Physicochemical Properties of Dentine Subjected to Microabrasive Blasting and Its Influence on Bonding to Self-Adhesive Prosthetic Cement in Shear Bond Strength Test: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Study Design
2.2. Scanning Electron Microscope (SEM) and Profilometry
2.3. Chemical Composition Analysis
2.4. Static Contact Angle and Surface Free Energy (SFE) Tests
2.5. Shear Bond Strength (SBS) Test
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pjetursson, B.E.; Thoma, D.; Jung, R.; Zwahlen, M.; Zembic, A. A systematic review of the survival and complication rates of implant supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years. Clin. Oral Implant. Res. 2012, 23 (Suppl. 6), 22–38. [Google Scholar] [CrossRef] [PubMed]
- Le, M.; Papia, E.; Larsson, C. The clinical success of tooth- and implant-supported zirconia-based fixed dental prostheses. A systematic review. J. Oral Rehabil. 2015, 42, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Strasding, M.; Valente, N.A.; Zwahlen, M.; Liu, S.; Pjetursson, B.E. A systematic review of the survival and complication rates of zirconia-ceramic and metal-ceramic multiple-unit fixed dental prostheses. Clin. Oral Implant. Res. 2018, 29 (Suppl. 16), 184–198. [Google Scholar] [CrossRef] [Green Version]
- Blatz, M.B.; Vonderheide, M.; Conejo, J. The effect of resin bonding on long-term success of high-strength ceramics. J. Dent. Res. 2018, 97, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Sailer, I.; Fehmer, V.; Pjetursson, B. Tooth preparation: Current concepts for material selection. In Fixed Restorations: A Clinical Guide to the Selection of Materials and Fabrication Technology, 1st ed.; Quintessence Verlags-GmbH: Berlin, Germany, 2021; pp. 89–90. [Google Scholar]
- Zafar, M.S.; Amin, F.; Fareed, M.A.; Ghabbani, H.; Riaz, S.; Khurshid, Z.; Kumar, N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics 2020, 5, 34. [Google Scholar] [CrossRef]
- Edelhoff, D.; Sorensen, J.A. Tooth structure removal associated with various preparation designs for anterior teeth. J. Prosthet. Dent. 2002, 87, 503–509. [Google Scholar] [CrossRef]
- Kaidonis, J.A.; Skinner, V.J.; Lekkas, D.; Winning, T.A.; Townsend, G.C. Reorientating dental curricula to reflect a minimally invasive dentistry approach for patient-centred management. Aust. Dent. J. 2013, 58 (Suppl. 1), 70–75. [Google Scholar] [CrossRef]
- Bindl, A.; Richter, B.; Mörmann, W.H. Survival of ceramic computer-aided design/manufacturing crowns bonded to preparations with reduced macroretention geometry. Int. J. Prosthodont. 2005, 18, 219–224. [Google Scholar] [CrossRef]
- Abad-Coronel, C.; Naranjo, B.; Valdiviezo, P. Adhesive Systems Used in Indirect Restorations Cementation: Review of the Literature. Dent. J. 2019, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Imburgia, M.; Canale, A.; Cortellini, D.; Maneschi, M.; Martucci, C.; Valenti, M. Minimally invasive vertical preparation design for ceramic veneers. Int. J. Esthet. Dent. 2016, 11, 460–471. [Google Scholar]
- Suese, K. Progress in digital dentistry: The practical use of intraoral scanners. Dent. Mater. J. 2020, 39, 52–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasse, M.; Kern, M. All-ceramic resin-bonded fixed dental prostheses: Treatment planning, clinical procedures, and outcome. Quintessence Int. 2014, 45, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Surowiecki, D.; Szerszeń, M.; Wróbel, K.; Walczyk, A. Compatibility of the digital design of prosthetic crowns with restorations made in the technology of selective laser sintering of metal powders. Prosthodontics 2020, 70, 132–143. [Google Scholar] [CrossRef]
- Edelhoff, D.; Ozcan, M. To what extent does the longevity of fixed dental prostheses depend on the function of the cement? Working Group 4 materials: Cementation. Clin. Oral Implant. Res. 2007, 18 (Suppl. 3), 193–204. [Google Scholar] [CrossRef]
- Sailer, I.; Fehmer, V.; Pjetursson, B. Material-related cementation procedures. In Fixed Restorations: A Clinical Guide to the Selection of Materials and Fabrication Technology, 1st ed.; Quintessence Verlags-GmbH: Berlin, Germany, 2021; pp. 141–153. [Google Scholar]
- Manuja, N.; Nagpal, R.; Pandit, I.K. Dental adhesion: Mechanism, techniques and durability. J. Clin. Pediatr. Dent. 2012, 36, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Gurel, G.; Sesma, N.; Calamita, M.A.; Coachman, C.; Morimoto, S. Influence of Enamel Preservation on Failure Rates of Porcelain Laminate Veneers. Int. J. Periodontics Restor. Dent. 2013, 33, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Zecin-Deren, A.; Sokolowski, J.; Szczesio-Wlodarczyk, A.; Piwonski, I.; Lukomska-Szymanska, M.; Lapinska, B. Multi-Layer Application of Self-Etch and Universal Adhesives and the Effect on Dentin Bond Strength. Molecules 2019, 24, 345. [Google Scholar] [CrossRef] [Green Version]
- Breschi, L.; Mazzoni, A.; Ruggeri, A.; Cadenaro, M.; Di Lenarda, R.; De Stefano Dorigo, E. Dental adhesion review: Aging and stability of the bonded interface. Dent. Mater. 2008, 24, 90–101. [Google Scholar] [CrossRef]
- Hitz, T.; Stawarczyk, B.; Fischer, J.; Hämmerle, C.H.; Sailer, I. Are self-adhesive resin cements a valid alternative to conventional resin cements? A laboratory study of the long-term bond strength. Dent. Mater. 2012, 28, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- De Munck, J.; Vargas, M.; Van Landuyt, K.; Hikita, K.; Lambrechts, P.; Van Meerbeek, B. Bonding of an auto-adhesive luting material to enamel and dentin. Dent. Mater. 2004, 20, 963–971. [Google Scholar] [CrossRef]
- Fang, M.; Liu, R.; Xiao, Y.; Li, F.; Wang, D.; Hou, R.; Chen, J. Biomodification to dentin by a natural crosslinker improved the resin-dentin bonds. J. Dent. 2012, 40, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Coli, P.; Alaeddin, S.; Wennerberg, A.; Karlsson, S. In vitro dentin pretreatment: Surface roughness and adhesive shear bond strength. Eur. J. Oral Sci. 1999, 107, 400. [Google Scholar] [CrossRef] [PubMed]
- Suyama, Y.; de Munck, J.; Cardoso, M.V.; Yamada, T.; Van Meerbeek, B. Bond durability of self-adhesive composite cements to dentine. J. Dent. 2013, 41, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Sokołowski, G.; Szczesio-Włodarczyk, A.; Konieczny, B.; Bociong, K.; Sokołowski, J. Comparative evaluation of the mechanical properties of resin, self-adhesive and adhesive cements. Prosthodontics 2018, 68, 415–424. [Google Scholar] [CrossRef]
- Vrochari, A.D.; Eliades, G.; Hellwig, E.; Wrbas, K.T. Curing efficiency of four self-etching, self-adhesive resin cements. Dent. Mater. 2009, 25, 1104–1108. [Google Scholar] [CrossRef]
- Weiser, F.; Behr, M. Self-adhesive resin cements: A clinical review. J. Prosthodont. 2015, 24, 100–108. [Google Scholar] [CrossRef]
- De Almeida Neves, A.; Coutinho, E.; Cardoso, M.V.; Lambrechts, P.; Van Meerbeek, B. Current Concepts and Techniques for Caries Excavation and Adhesion to Residual Dentin. J. Adhes. Dent. 2011, 13, 7–22. [Google Scholar] [CrossRef]
- Banerjee, A.; Pabari, H.; Paolinelis, G.; Thompson, I.D.; Watson, T.F. An in vitro evaluation of selective demineralised enamel removal using bio-active glass air abrasion. Clin. Oral Investig. 2011, 15, 895–900. [Google Scholar] [CrossRef]
- Milly, H.; Austin, R.S.; Thompson, I.; Banerjee, A. In vitro effect of air-abrasion operating parameters on dynamic cutting characteristics of alumina and bio-active glass powders. Oper. Dent. 2014, 39, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Chinelatti, M.A.; do Amaral, T.H.A.; Borsatto, M.C.; Palma-Dibb, R.G.; Corona, S.A.M. Adhesive interfaces of enamel and dentin prepared by air-abrasion at different distances. Appl. Surf. Sci. 2007, 253, 4866–4871. [Google Scholar] [CrossRef]
- Peruchi, C.; Santos-Pinto, L.; Santos-Pinto, A.; Barbosa e Silva, E. Evaluation of cutting patterns produced in primary teeth by an air-abrasion system. Quintessence Int. 2002, 33, 279–283. [Google Scholar] [PubMed]
- Antanasova, M.; Kocjan, A.; Hocevar, M.; Jevnikar, P. Influence of surface airborne-particle abrasion and bonding agent application on porcelain bonding to titanium dental alloys fabricated by milling and by selective laser melting. J. Prosthet. Dent. 2020, 123, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Daratsianos, N.; Schutz, B.; Reimann, S.; Weber, A.; Papageorgiou, S.N.; Jager, A.; Bourauel, C. The influence of enamel sandblasting on the shear bond strength and fractography of the bracket-adhesive-enamel complex tested in vitro by the DIN 13990:2017-04 standard. Clin. Oral Investig. 2019, 23, 2975–2985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patcas, R.; Zinelis, S.; Eliades, G.; Eliades, T. Surface and interfacial analysis of sandblasted and acid-etched enamel for bonding orthodontic adhesives. Am. J. Orthod. Dentofac. Orthop. 2015, 147, S64–S75. [Google Scholar] [CrossRef] [PubMed]
- Szerszeń, M.P.; Koczwara, A.; Mazur, M.; Pindelska, K. Abrasive blasting in clinical dentistry—Literature review. Prosthodontics 2020, 70, 417–429. [Google Scholar] [CrossRef]
- Huang, C.T.; Kim, J.; Arce, C.; Lawson, N.C. Intraoral Air Abrasion: A Review of Devices, Materials, Evidence, and Clinical Applications in Restorative Dentistry. Compend. Contin. Educ. Dent. 2019, 40, 508–513. [Google Scholar] [PubMed]
- Joshua, A. MicroEtcher IIA Intraoral Sandblaster from Zest Dental Solutions; PennWell Corporation: Tulsa, OK, USA, 2019; Volume 109, p. 80. [Google Scholar]
- Cal-Neto, J.P.; Castro, S.; Moura, P.M.; Ribeiro, D.; Miguel, J.A. Influence of enamel sandblasting prior to etching on shear bond strength of indirectly bonded lingual appliances. Angle Orthod. 2011, 81, 149–152. [Google Scholar] [CrossRef]
- Canay, Ş.; Kocadereli, İ.; Akça, E. The effect of enamel air abrasion on the retention of bonded metallic orthodontic brackets. Am. J. Orthod. Dentofac. Orthop. 2000, 117, 15–19. [Google Scholar] [CrossRef]
- Dirie, A.R.; Hajeer, M.Y.; Dabbas, J.; Al-Ibrahim, H.M. Evaluation of sandblasting with acid etching versus acid etching alone in the preparation of enamel for rebonding orthodontic brackets: An in vitro study and a randomized controlled trial. J. World Fed. Orthod. 2021, 10, 3–8. [Google Scholar] [CrossRef]
- Rogowska, R. Uproszczony sposób wyznaczania swobodnej energii powierzchniowej powłok osadzanych techniką Arc-PVD. Probl. Eksploat. 2013, 1, 85–100. [Google Scholar]
- Årtun, J.; Bergland, S. Clinical trials with crystal growth conditioning as an alternative to acid-etch enamel pretreatment. Am. J. Orthod. 1984, 85, 333–340. [Google Scholar] [CrossRef]
- Arola, D.D.; Gao, S.; Zhang, H.; Masri, R. The Tooth: Its Structure and Properties. Dent. Clin. N. Am. 2017, 61, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Van Landuyt, K.; Munck, J.; Coutinho, E.; Peumans, M.; Lambrechts, P.; Van Meerbeek, B. Bonding to Dentin: Smear Layer and the Process of Hybridization. In Dental Hard Tissues and Bonding: Interfacial Phenomena and Related Properties; Springer: Berlin/Heidelberg, Germany, 2005; pp. 89–122. [Google Scholar]
- Carvalho, E.M.; Lima, D.M.; Carvalho, C.N.; Loguercio, A.D.; Martinelli, J.R.; Bauer, J. Effect of airborne-particle abrasion on dentin with experimental niobophosphate bioactive glass on the microtensile bond strength of resin cements. J. Prosthodont. Res. 2015, 59, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Tewari, S. Effect of rotary instrumentation on composite bond strength with simulated pulpal pressure. Oper. Dent. 2006, 31, 188–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Organa, J.; Opalko, K.; Kozakiewicz, M. Odczucie bólu podczas opracowywania przyszyjkowych ubytków niepróchnicowego pochodzenia metodą abrazji powietrznej. Stom. Współcz 2010, 17, 8–14. [Google Scholar]
- Raczyńska, M.; Jodkowska, E.; Lewandowska, M.; Kurzydłowski, K. Wpływ techniki preparacji ubytków próchnicowych na uzyskaną powierzchnię zębiny—Obserwacje w SEM. Dent. Forum 2006, 34, 43–48. [Google Scholar]
- Mujdeci, A.; Gokay, O. The effect of airborne-particle abrasion on the shear bond strength of four restorative materials to enamel and dentin. J. Prosthet. Dent. 2004, 92, 245–249. [Google Scholar] [CrossRef]
- Coskun, M.E.; Akar, T.; Tugut, F. Airborne-particle abrasion; searching the right parameter. J. Dent. Sci. 2018, 13, 293–300. [Google Scholar] [CrossRef]
- Paolinelis, G.; Banerjee, A.; Watson, T.F. An in-vitro investigation of the effects of variable operating parameters on alumina air-abrasion cutting characteristics. Oper. Dent. 2009, 34, 87–92. [Google Scholar] [CrossRef]
- Lima, V.P.; Soares, K.; Caldeira, V.S.; Faria, E.S.A.L.; Loomans, B.; Moraes, R.R. Airborne-particle Abrasion and Dentin Bonding: Systematic Review and Meta-analysis. Oper. Dent. 2021, 46, E21–E33. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, H.; Takamizawa, T.; Tsubota, K.; Tsujimoto, A.; Imai, A.; Barkmeier, W.W.; Latta, M.A.; Miyazaki, M. The Effects of Aluminablasting on Bond Durability between Universal Adhesives and Tooth Substrate. Oper. Dent. 2020, 45, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Bester, S.P.; de Wet, F.A.; Nel, J.C.; Driessen, C.H. The effect of airborne particle abrasion on the dentin smear layer and dentin: An in vitro investigation. Int. J. Prosthodont. 1995, 8, 46–50. [Google Scholar]
- Rafael, C.F.; Quinelato, V.; Morsch, C.S.; DeDeus, G.; Reis, C.M. Morphological Analysis of Dentin Surface after Conditioning with Two Different methods: Chemical and Mechanical. J. Contemp. Dent. Pract. 2016, 17, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Melkumyan, T.V.; Musashaykhova, S.K.; Daurova, F.Y.; Kamilov, N.K.; Sheraliyeva, S.S.; Dadamova, A.D. Effect of air-abrasion on shear bond strength of resin composite to dentin: A study in vitro. Int. J. Biomed. 2021, 11, 451–455. [Google Scholar] [CrossRef]
- Saikaew, P.; Sattabanasuk, V.; Harnirattisai, C.; Chowdhury, A.F.M.A.; Carvalho, R.; Sano, H. Role of the smear layer in adhesive dentistry and the clinical applications to improve bonding performance. Jpn. Dent. Sci. Rev. 2022, 58, 59–66. [Google Scholar] [CrossRef]
- Saikaew, P.; Matsumoto, M.; Sattabanasuk, V.; Harnirattisai, C.; Carvalho, R.M.; Sano, H. Ultra-morphological characteristics of dentin surfaces after different preparations and treatments. Eur. J. Oral Sci. 2020, 128, 246–254. [Google Scholar] [CrossRef]
- Manhart, J.; Mehl, A.; Schroeter, R.; Obster, B.; Hickel, R. Bond strength of composite to dentin treated by air abrasion. Oper. Dent. 1999, 24, 223–232. [Google Scholar]
- Banerjee, A.; Uddin, M.; Paolinelis, G.; Watson, T.F. An investigation of the effect of powder reservoir volume on the consistency of alumina powder flow rates in dental air-abrasion devices. J. Dent. 2008, 36, 224–227. [Google Scholar] [CrossRef]
- Kim, Y.K.; Son, J.S.; Kim, K.-H.; Kwon, T.-Y. Influence of surface energy parameters of dental self-adhesive resin cements on bond strength to dentin. J. Adhes. Sci. Technol. 2013, 27, 1778–1789. [Google Scholar] [CrossRef]
- Okutan, Y.; Yucel, M.T.; Gezer, T.; Donmez, M.B. Effect of airborne particle abrasion and sintering order on the surface roughness and shear bond strength between Y-TZP ceramic and resin cement. Dent. Mater. J. 2019, 38, 241–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudawska, A.; Danczak, I.; Müller, M.; Valasek, P. The effect of sandblasting on surface properties for adhesion. Int. J. Adhes. Adhes. 2016, 70, 176–190. [Google Scholar] [CrossRef]
- Saade, J.; Skienhe, H.; Ounsi, H.; Matinlinna, J.P.; Salameh, Z. Effect of different combinations of surface treatment on adhesion of resin composite to zirconia. Clin. Cosmet. Investig. Dent. 2019, 11, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Omari, W.M.; Mitchell, C.A.; Cunningham, J.L. Surface roughness and wettability of enamel and dentine surfaces prepared with different dental burs. J. Oral Rehabil. 2001, 28, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Koodaryan, R.; Hafezeqoran, A.; Poursoltan, S. Effect of dentin surface roughness on the shear bond strength of resin bonded restorations. J. Adv. Prosthodont. 2016, 8, 224–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikaew, P.; Senawongse, P.; Chowdhury, A.A.; Sano, H.; Harnirattisai, C. Effect of smear layer and surface roughness on resin-dentin bond strength of self-etching adhesives. Dent. Mater. J. 2018, 37, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Barnes, C.M.; Covey, D.; Watanabe, H.; Simetich, B.; Schulte, J.R.; Chen, H. An in vitro comparison of the effects of various air polishing powders on enamel and selected esthetic restorative materials. J. Clin. Dent. 2014, 25, 76–87. [Google Scholar]
- Graumann, S.J.; Sensat, M.L.; Stoltenberg, J.L. Air polishing: A review of current literature. J. Dent. Hyg. 2013, 87, 173–180. [Google Scholar]
- Gutmann, M.E. Air polishing: A comprehensive review of the literature. J. Dent. Hyg 1998, 72, 47–56. [Google Scholar]
- Wu, S.; Zhang, B.; Liu, Y.; Suo, X.; Li, H. Influence of surface topography on bacterial adhesion: A review (Review). Biointerphases 2018, 13, 060801. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Cheng, Y.; Wang, S.-Y.; Hsu, L.C.; Feliz, Y.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp. Biofouling 2014, 30, 1253–1268. [Google Scholar] [CrossRef]
- Bermejo, P.; Sánchez, M.C.; Llama-Palacios, A.; Figuero, E.; Herrera, D.; Sanz Alonso, M. Biofilm formation on dental implants with different surface micro-topography: An in vitro study. Clinical Oral Implant. Res. 2019, 30, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Juárez, A.; Engel, E.; Gil, F.J. Streptococcus sanguinis adhesion on titanium rough surfaces: Effect of shot-blasting particles. J. Mater. Science. Mater. Med. 2011, 22, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Preedy, E.; Perni, S.; Nipiĉ, D.; Bohinc, K.; Prokopovich, P. Surface Roughness Mediated Adhesion Forces between Borosilicate Glass and Gram-Positive Bacteria. Langmuir 2014, 30, 9466–9476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedewald, F. Bacterial Adhesion to Surfaces: The Influence of Surface Roughness. PDA J. Pharm. Sci. Technol. PDA 2005, 60, 164–171. [Google Scholar]
- Chaiyabutr, Y.; Kois, J.C. The effects of tooth preparation cleansing protocols on the bond strength of self-adhesive resin luting cement to contaminated dentin. Oper. Dent. 2008, 33, 556–563. [Google Scholar] [CrossRef]
- Ferrazzano, G.F.; Iodice, G.; Cantile, T.; Ingenito, A. Scanning electron microscopic study of air abrasion effects on human dentine. Eur. J. Paediatr. Dent. 2007, 8, 113–118. [Google Scholar]
- Bieliński, D.; Lipiński, P.; Wolska, B.; Jagielski, J. Porównanie metod oznaczania statycznego kąta zwilżania powierzchni cieczą małocząsteczkową. Probl. Eksploat. 2006, 1, 131–144. [Google Scholar]
- Inoue, N.; Tsujimoto, A.; Takimoto, M.; Ootsuka, E.; Endo, H.; Takamizawa, T.; Miyazaki, M. Surface free-energy measurements as indicators of the bonding characteristics of single-step self-etching adhesives. Eur. J. Oral Sci. 2010, 118, 525–530. [Google Scholar] [CrossRef]
- Dubiel, M.; Łagan, S. Ocena kąta zwilżania oraz swobodnej energii powierzchniowej różnych typów materiałów stomatologicznych. Aktualne Probl. Biomech. 2013, 7, 39–42. [Google Scholar]
- Van Meerbeek, B.; Peumans, M.; Poitevin, A.; Mine, A.; Van Ende, A.; Neves, A.; De Munck, J. Relationship between bond-strength tests and clinical outcomes. Dent. Mater. 2010, 26, e100–e121. [Google Scholar] [CrossRef] [PubMed]
- Pospiech, P. All-ceramic crowns: Bonding or cementing? Clin. Oral Investig. 2002, 6, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Souza-Zaroni, W.C.; Chinelatti, M.A.; Delfino, C.S.; Pécora, J.D.; Palma-Dibb, R.G.; Corona, S.A. Adhesion of a self-etching system to dental substrate prepared by Er:YAG laser or air abrasion. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 86, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Souza-Zaroni, W.C.; Delfino, C.S.; Ciccone-Nogueira, J.C.; Palma-Dibb, R.G.; Corona, S.A. Effect of cavity preparation method on microtensile bond strength of a self-etching primer vs phosphoric acid etchant to enamel. J. Mater. Sci. Mater. Med. 2007, 18, 2003–2009. [Google Scholar] [CrossRef]
- D’Amario, M.; Piccioni, C.; Di Carlo, S.; De Angelis, F.; Caruso, S.; Capogreco, M. Effect of Airborne Particle Abrasion on Microtensile Bond Strength of Total-Etch Adhesives to Human Dentin. Biomed Res. Int. 2017, 2017, 2432536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borsatto, M.C.; Catirse, A.B.; Palma Dibb, R.G.; Nascimento, T.N.; Rocha, R.A.; Corona, S.A. Shear bond strength of enamel surface treated with air-abrasive system. Braz. Dent. J. 2002, 13, 175–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferracane, J.L.; Stansbury, J.W.; Burke, F.J.T. Self-adhesive resin cements—Chemistry, properties and clinical considerations. J. Oral Rehabil. 2011, 38, 295–314. [Google Scholar] [CrossRef]
- Vaz, R.R.; Hipólito, V.D.; D’Alpino, P.H.P.; Goes, M.F.D. Bond Strength and Interfacial Micromorphology of Etch-and-Rinse and Self-Adhesive Resin Cements to Dentin. J. Prosthodont. 2012, 21, 101–111. [Google Scholar] [CrossRef]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K.L. State of the art of self-etch adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Sofan, E.; Sofan, A.; Palaia, G.; Tenore, G.; Romeo, U.; Migliau, G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann. Stomatol. 2017, 8, 1–17. [Google Scholar] [CrossRef]
- Pryliński, M.; Deręgowska-Nosowicz, P.; Shaw, H.; Kaczmarek, E. Evaluation of the Bond Strength of Ceramic Material to Dentin and Enamel with Different Adhesive Cements. Dent. Med. Probl. 2006, 43, 399–404. [Google Scholar]
- KERR Maxcem Elite™ Universal Resin Cement Brochure, Product Brochure. December 2021. Available online: https://kavokerr.widen.net/content/1uuqeuuoyq/original/MKT-20-0820_Rev1_Maxcem-Universal_Brochure_trim.pdf?u=18sth1&download=true (accessed on 15 December 2021).
- Crispim da Silveira, O.; Rodrigues, A.M.; Montazerian, M.; de Lucena Lira, H.; Baino, F.; Menezes, R.R. Al2O3 Preforms Infiltrated with Poly(methyl methacrylate) for Dental Prosthesis Manufacturing. Appl. Sci. 2021, 11, 7583. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Huang, X.M.; Dai, R.R.; Zhang, W.; Wu, Y.C.; Shu, X.; Xu, P. Study on Properties of Epoxy Resin /Al2O3 Composites. Adv. Mater. Res. 2013, 652–654, 116–120. [Google Scholar] [CrossRef]
- Gil, J.; Pérez, R.; Herrero-Climent, M.; Rizo-Gorrita, M.; Torres-Lagares, D.; Gutierrez, J.L. Benefits of Residual Aluminum Oxide for Sand Blasting Titanium Dental Implants: Osseointegration and Bactericidal Effects. Materials 2021, 15, 178. [Google Scholar] [CrossRef] [PubMed]
- Sirisha, K.; Rambabu, T.; Shankar, Y.R.; Ravikumar, P. Validity of bond strength tests: A critical review: Part I. J. Conserv. Dent. 2014, 17, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adebayo, O.A.; Burrow, M.F.; Tyas, M.J. Bond strength test: Role of operator skill. Aust. Dent. J. 2008, 53, 145–150. [Google Scholar] [CrossRef]
- Rosentritt, M.; Siavikis, G.; Behr, M.; Kolbeck, C.; Handel, G. Approach for valuating the significance of laboratory simulation. J. Dent. 2008, 36, 1048–1053. [Google Scholar] [CrossRef]
Mean (SD) | Min | Median | Max | F | p | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ra | Rz | Ra | Rz | Ra | Rz | Ra | Rz | Ra | Rz | Ra | Rz | |
Group A | 0.40 bc (0.06) | 2.67 bc (0.17) | 0.28 | 2.43 | 0.42 | 2.66 | 0.47 | 2.99 | 6964.65 | 11614.09 | 0,00000 * | 0,00000 * |
Group B | 12.63 ac (1.16) | 84.08 ac (2.22) | 10.22 | 81.41 | 12.73 | 84.20 | 14.03 | 88,20 | ||||
Group C | 16.97 ab (0.45) | 108.71 ab (3.61) | 15.99 | 100 | 16.98 | 109 | 17.57 | 113 |
Group A | Group B | Group C | F | p | |||
---|---|---|---|---|---|---|---|
Contact angle (o) | Deionized water | Mean (SD) | 92.28 bc (1.35) | 83.65 ac (4.37) | 41.93 ab (6.26) | 217.06 | 0.00000 * |
Min/Max | 90.20/93.30 | 77.0/89.40 | 31.0/48.80 | ||||
1-bromonaphtalene | Mean (SD) | 50.28 bc (2.96) | 35.75 ac (3.93) | 22.47 ab (2.87) | 107.42 | 0.00000 * | |
Min/Max | 45.40/53.30 | 31.90/41.50 | 19.40/27.10 | ||||
Diiodomethane | Mean (SD) | 60.54 bc (3.79) | 45.40 ac (3.93) | 36.03 ab (3.83) | 61.74 | 0.00000 * | |
Min/Max | 55.35/65.40 | 38.50/49.40 | 32.20/41.0 | ||||
SFE (according to Roberson method) (mN/m) | Mean (SD) | 24.75 bc (0.87) | 30.69 ac (2.68) | 55.66 ab (2.95) | 242.41 | 0.00000 * | |
Min/Max | 23.96/26.22 | 26.78/35.12 | 52.03/61.23 | ||||
SFE (according to O-W-R-K method) (mN/m) | Mean (SD) | 22.57 bc (5.98) | 33.42 ac (5.77) | 46.97 ab (5.73) | 22.01 | 0.00009 * | |
Min/Max | 17.06/31.40 | 28.11/41.20 | 39.23/54.12 |
Mean (SD) | Median | Min | Max | F | p | |
---|---|---|---|---|---|---|
Group A | 2.892 bc (1.68) | 2.911 | 0.811 | 9.10 | 35.18 | 0.00000 * |
Group B | 6.736 a (2.79) | 6.121 | 2.812 | 13.17 | ||
Group C | 6.677 a (3.41) | 6.250 | 2.461 | 16.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szerszeń, M.; Higuchi, J.; Romelczyk-Baishya, B.; Górski, B.; Łojkowski, W.; Pakieła, Z.; Mierzwińska-Nastalska, E. Physicochemical Properties of Dentine Subjected to Microabrasive Blasting and Its Influence on Bonding to Self-Adhesive Prosthetic Cement in Shear Bond Strength Test: An In Vitro Study. Materials 2022, 15, 1476. https://doi.org/10.3390/ma15041476
Szerszeń M, Higuchi J, Romelczyk-Baishya B, Górski B, Łojkowski W, Pakieła Z, Mierzwińska-Nastalska E. Physicochemical Properties of Dentine Subjected to Microabrasive Blasting and Its Influence on Bonding to Self-Adhesive Prosthetic Cement in Shear Bond Strength Test: An In Vitro Study. Materials. 2022; 15(4):1476. https://doi.org/10.3390/ma15041476
Chicago/Turabian StyleSzerszeń, Marcin, Julia Higuchi, Barbara Romelczyk-Baishya, Bartłomiej Górski, Witold Łojkowski, Zbigniew Pakieła, and Elżbieta Mierzwińska-Nastalska. 2022. "Physicochemical Properties of Dentine Subjected to Microabrasive Blasting and Its Influence on Bonding to Self-Adhesive Prosthetic Cement in Shear Bond Strength Test: An In Vitro Study" Materials 15, no. 4: 1476. https://doi.org/10.3390/ma15041476
APA StyleSzerszeń, M., Higuchi, J., Romelczyk-Baishya, B., Górski, B., Łojkowski, W., Pakieła, Z., & Mierzwińska-Nastalska, E. (2022). Physicochemical Properties of Dentine Subjected to Microabrasive Blasting and Its Influence on Bonding to Self-Adhesive Prosthetic Cement in Shear Bond Strength Test: An In Vitro Study. Materials, 15(4), 1476. https://doi.org/10.3390/ma15041476