cases, performed using LTBeamN
software. The most common hot-rolled sections, namely IPE, HEA, and HEB, were taken
into consideration. On this basis, it was concluded that:

• in the case of the load of (a) a force concentrated at the midspan, (b) uniformly dis-
tributed, or (c) distributed triangularly and applied to the top flange TF, the critical load
(Pcr, qcr, qTcr) can be determined as a linear combination of a critical load for a simply
supported (Po, qo, qTo) and fully fixed beam (Pu, qu, qTu) according to the equations:

Pcr = (1− κv)Po + κvPu

qcr = (1− κv)qo + κvqu

qTcr = (1− κv)qTo + κvqTu.

(14)

As for a uniformly or triangularly distributed load, a change in the location of the
extreme value of the moment My (identified with the critical moment Mcr and expressed as
a function of the κν index) also occurs; the coefficient of interaction depends on the limit
values of Mo, Mu, i.e., η = η(κv, Mo, Mu).

• in the case of a concentrated force load at the midspan, applied in the axis of gravity
of the cross section CG, or applied to the bottom flange BF of the beam, the η(κv)
coefficient depends on the κν index in a linear manner (see Figure 3a) for various
coefficients of proportionality η = aiκv (where: ai—a coefficient depending on the
point of the load application, CG or BF);

• in the case of a load distributed uniformly or triangularly, and applied in the axis of
gravity of the cross section CG, or applied to the bottom flange BF of the beam, the
best results for the η(κv) coefficient were obtained when assuming its linear variation
as a function of the κv index in the form of η = aiκv + bi (where: ai, bi—coefficients
depending on the point of load application).

The proposed approximate equations produce accuracy of the critical moment Mcr
estimation with an average level of ±5%. In rare cases, the error in estimation could be
higher, but does not exceed ±8%. It should be indicated that Mcr is used to determine the
relative slenderness of a beam in lateral–torsional buckling, based on which, the reduction
factor of LTB (χLT) is determined. The accuracy of estimation of Mcr with a level of even
±8% translates into the accuracy of estimation of the χLT factor with a maximum level of
±1.5%, which is sufficient from a technical standpoint. Better accuracy of Mcr estimation
could be achieved, but at the cost of a considerable extension of the approximate equations.

The equations for the η(κv) coefficient put forward in this study take the following form:

1. Load of a force concentrated at the midspan:

TF:
η(κv) =

2κv

1 + κv
. (15)

CG:
η(κv) = κv. (16)

BF:
η(κv) = 0.95κv. (17)

2. Uniformly distributed load:
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TF:
for a range of : 0 < κv ≤ 0.6

η(κv) =
κv [(2.333−0.333κv)M0+(0.5κv−1.5)Mu ]

(1+κv)(M0−Mu)
;

for a range of : 0.6 < κv < 1

η(κv) =
[1+κv(1.333κv−0.333)]M0−2κv

2 Mu
(1+κv)(M0−Mu)

.

(18)

CG:
for a range of : 0 < κv ≤ 0.6

η(κv) = 0.12κv;

for a range of : 0.6 < κv < 1

η(κv) = 2.28κv − 1.32.

(19)

BF:
for a range of : 0 < κv ≤ 0.6

η(κv) = 0.22κv;

for a range of : 0.6 < κv < 1

η(κv) = 2.02κv − 1.12.

(20)

3. Triangularly distributed load:

TF:
for a range of : 0 < κv ≤ 0.564

η(κv) =
κv [(2.386−0.386κv)M0+(0.495κv−1.283)Mu ]

(1+κv)(M0−Mu)
;

for a range of : 0.564 < κv < 1

η(κv) =
[1+κv(1.386κv−0.386)]M0−1.778κv

2 Mu
(1+κv)(M0−Mu)

.

(21)

CG:
for a range of : 0 < κv ≤ 0.564

η(κv) = 0.1κv;

for a range of : 0.564 < κv < 1

η(κv) = 2.04κv − 1.13.

(22)

BF:
for a range of : 0 < κv ≤ 0.564

η(κv) = 0.19κv;

for a range of : 0.564 < κv < 1

η(κv) = 1.9κv − 1.03.

(23)

With the form of the approximate equations for the loading diagrams shown above,
it is possible to create simple spreadsheets or carry out manual calculations. An example
of such calculations is given in Section 5.3. It must be remembered that the values of
the moments Mo and Mu are to be substituted into Equations (12), (13), (18) and (21) as
absolute values.

5. Verification of Approximate Equations by FEM
5.1. Assumptions

Analytical calculations performed according to the approximate Equation (11) for
bilaterally fixed beams, and Equation (13) for elastically restrained beams, were verified
using LTBeam and LTBeamN (FEM) software.
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LTBeam software [63] is based on the finite element method (FEM), in which the
beam is discretised with bar elements, modified from the classical approach. Cross section
warping, based on the thin-walled bar theory, constitutes an additional degree of freedom
of such an element. In the nodes generated along the length of the beam, the condition of
the continuity of displacements caused by the LTB phenomenon is satisfied by four degrees
of freedom (lateral displacement, rotation in the LTB plane, twist of the beam along the
longitudinal axis, and warping). In the LTBeam program, the critical load multiplier µcr
is determined by solving the so-called eigenvalue problem (linear elastic stability theory).
The LTB critical moment Mcr is obtained as the product of the critical load multiplier µcr
and the maximum bending moment My,max. In the analysis of beam critical resistance with
the LTBeam program, the following can be taken into account: (a) beams with mono- or
bisymmetrical cross section, (b) elastic, from the LTB standpoint, conditions of beam fixity
in the support nodes, and also along the beam length, (c) different loading schemes, (d) any
ordinates of the points of transverse load application with respect to the shear centre of the
beam cross section. Additionally, the later software version (LTBeamN) makes it possible
to account for the effect of the elastic fixity of the beam in the plane of its bending (i.e., with
respect to the major axis of the cross section).

In the verification calculations, the predetermined values of fixity indices κω and κν

(in the case of bilaterally fixed beams, index κν = 1) were adopted. The rigidity of elastic
restraint against warping (αω) and the rigidity of elastic restraint against rotation in the
beam bending plane (αν), which are necessary for computations with the use of the LTBeam
and LTBeamN program, were calculated from Equation (5).

A comparative analysis involved steel beams (E = 210 GPa, G = 81 GPa) made from
IPE300, HEA300, and HEB300 sections, with spans of L = 5 and 7 m, and beams made from
IPE500, HEA500, and HEB500 sections, with spans of L = 8 and 10 m. The calculations
took into account loads in accordance with the schemes shown in Table 3. Transverse loads
were applied to the top flange (TF, zg = +h/2), to the axis of gravity of the cross section (CG,
zg = 0), and to the bottom flange (BF, zg = -h/2), respectively. The analyses were performed
for a full variation range of the index of fixity against warping κω (from 0 to 1).

5.2. The Case of a Bilaterally Fixed Beam (κν = 1)

Table 5 lists exemplary results of calculations produced for an IPE300 beam with a
span of L = 5 m under the load of: (a) a concentrated force at the midspan, (b) a uniformly
distributed load, and c) a triangularly distributed load. Calculations were performed for
a full variation range of the index of fixity against warping κω (from 0 to 1), in particular
for: κω = {0, 0.25, 0.5, 0.75, 0.9, 1}. Critical moments Mcr,u were determined through the
MLTB,EL,u software (see Section 3.2) and calculated with Equation (11) and the coefficients
listed in Table 4. The resulting LTB critical moments of beams were compared with the
results provided by the LTBeam software [63] (FEM), adopted as reference values.

Critical moments of LTB Mcr (Table 5) determined with MLTB,ELu software, compared
with those resulting from FEM (LTBeam), differed by −0.2% to + 1.2% (column VII). When
the approximate Equation (11) was used, the resulting differences ranged from –0.1% to
+5.8% (column IX). Maximum differences were found for a triangularly distributed load.
That resulted from the asymmetric load causing a slightly asymmetric LTB mode. It should
be remembered that Equation (11) was developed assuming a symmetric mode of the loss
of stability (relative to the beam midspan).
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Table 5. Comparison of Mcr,u for an IPE300 beam (L = 5 m) elastically restrained against warping.

Item Static Scheme κω zg

Mcr [kNm]

LTBeam MLTB,EL,u
%

VI–V Equation (11) %
VIII–V

I II III IV V VI VII VIII IX

1
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5.3. The Case of a Bilaterally Elastically Restrained Beam (0 ≤ κv ≤ 1)

Comparative analyses were performed for a full variation range of the index of fixity
against warping κω (from 0 to 1), and against rotation in the beam bending plane, with
κν ranging from 0 to 1. The calculations were made for various combinations of values of
the κω and κν indices. As a result, for the case of a concentrated force load or a uniform
load, the following values were selected: κi = {0, 0.2, 0.4, 0.6, 0.8, 1}i=ω,v. However, for a
triangularly distributed load, the following were adopted: κω = {0, 0.2, 0.4, 0.6, 0.8, 1}, and
κv = {0, 0.2, 0.4, 0.564, 0.8, 1}. In this case, the introduction of the value of κv = 0.564 instead
of 0.6 resulted from a change in the occurrence of the maximum value of the moment My
(identified with Mcr) for the very coordinate. That meant that the maximum My occurred
in the span for κv < 0.564, whereas for κv > 0.564 it was on the support under a greater load.
As regards a uniform load, such a situation took place for κv = 0.6, while for a concentrated
force load with κv < 1, the maximum value of My always occurred in the span (for κv = 1,
the absolute values for the span and the support moment were equal).

For each of the analysed beams, the LTB critical moment was estimated using Equation (13).
The results produced were compared with the values obtained from the LTBeamN program (FEM).

Table 6 lists exemplary results of calculations produced for an IPE300 beam, with a
span of L = 5 m, under the load of a force concentrated at the midspan, applied to the top
flange (TF, zg = +h/2).

Table 6. Comparison of Mcr for beam IPE300 (L = 5 m).

Item Static Scheme κω κν

Mcr [kNm]

LTBeamN Equation
(13)

%
VI–V

I II III IV V VI VII

1
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17 0.8 104.58 104.35 −0.2
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34 0.6 179.58 178.10 −0.8
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When compared with the LTBeamN results, the critical moments (Table 6) determined
with the approximate Equation (13) differed by −3.1% to +3.2%.

Table 7 shows the results of calculations for selected combinations of κω and κν, for
an IPE300 beam with a span of L = 5 m, under a uniform load and under a triangularly
distributed load, at the height of the top flange.

Table 7. Comparison of Mcr for beam IPE300 (L = 5 m).

Item Static Scheme κω κν

Mcr [kNm]

LTBeamN Equation (13) %
VI–V

I II III IV V VI VII

1

Materials 2022, 15, x FOR PEER REVIEW 18 of 27 
 

 

17 0.8 104.58 104.35 −0.2 
18 1 98.94 101.82 2.9 
19 

0.6 

0 133.27 135.12 1.4 
20 0.2 129.78 127.54 −1.7 
21 0.4 125.50 122.13 −2.7 
22 0.6 120.52 118.07 −2.0 
23 0.8 115.02 114.91 −0.1 
24 1 109.21 112.39 2.9 
25 

0.8 

0 151.47 153.50 1.3 
26 0.2 148.14 145.99 −1.4 
27 0.4 143.90 140.64 −2.3 
28 0.6 138.87 136.62 −1.6 
29 0.8 133.08 133.49 0.3 
30 1 127.12 130.99 3.0 
31 

1 

0 191.80 194.13 1.2 
32 0.2 188.74 187.01 −0.9 
33 0.4 184.64 181.92 −1.5 
34 0.6 179.58 178.10 −0.8 
35 0.8 173.80 175.13 0.8 
36 1 167.43 172.76 3.2 

When compared with the LTBeamN results, the critical moments (Table 6) deter-
mined with the approximate Equation (13) differed by –3.1% to +3.2%. 

Table 7 shows the results of calculations for selected combinations of κω and κν, for 
an IPE300 beam with a span of L = 5 m, under a uniform load and under a triangularly 
distributed load, at the height of the top flange. 

Table 7. Comparison of Mcr for beam IPE300 (L = 5 m). 

Item Static scheme κω κν 
Mcr [kNm] 

LTBeamN Equation (13) % 
VI−V 

I II III IV V VI VII 
1 

IPE300, L = 5m 
zg = +h/2 

1 0 177.22 178.46 0.7 
2 0.8 0.2 131.54 131.04 −0.4 
3 0.6 0.4 107.24 104.49 −2.6 
4 0.4 0.6 89.63 86.49 −3.5 
5 0.2 0.8 109.05 106.12 −2.7 
6 0 1 124.34 124.20 −0.1 
7 

IPE300, L = 5m 
zg = +h/2 

1 0 180.60 181.99 0.8 
8 0.8 0.2 134.02 134.00 0 
9 0.6 0.4 109.13 106.51 −2.4 

10 0.4 0.564 93.77 89.01 −5.1 
11 0.2 0.8 124.77 116.88 −6.3 
12 0 1 146.70 154.68 5.4 

A comparison of values in Table 7 indicates that the difference between critical mo-
ments determined by Equation (13) and those obtained through the LTBeamN program 
did not exceed ±5% in most cases. 

The results in Tables 6 and 7 can be used while testing the appropriate version of the 
approximate Equation (13) in the spreadsheet. 

Table 8 collates maximum percentage differences between results calculated from 
Equation (13) for all the examined beams (see Section 5.1) and those obtained by the 
LTBeamN program (FEM). The greatest differences were found for a triangularly distrib-
uted load. As already mentioned, the reason lies in the asymmetry of load, which affects 
the accuracy of estimation of the moments Mo and Mu. 

  

L

qz

L

qz

IPE300, L = 5m
zg = +h/2

1 0 177.22 178.46 0.7
2 0.8 0.2 131.54 131.04 −0.4
3 0.6 0.4 107.24 104.49 −2.6
4 0.4 0.6 89.63 86.49 −3.5
5 0.2 0.8 109.05 106.12 −2.7
6 0 1 124.34 124.20 −0.1
7

Materials 2022, 15, x FOR PEER REVIEW 18 of 27 
 

 

17 0.8 104.58 104.35 −0.2 
18 1 98.94 101.82 2.9 
19 

0.6 

0 133.27 135.12 1.4 
20 0.2 129.78 127.54 −1.7 
21 0.4 125.50 122.13 −2.7 
22 0.6 120.52 118.07 −2.0 
23 0.8 115.02 114.91 −0.1 
24 1 109.21 112.39 2.9 
25 

0.8 

0 151.47 153.50 1.3 
26 0.2 148.14 145.99 −1.4 
27 0.4 143.90 140.64 −2.3 
28 0.6 138.87 136.62 −1.6 
29 0.8 133.08 133.49 0.3 
30 1 127.12 130.99 3.0 
31 

1 

0 191.80 194.13 1.2 
32 0.2 188.74 187.01 −0.9 
33 0.4 184.64 181.92 −1.5 
34 0.6 179.58 178.10 −0.8 
35 0.8 173.80 175.13 0.8 
36 1 167.43 172.76 3.2 

When compared with the LTBeamN results, the critical moments (Table 6) deter-
mined with the approximate Equation (13) differed by –3.1% to +3.2%. 

Table 7 shows the results of calculations for selected combinations of κω and κν, for 
an IPE300 beam with a span of L = 5 m, under a uniform load and under a triangularly 
distributed load, at the height of the top flange. 

Table 7. Comparison of Mcr for beam IPE300 (L = 5 m). 

Item Static scheme κω κν 
Mcr [kNm] 

LTBeamN Equation (13) % 
VI−V 

I II III IV V VI VII 
1 

IPE300, L = 5m 
zg = +h/2 

1 0 177.22 178.46 0.7 
2 0.8 0.2 131.54 131.04 −0.4 
3 0.6 0.4 107.24 104.49 −2.6 
4 0.4 0.6 89.63 86.49 −3.5 
5 0.2 0.8 109.05 106.12 −2.7 
6 0 1 124.34 124.20 −0.1 
7 

IPE300, L = 5m 
zg = +h/2 

1 0 180.60 181.99 0.8 
8 0.8 0.2 134.02 134.00 0 
9 0.6 0.4 109.13 106.51 −2.4 

10 0.4 0.564 93.77 89.01 −5.1 
11 0.2 0.8 124.77 116.88 −6.3 
12 0 1 146.70 154.68 5.4 

A comparison of values in Table 7 indicates that the difference between critical mo-
ments determined by Equation (13) and those obtained through the LTBeamN program 
did not exceed ±5% in most cases. 

The results in Tables 6 and 7 can be used while testing the appropriate version of the 
approximate Equation (13) in the spreadsheet. 

Table 8 collates maximum percentage differences between results calculated from 
Equation (13) for all the examined beams (see Section 5.1) and those obtained by the 
LTBeamN program (FEM). The greatest differences were found for a triangularly distrib-
uted load. As already mentioned, the reason lies in the asymmetry of load, which affects 
the accuracy of estimation of the moments Mo and Mu. 

  

L

qz

L

qz

IPE300, L = 5m
zg = +h/2

1 0 180.60 181.99 0.8
8 0.8 0.2 134.02 134.00 0
9 0.6 0.4 109.13 106.51 −2.4
10 0.4 0.564 93.77 89.01 −5.1
11 0.2 0.8 124.77 116.88 −6.3
12 0 1 146.70 154.68 5.4

A comparison of values in Table 7 indicates that the difference between critical mo-
ments determined by Equation (13) and those obtained through the LTBeamN program
did not exceed ±5% in most cases.

The results in Tables 6 and 7 can be used while testing the appropriate version of the
approximate Equation (13) in the spreadsheet.

Table 8 collates maximum percentage differences between results calculated from
Equation (13) for all the examined beams (see Section 5.1) and those obtained by the LT-
BeamN program (FEM). The greatest differences were found for a triangularly distributed
load. As already mentioned, the reason lies in the asymmetry of load, which affects the
accuracy of estimation of the moments Mo and Mu.

Table 8. Summary of percentage differences of Mcr.

Item Static Scheme Equation (13) vs. LTBeamN
(%)

I II III IV

1
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Figure 5 shows Mcr variation trends for a beam made of an IPE300 section with a span
of L = 5 m. Mcr values vary depending on the values of the index of fixity against rotation
in the beam bending plane, κν (from 0 to 1) for selected values of the index of fixity against
warping, κω = {0, 0.6, 1}. A load took the form of: (a) a force concentrated at the beam
midspan (Figure 5a), (b) a uniformly distributed load (Figure 5b), and (c) a triangularly
distributed load (Figure 5c). The load was applied to the top flange (TF, zg = +h/2), in the
axis of gravity (CG, zg = 0), or at the height of the beam bottom flange (BF, zg = −h/2).
Critical moments were estimated by means of Equation (13).
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Figure 5. Critical moments of LTB Mcr for an IPE300 (L = 5 m) beam as a function of the κν index for
selected κω indices: (a) concentrated force load, (b) uniform load, (c) triangularly distributed load.

A comparison of LTB critical moments of a beam under the load of a force concentrated
at the midspan (Figure 5a) indicates that, for a load applied to the bottom flange (zg =−h/2),
along with an increase in the κν index, a considerable increase (by an average of approx.
+92%) in the values of Mcr (red line) was observed. Basically, that happened regardless of
the values of the κω index. For a load applied to the top flange (zg = +h/2), an increase in
κν is accompanied by a fall (by an average of approx. −16%) in the values of Mcr (the blue
line). This results from a change in the moment My distribution over the beam length as
a function of the κν index. Obviously, this does not change the fact that, together with an
increase in the value of κν, an increase in the value of the beam critical resistance (Pcr) is
observed. The analysed Mcr(κν) relationships are practically linear over the entire variation
range of the fixity index κν (from 0 to 1).
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With respect to a beam under a uniform load (Figure 5b), generally bilinear Mcr(κν)
relationships were noted, with a kink in the curve for κν = 0.6 (the graph is slightly nonlinear
only in the case of zg =−h/2 in a range of 0.6 < κν < 1). As already mentioned, for κν = 0.6, a
change in the site of the maximum moment My occurrence is observed. Within the variation
range of the fixity index κν from 0 to 0.6, for a load applied to the bottom flange (zg =−h/2),
an increase (by an average of approx. +38%) in the values of the critical moment (the
red line) was found. However, for a load applied to the top flange (zg = +h/2), a fall
(by an average of approx. −18%) in the moment Mcr (the blue line) is seen. Like for the
concentrated force load, the effect is caused by a change in the moment My distribution
over the beam length as a function of the κν index. Also in this case, the value of the beam
critical resistance (qcr) grows with an increase in the values of κν (see Figure 4). However,
in a range of 0.6 < κν < 1, an increase in the κν index is accompanied by an increase in Mcr
expressed as a function of the index of elastic restraint against warping κω (the largest one
for zg = −h/2). When the rotation in the beam bending plane (κν = 1) was fully prevented,
the resulting increase in Mcr ranged from approx. +26% (κω = 0, zg = +h/2) to approx.
+324% (κω = 0, zg = −h/2) compared with complete freedom of rotation (κν = 0).

With respect to a beam under a triangularly distributed load (Figure 5c), as was the
case with a beam under a uniform load (see Figure 5b), the resulting Mcr(κν) relationships
were basically bilinear, with a kink in the curves at κν = 0.564. However, in this case, a
more rapid increase in Mcr was observed above this point. Within a range of variation of
the fixity index κν from 0 to 0.564 (Figure 5c), for a load applied to the top flange (the blue
line), a fall in the Mcr values was noted. It was comparable to fall in the Mcr values under
the uniform load (cf. Figure 5b). When a load was applied to the bottom flange (the red
line), an increase in Mcr could be seen (Figure 5b). Full prevention of rotation in the beam
bending plane (κν = 1), in contrast to its complete freedom (κν = 0), resulted in an increase
in Mcr from approx. +53% (κω = 0, zg = +h/2) to approx. +391% (κω = 0, zg = −h/2).

Figure 6 shows the trends in variation in LTB critical moments Mcr of the beam with
geometrical parameters as per Figure 5. LTB critical moments varied depending on the
values of the index of fixity against warping κω (from 0 to 1). In Figure 6a,b, the variation
was shown for selected values of the index of fixity against rotation in the beam bending
plane, κν = {0, 0.6, 1}, and in Figure 6c κν = {0, 0.564, 1}. Critical moments of the beam were
estimated by Equation (13). The Mcr(κω) relationships were slightly nonlinear over the
entire variation range of the fixity index κω (from 0 to 1). It should be noted that, to increase
the clarity of the Mcr(κω) graphs, in Figure 6b,c it was decided not to show cases for κν = 1
at zg = −h/2, since their values greatly exceeded Mcr for the remaining curves. In this case,
for a uniform load, the Mcr graph ranged from approx. 750 to approx. 860 kNm, and for a
triangularly distributed load the range was from approx. 880 to approx. 1020 kNm.
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Figure 6. Critical moments of LTB for an IPE300 (L = 5 m) beam as a function of the κω index for
selected values of the κν index: (a) concentrated force load, (b) uniform load, (c) triangular load.

Figure 7 shows a comparison of the variation trends in LTB critical moments Mcr
of the beam, determined by the LTBeamN program (the solid line) and calculated with
Equation (13) (the broken line), depending on the index of fixity against rotation in the
beam bending plane κν (from 0 to 1), for the index of fixity against warping κω = 0.6 and
the ordinate of the applied load zg = +h/2.
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The exemplary graphs of Mcr variation (LTBeamN vs. Equation (13)) shown in Figure 7
have very similar shapes. The most noticeable discrepancy was found for a beam under
a triangularly distributed load (see Figure 7b) for the fixity index κν ranging from 0.4 to
0.8 and for κν = 1. In that case, the maximum percentage differences in the results did not
exceed ±6%.

5.4. Example of Calculations

The application of the approximate equations developed in the study is shown in the
example. The procedure for solving the problem is illustrated by the consecutive steps
of calculations.

Problem. A steel beam with an IPE 300 cross section (Iy = 8360 cm4,
Iz = 604 cm4, It = 20.7 cm4, Iω = 125,900 cm6) and a span of L = 6 m, is loaded by uni-
form forces applied to the top flange (h/2 = 15 cm). The rigidities of the beam elastic
restraint in the support nodes are: (a) rigidity against warping: αω = 27.9 kNm3/rad,
(b) rigidity against rotation in the bending plane: αν = 53,320 kNm/rad. Determine the LTB
critical moment for the beam, Mcr.

Solution.

1. Calculation of elastic restraint indices of the beam: (a) against warping according
to Equation (1): κω = 0.76; (b) against rotation in the bending plane according to
Equation (3): κν = 0.82;

2. The critical moment Mo of a beam simply supported against bending relative to the
axis of higher rigidity (κν = 0), and elastically restrained against warping (κω = 0.76),
was calculated from Equation (11) and Table 3 (row 2): Mo = 101.51 kNm;

3. The critical moment Mu of a beam fully fixed against bending relative to the axis of
higher rigidity (κν = 1), and elastically restrained against warping (κω = 0.76), was
calculated from Equation (11) and Table 4 (row 2): Mu = 146.73 kNm;

4. The coefficient of interaction η was calculated from Equation (18) for a range of
0.6 < κν < 1: η(κν = 0.82) = 0.395;

5. The LTB critical moment for an elastically restrained beam for the indices: κω = 0.76
and κυ = 0.82 was calculated from Equation (13): Mcr = 101.51 + (146.73 – 101.51) ∗
0.395 = 119.38 kNm.

When compared with the FEM calculations (LTBeamN): Mcr,LTB = 118.95 kNm, the
difference was 0.35%.
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6. Conclusions

When taking into account the actual beam boundary conditions in the support nodes,
which include elastic restraint against warping and elastic restraint against rotation in the
beam bending plane, it is possible to calculate the critical moment precisely. Consequently,
the LTB reduction factor and the beam design resistance can be determined more accurately.
That points to the optimal design of this class of steel members.

Based on the results, it can be concluded that, from a technical standpoint, the LTB
critical moments expressed as a function of the κω index, calculated with Equation (11) [52]
and the coefficients in Table 3 (for a simply supported beam—Mo), and the coefficients
in Table 4, proposed in this study (for a bilaterally fixed beam—Mu), provide sufficient
approximation compared with FEM. Therefore, Mcr for elastically restrained beams in the
support nodes (κω, κν) can be estimated on the basis of Equation (13).

A comparison of critical moments (Tables 6–8), estimated by Equation (13) and ob-
tained from the LTBeamN program (FEM), showed very good congruence with the results
from an engineering standpoint. Critical loads were determined for: (1) different fixity
indices (κω, κν) ranging from 0 to 1, (2) various (characteristic) points of transverse load
application (top flange, axis of gravity of the cross section, bottom flange).

For a given value of the index of fixity against rotation in the beam bending plane
(κν), an increase in the index of fixity against warping (κω) leads to an increase in the LTB
critical moment. For example, for the beam shown in Figure 6a, for κω = 1, the increase
in the critical moment ranged from approx. +27% (for zg = −h/2) to approx. +91% (for
zg = h/2) compared with complete freedom of warping (κω = 0).

However, for a given value of the index of fixity against warping (κω), an increase in
the index of fixity against rotation in the bending plane (κν) caused an increase in the beam
critical resistance, measured by the respective critical load (Pcr, qcr, qTcr).

The effect of an apparent fall in the critical moment value, which occurs for beams
under a load applied at the height of the top flange, resulted from changes in the distribution
of My expressed as a function of κν (see Figure 4). This effect was not observed when a load
was applied at the cross section centre of gravity, or when the beams were under a load
applied at the height of the bottom flange.

For example, when the beam was under the load of a force concentrated at the midspan
(Figure 5a), an increase in the values of κν at zg = −h/2 was accompanied by an increase in
Mcr (by an average of approx. 92%). That translated into an increase in the critical resistance
Pcr by an average of approx. 284%. Conversely, for zg = +h/2, in spite of a fall in the critical
moment values (by an average of approx. 16% for κν =1), an increase in Pcr by an average
of approx. 68% was noted, compared with complete freedom of rotation (κν = 0).

As regards a beam under a uniform load, for κν from 0.6 to 1 (Figure 5b), and a beam
under a triangularly distributed load, for κν from 0.564 to 1 (Figure 5c), and any value of
κω from a range of (0–1), the result showed a considerable increase in the values of Mcr
and critical load of the beam. However, within a variation range of the fixity index κν from
0 to 0.6 (Figure 5b) and from 0 to 0.564 (Figure 5c), an increase (by an average of approx.
+38%, zg = −h/2) or a fall (by an average of approx. −18%, zg = +h/2) in the values of the
critical moment was observed, compared with complete freedom of rotation (κν = 0). Also,
for these beam loading schemes at zg = +h/2 (similar to the case of a concentrated force
load), with the increase in κν, the beam critical resistance grew, in spite of the formal drop
in the values of Mcr. The effect can be seen in Figure 4. Complete prevention of rotation
in the beam bending plane (κν = 1), compared with complete freedom of rotation (κν = 0),
resulted in an increase in Mcr from approx. +26% (κω = 0, zg = +h/2) to approx. +324%
(κω = 0, zg = −h/2) (see Figure 5b), and from approx. +53% (κω = 0, zg = +h/2) to approx.
+391% (κω = 0, zg = −h/2).

Taking into account a more precise description of the boundary conditions of beams with
respect to fork support is a logical development in the modern design of steel structures.

Equations (11) and (13) can be applied to preliminary selection of the section and
also, in many technically important cases, to principal design. The equations can also
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be used to verify Mcr calculations with FEM software. Such verification will be helpful
for less experienced designers. It can be employed to make necessary corrections, e.g., of
errors in the specification of beam boundary conditions in the FEM programs. The major
advantage of the adopted approach is that a steel structure reliability is already enhanced
at the planning stage.
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