Characterisation of Alloy Composition of Protohistoric Small Boat Models from Sardinia (Italy)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taramelli, A. Note di preistoria sarda. Bull. Paletnologia Ital. 1912, VIII, 357–360. [Google Scholar]
- Rellini, U. Miniere e Fonderie d’Eta Nuragica in Sardegna. Bull. Paletnologia Ital. 1923, 58–67. [Google Scholar]
- Lilliu, G. Le miniere dalla preistoria all’età tardo-romana. In Le Miniere e i Minatori Della Sardegna; Consiglio Regionale Della Sardegna: Cagliari, Italy, 1986. [Google Scholar]
- Stampolidis, N.C.; Karageorghis, V. (Eds.) Sardinia between East and West: Interconnections in the Mediterranean; University of Cyprus: Rethymnon, Greece, 2003. [Google Scholar]
- Depalmas, A.; Bulla, C.; Fundoni, G. Some observations on bronze productions in Nuragic Sardinia between Aegean influences and autonomous creations. In Hesperos. The Aegean Seen from the West—Proceedings of the 16th International Aegean Conference; PEETERS: Leuven, Liege, 2017; pp. 81–89. [Google Scholar]
- Depalmas, A.; Cataldo, M.; Grazzi, F.; Scherillo, A.; Fedrigo, A.; Kockelmann, W.; di Gennaro, F.; Canu, A.; Brunetti, A. Neutron-based techniques for archaeometry: Characterization of a Sardinian boat model. Archaeol. Anthropol. Sci. 2021, 13, 101. [Google Scholar] [CrossRef]
- Depalmas, A. Le Navicelle di Bronzo Della Sardegna Nuragica; Ettore Gasperini—Società Poligrafica Sarda: Cagliari, Italy, 2005. [Google Scholar]
- Brunetti, A.; Grazzi, F.; Scherillo, A.; Minoja, M.E.; Salis, G.; Orrù, S.; Depalmas, A. Non-destructive microstructural characterization of a bronze boat model from Vetulonia. Archaeol. Anthropol. Sci. 2019, 11, 3041–3046. [Google Scholar] [CrossRef]
- Schiavon, N.; de Palmas, A.; Bulla, C.; Piga, G.; Brunetti, A. An Energy-Dispersive X-Ray Fluorescence Spectrometry and Monte Carlo simulation study of Iron-Age Nuragic small bronzes (“Navicelle”) from Sardinia, Italy. Spectrochim. Acta Part B At. Spectrosc. 2016, 123, 42–46. [Google Scholar] [CrossRef]
- Barcellos Lins, S. Multispectral Analysis of Nuragic Metallic Samples (Sardinia, Italy). Master’s Thesis, Universidade de Évora, Évora, Portugal, 2018. [Google Scholar]
- Nocco, C.; Brunetti, A.; Barcellos Lins, S.A. Monte Carlo Simulations of ED-XRF Spectra as an Authentication Tool for Nuragic Bronzes. Heritage 2021, 4, 1912–1919. [Google Scholar] [CrossRef]
- Schoonjans, T.; Vincze, L.; Solé, V.A.; Sanchez del Rio, M.; Brondeel, P.; Silversmit, G.; Appel, K.; Ferrero, C. A general Monte Carlo simulation of energy dispersive X-ray fluorescence spectrometers—Part 5: Polarized radiation, stratified samples, cascade effects, M-lines. Spectrochim. Acta Part B At. Spectrosc. 2012, 70, 10–23. [Google Scholar] [CrossRef]
- Vincze, L.; Janssen, K.; Adams, F. A general Monte Carlo simulation of energy-dispersive X-ray fluorescence spectrometers—I: Unpolarized radiation, homogeneous samples. Spectrochim. Acta Part B At. Spectrosc. 1993, 48, 553–573. [Google Scholar] [CrossRef]
- Brunetti, A.; Golosio, B.; Schoonjans, T.; Oliva, P. Use of Monte Carlo simulations for cultural heritage X-ray fluorescence analysis. Spectrochim. Acta Part B At. Spectrosc. 2015, 108, 15–20. [Google Scholar] [CrossRef]
- Bottigli, U.; Brunetti, A.; Golosio, B.; Oliva, P.; Stumbo, S.; Vincze, L.; Randaccio, P.; Bleuet, P.; Simionovici, A.; Somogyi, A. Voxel-based Monte Carlo simulation of X-ray imaging and spectroscopy experiments. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1747–1754. [Google Scholar] [CrossRef]
- Brunetti, A.; Golosio, B. A new Monte Carlo code for simulation of the effect of irregular surfaces on X-ray spectra. Spectrochim. Acta Part B At. Spectrosc. 2014, 94, 58–62. [Google Scholar] [CrossRef]
- Schoonjans, T.; Brunetti, A.; Golosio, B.; Sanchez del Rio, M.; Solé, V.A.; Ferrero, C.; Vincze, L. The xraylib library for X-ray–matter interactions. Recent developments. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 776–784. [Google Scholar] [CrossRef]
- Brunetti, A.; Sanchez del Rio, M.; Golosio, B.; Simionovici, A.; Somogyi, A. A library for X-ray–matter interaction cross sections for X-ray fluorescence applications. Spectrochim. Acta Part B At. Spectrosc. 2004, 59, 1725–1731. [Google Scholar] [CrossRef]
- Golosio, B.; Schoonjans, T.; Brunetti, A.; Oliva, P.; Masala, G.L. Monte Carlo simulation of X-ray imaging and spectroscopy experiments using quadric geometry and variance reduction techniques. Comput. Phys. Commun. 2014, 185, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Constantinides, I.; Adriaens, A.; Adams, F. Surface characterization of artificial corrosion layers on copper alloy reference materials. Appl. Surf. Sci. 2002, 189, 90–101. [Google Scholar] [CrossRef]
- Lechtman, H.; Steinberg, A. Bronze Joining: A Study in Ancient Technology. In Art and Technology, a Symposium on Classical Bronzes; The MIT Press: Cambridge, MA, USA, 1970; pp. 5–35. [Google Scholar]
- Ingo, G.M.; de Caro, T.; Riccucci, C.; Angelini, E.; Grassini, S.; Balbi, S.; Bernardini, P.; Salvi, D.; Bousselmi, L.; Çilingiroglu, A.; et al. Large scale investigation of chemical composition, structure and corrosion mechanism of bronze archeological artefacts from Mediterranean basin. Appl. Phys. A 2006, 83, 513–520. [Google Scholar] [CrossRef]
- Klein, S.; Hauptmann, A. Iron Age Leaded Tin Bronzes from Khirbet Edh-Dharih, Jordan. J. Archaeol. Sci. 1999, 26, 1075–1082. [Google Scholar] [CrossRef]
- Depalmas, A.; Brunetti, A.; Bulla, C. Le navicelle nuragiche: Dati archeologici e archeometrici a confronto. Zur. Stud. Archaeol. 2015, 10, 297–303. [Google Scholar]
- Giumlia-Mair, A. The composition of copper-based small finds from a west phoenician settlement site and from nimrud compared with that of contemporary mediterranean small finds. Archaeometry 1992, 34, 107–119. [Google Scholar] [CrossRef]
- Berger, D. Intention or coincidence? Bracelets from the Early Bronze Age from Thiersch neck, Thuringia (Germany), and the possible tinning in the Únětice culture. In Über den Glanz des Goldes und die Polychromie—Technische Vielfalt und kulturelle Bedeutung vor- und frühgeschichtlicher Metallarbeiten; Eilbracht, H., Heinrich-Tamaska, O., Niemeyer, B., Reiche, I., Voß, H.U., Eds.; Dr. Rudolf Habelt GmbH: Bonn, Germany, 2018. [Google Scholar]
- Atzeni, C. Aspects of Ancient Metallurgy. In Archaeometallurgy in Sardinia from the Origin to the Beginning of Early Iron Age; Lo Schiavo, F., Giumlia-Mair, A., Sanna, U., Valera, R., Eds.; Edition M. Mergoil: Montagnac, France, 2005. [Google Scholar]
- Grigoriev, S. Metallurgical Production in Northern Eurasia in the Bronze Age; Archaeopress Publishing Ltd.: Oxford, UK, 2016. [Google Scholar]
- Scott, D.A. Metallography and Microstructure of Ancient and Historic Metals; The J. Paul Getty Trust: Marina del Rey, CA, USA, 1991. [Google Scholar]
- Sheppard, M.; Thibault, D.; McMurry, J.; Smith, P. Factors Affecting the Soil Sorption of Iodine. Water Air Soil Pollut. 1995, 83, 51–67. [Google Scholar] [CrossRef]
- Massey, A.; Thompson, N.; Johnson, B. The Chemistry of Copper, Silver and Gold. In Pergamon Texts in Inorganic Chemistry; Pergamon Press: Oxford, UK, 1973. [Google Scholar]
- Papadopoulou, O.; Vassiliou, P. The Influence of Archaeometallurgical Copper Alloy Castings Microstructure towards Corrosion Evolution in Various Corrosive Media. Corros. Mater. Degrad. 2021, 2, 227–247. [Google Scholar] [CrossRef]
- Robbiola, L.; Blengino, J.M.; Fiaud, C. Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corros. Sci. 1998, 40, 2083–2111. [Google Scholar] [CrossRef]
- Nørgaard, H.W. Portable XRF on Prehistoric Bronze Artefacts: Limitations and Use for the Detection of Bronze Age Metal Workshops. Open Archaeol. 2017, 3, 101–122. [Google Scholar] [CrossRef]
- Riederer, J. Metallanalysen sardischer Bronzen. In Kunst und Kultur Sardiniens vom Neolithikum bis zum Ende der Nuraghenzeit; Verlag C.F. Müller Karlsruhe: Berlin, Germany, 1980; pp. 156–160. [Google Scholar]
- Melis, M.G. Prehistoric Metallurgy in the Western Mediterranean. New Archaeological and Archaeometric Data from Sardinia. In Rivista di Preistoria e Protostoria delle Civiltà Antiche; Edizioni Quasar di Severino Tognon S.r.l.: Rome, Italy, 2020. [Google Scholar]
- Moroni, M.; Naitza, S.; Ruggieri, G.; Aquino, A.; Costagliola, P.; De Giudici, G.; Caruso, S.; Ferrari, E.; Fiorentini, M.; Lattanzi, P. The Pb-Zn-Ag vein system at Montevecchio-Ingurtosu, southwestern Sardinia, Italy: A summary of previous knowledge and new mineralogical, fluid inclusion, and isotopic data. Ore Geol. Rev. 2019, 115, 103194. [Google Scholar] [CrossRef]
- Craddock, P.; Meeks, N. Iron in ancient copper. Archaeometry 1987, 29, 187–204. [Google Scholar] [CrossRef]
Navicella Provenance | Catalogue and Table Number in Typology [7] | Collocation Museo Archeologico Nazionale (MAN) | Acronym | Figure 1 |
---|---|---|---|---|
Ardara, Scala de Boes | 39 (tab. 32) | MAN di Sassari | Ar | 1 |
Baunei, Golgo | 2 (tab. 2) | MAN di Cagliari | Ba | 2 |
Bultei, Bonotta | 95 (tab. 73) | MAN di Cagliari | Bu | 2 |
Meana, Madaresu | 38 (tab. 31) | MAN di Sassari | Me | 4 |
Mores, Monte Lecchesinus | 70 (tab. 55) | MAN di Sassari | Mo | 5 |
Ogliastra, unknown location | 82 (tab. 61) | MAN di Cagliari | Og | 6 |
Orroli, Pipitzu | 87 (tab. 65) | MAN di Cagliari | Or | 7 |
Padria, San Giuseppe | 15 (tab. 13) | MAN di Sassari | Pa | 8 |
Posada, unknown location | 23 (tab. 20) | MAN di Cagliari | Po | 9 |
Tula, Badu ’e Trovu | 34 (tab. 27) | MAN di Sassari | TBT | 10 |
Tula, Badu ’e Trovu | 25 (tab. 21) | MAN di Cagliari | BT | 11 |
Unknown location (inv. n. 1347) | 11 (tab. 12) | MAN di Sassari | 1347 | 12 |
Padria, nuraghe Badde Rupida (Re Sole boat) | 84 (tab. 62) | MAN di Sassari | RS | 13 |
Uri, Su Igante | 62 (tab. 49) | MAN di Sassari | U | 14 |
Oliena, unknown location | 17 (tab. 15) | MAN di Sassari | Ol | 15 |
Navicella | Copper (Cu) | Tin (Sn) | Lead (Pb) | Antimony (Sb) | Iron (Fe) |
---|---|---|---|---|---|
Ar hull | 69.6 | 9.4 | 20.9 | - | - |
Ar protome | 68.0 | 8.0 | 22.9 | - | - |
Ba hull | 84.1 | 10.5 | 3.0 | - | 2.0 |
Ba monkey head | 82.6 | 15.0 | 1.7 | - | - |
Ba protome | 85.6 | 12.0 | 1.5 | - | - |
Bu hull | 69.3 | 5.0 | 21.0 | - | 2.0 |
Bu protome | 69.0 | 4.4 | 24.6 | - | - |
Me hull | 81.0 | 11.5 | 7.5 | - | - |
Me mast | 83.9 | 11.0 | 4.0 | - | - |
Mo hull | 87.7 | 7.7 | 3.2 | - | - |
Mo protome | 64.0 | 5.6 | 25.5 | - | 4.5 |
Og hull | 78.5 | 7.5 | 12.1 | - | - |
Og protome | 76.9 | 9.0 | 9.0 | - | - |
Ol hull | 85.5 | 11.4 | 2.8 | - | - |
Or hull | 87.5 | 6.0 | 5.0 | - | - |
Or protome | 79.0 | 11.0 | 8.0 | - | - |
RS hull | 76.5 | 8.0 | 12.0 | - | 2.0 |
RS mast small | 71.0 | 8.5 | 16.9 | - | 2.0 |
RS mast large | 81.0 | 5.8 | 10.7 | - | - |
RS ring | 73.9 | 9.5 | 13.0 | - | 3 |
P hull | 90.7 | 7.0 | 1.9 | - | - |
P mast | 91.0 | 7.0 | 1.7 | - | - |
P ring | 92.9 | 4.5 | 2.5 | - | - |
Po hull | 79.0 | 4.3 | 11.5 | - | - |
Po protome | 76.3 | 5.8 | 14.2 | - | - |
TBT hull | 80.0 | 11.0 | 8.0 | - | - |
TBT mast | 91.4 | 5.0 | 2.8 | - | - |
TBT protome | 86.3 | 10.0 | 2.2 | 1.2 | - |
BT hull | 87.0 | 8.0 | 4.0 | - | - |
BT protome | 83.0 | 12.0 | 4.0 | - | - |
1347 hull | 79.0 | 10.0 | 10.0 | - | - |
U hull | 92.0 | 4.6 | 3.0 | - | - |
U protome | 95.0 | 3.5 | 1.3 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannaccone, R.; Depalmas, A.; Bulla, C.; Barcellos Lins, S.A.; Brunetti, A. Characterisation of Alloy Composition of Protohistoric Small Boat Models from Sardinia (Italy). Materials 2022, 15, 1324. https://doi.org/10.3390/ma15041324
Iannaccone R, Depalmas A, Bulla C, Barcellos Lins SA, Brunetti A. Characterisation of Alloy Composition of Protohistoric Small Boat Models from Sardinia (Italy). Materials. 2022; 15(4):1324. https://doi.org/10.3390/ma15041324
Chicago/Turabian StyleIannaccone, Roberta, Anna Depalmas, Claudio Bulla, Sergio Augusto Barcellos Lins, and Antonio Brunetti. 2022. "Characterisation of Alloy Composition of Protohistoric Small Boat Models from Sardinia (Italy)" Materials 15, no. 4: 1324. https://doi.org/10.3390/ma15041324
APA StyleIannaccone, R., Depalmas, A., Bulla, C., Barcellos Lins, S. A., & Brunetti, A. (2022). Characterisation of Alloy Composition of Protohistoric Small Boat Models from Sardinia (Italy). Materials, 15(4), 1324. https://doi.org/10.3390/ma15041324