Valley Hall Elastic Edge States in Locally Resonant Metamaterials
Abstract
:1. Introduction
2. Numerical Model of the Locally Resonant Metamaterial
3. Topological Phase
4. Valley Topology Edge States
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Chan, C.T. Double-negative acoustic metamaterial. Phys. Rev. E 2004, 70, 055602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.N.; Hu, G.K.; Huang, G.L.; Sun, C.T. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 2011, 98, 251907. [Google Scholar] [CrossRef] [Green Version]
- Cummer, S.A.; Schurig, D. One path to acoustic cloaking. New J. Phys. 2007, 9, 45. [Google Scholar] [CrossRef]
- Wen, G.; Chen, G.; Long, K.; Wang, X.; Liu, J.; Xie, Y.M. Stacked-origami mechanical metamaterial with tailored multistage stiffness. Mater. Des. 2021, 212, 110203. [Google Scholar] [CrossRef]
- Nash, L.M.; Kleckner, D.; Read, A.; Vitelli, V.; Turner, A.M.; Irvine, W.T. Topological mechanics of gyroscopic metamaterials. Proc. Natl. Acad. Sci. USA 2015, 112, 14495–14500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleury, R.; Sounas, D.L.; Sieck, C.F.; Haberman, M.R.; Alù, A. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 2014, 343, 516–519. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, Y.; Zhu, Y.; Fan, X.; Yang, J.; Liang, B.; Zhu, X.; Wan, X.; Cheng, J. Experimental demonstration of acoustic Chern insulators. Phys. Rev. Lett. 2019, 122, 014302. [Google Scholar] [CrossRef]
- Gao, P.; Zhang, Z.; Christensen, J. Sonic valley-Chern insulators. Phys. Rev. B 2020, 101, 020301. [Google Scholar] [CrossRef]
- Prodan, E.; Prodan, C. Topological phonon modes and their role in dynamic instability of microtubules. Phys. Rev. Lett. 2009, 103, 248101. [Google Scholar] [CrossRef]
- Wang, Z.; Chong, Y.; Joannopoulos, J.D.; Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 2008, 100, 013905. [Google Scholar] [CrossRef]
- Ho, K.; Chan, C.T.; Soukoulis, C.M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 1990, 65, 3152. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Jiang, C. Broadening bandgap of thermocrystal by tailoring air hole. Appl. Phys. Express 2020, 13, 115001. [Google Scholar] [CrossRef]
- Rustamov, F.; Darvishov, N.; Mamedov, M.; Bobrova, E.; Qafarova, H. Porous silicon bandgap broadening at natural oxidation. J. Lumin. 2011, 131, 2078–2082. [Google Scholar] [CrossRef]
- Xu, J.; Yan, R.; Tang, J. Broadening bandgap width of piezoelectric metamaterial by introducing cavity. Appl. Sci. 2018, 8, 1606. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Jiang, C. Expanding the bandgap of thermal phonons by using supercrystals. Results Phys. 2020, 17, 103015. [Google Scholar] [CrossRef]
- Xiao, Y.; Wen, J.; Wang, G.; Wen, X. Theoretical and experimental study of locally resonant and Bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators. J. Vib. Acoust. 2013, 135, 041006. [Google Scholar] [CrossRef]
- Xiao, Y.; Wen, J.; Wen, X. Flexural wave bandgaps in locally resonant thin plates with periodically attached spring–mass resonators. J. Phys. D Appl. Phys. 2012, 45, 195401. [Google Scholar] [CrossRef]
- Wang, H.; Liu, D.; Fang, W.; Lin, S.; Liu, Y.; Liang, Y. Tunable topological interface states in one-dimensional extended granular crystals. Int. J. Mech. Sci. 2020, 176, 105549. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, L.; Wang, H.; Liu, D.; Liang, Y. Topological interface states in translational metamaterials for sub-wavelength in-plane waves. Int. J. Mech. Sci. 2021, 197, 106308. [Google Scholar] [CrossRef]
- Mitchell, N.P.; Nash, L.M.; Irvine, W.T. Tunable band topology in gyroscopic lattices. Phys. Rev. B 2018, 98, 174301. [Google Scholar] [CrossRef] [Green Version]
- Hafezi, M.; Demler, E.A.; Lukin, M.D.; Taylor, J.M. Robust optical delay lines with topological protection. Nat. Phys. 2011, 7, 907–912. [Google Scholar] [CrossRef]
- Deng, Y.; Ge, H.; Tian, Y.; Lu, M.; Jing, Y. Observation of zone folding induced acoustic topological insulators and the role of spin-mixing defects. Phys. Rev. B 2017, 96, 184305. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wei, Q.; Cheng, Y.; Zhang, T.; Wu, D.; Liu, X. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice. Phys. Rev. Lett. 2017, 118, 084303. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Mei, J. Double Dirac cones in phononic crystals. Appl. Phys. Lett. 2014, 105, 014107. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.G.; Ni, X.; Wu, Y.; He, C.; Sun, X.C.; Zheng, L.Y.; Lu, M.H.; Chen, Y.F. Accidental degeneracy of double Dirac cones in a phononic crystal. Sci. Rep. 2014, 4, 4613. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.P.; Jia, D.; Sun, H.X.; Yuan, S.Q.; Ge, Y.; Si, Q.R.; Liu, X.J. Programmable coding acoustic topological insulator. Adv. Mater. 2018, 30, 1805002. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Nassar, H.; Norris, A.N.; Hu, G.; Huang, G. Elastic quantum spin Hall effect in kagome lattices. Phys. Rev. B 2018, 98, 094302. [Google Scholar] [CrossRef] [Green Version]
- Darabi, A.; Leamy, M.J. Tunable nonlinear topological insulator for acoustic waves. Phys. Rev. Appl. 2019, 12, 044030. [Google Scholar] [CrossRef]
- Lu, J.; Qiu, C.; Ke, M.; Liu, Z. Valley vortex states in sonic crystals. Phys. Rev. Lett. 2016, 116, 093901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Chen, Y.; Zhang, K.; Hu, G. Dirac degeneracy and elastic topological valley modes induced by local resonant states. Phys. Rev. B 2020, 101, 014101. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, Y.; Long, H.; Cheng, Y.; Liu, X.; Christensen, J. Subwavelength acoustic valley-Hall topological insulators using soda cans honeycomb lattices. Research 2019, 2019, 5385763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Tian, Y.; Cheng, Y.; Wei, Q.; Liu, X.; Christensen, J. Topological acoustic delay line. Phys. Rev. Appl. 2018, 9, 034032. [Google Scholar] [CrossRef] [Green Version]
- Tian, Z.; Shen, C.; Li, J.; Reit, E.; Bachman, H.; Socolar, J.E.; Cummer, S.A.; Huang, T.J. Dispersion tuning and route reconfiguration of acoustic waves in valley topological phononic crystals. Nat. Commun. 2020, 11, 762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Sun, K.; Gonella, S. Valley hall in-plane edge states as building blocks for elastodynamic logic circuits. Phys. Rev. Appl. 2019, 12, 044015. [Google Scholar] [CrossRef] [Green Version]
- Lera, N.; Torrent, D.; San-Jose, P.; Christensen, J.; Alvarez, J.V. Valley Hall phases in kagome lattices. Phys. Rev. B 2019, 99, 134102. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Nassar, H.; Huang, G. A study of topological effects in 1D and 2D mechanical lattices. J. Mech. Phys. Solids 2018, 117, 22–36. [Google Scholar] [CrossRef]
- Liu, T.W.; Semperlotti, F. Tunable acoustic valley—Hall edge states in reconfigurable phononic elastic waveguides. Phys. Rev. Appl. 2018, 9, 014001. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.; Zhuang, X.; Park, H.; Rabczuk, T. Tunable topological bandgaps and frequencies in a pre-stressed soft phononic crystal. J. Appl. Phys. 2019, 125, 095106. [Google Scholar] [CrossRef]
- Darabi, A.; Collet, M.; Leamy, M.J. Experimental realization of a reconfigurable electroacoustic topological insulator. Proc. Natl. Acad. Sci. USA 2020, 117, 16138–16142. [Google Scholar] [CrossRef]
- Bacigalupo, A.; De Bellis, M.L.; Misseroni, D. Design of tunable acoustic metamaterials with periodic piezoelectric microstructure. Extrem. Mech. Lett. 2020, 40, 100977. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Fang, W.; Han, Q.; Liu, D.; Liang, Y. Tunable control of subwavelength topological interface modes in locally resonance piezoelectric metamaterials. Compos. Struct. 2021, 276, 114541. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, W.; Liang, Y.; Liu, D.; Han, Q. Tuning of subwavelength topological interface states in locally resonant metastructures with shunted piezoelectric patches. J. Appl. Phys. 2021, 129, 245112. [Google Scholar] [CrossRef]
- Zhou, W.; Su, Y.; Chen, W.; Lim, C. Voltage-controlled quantum valley Hall effect in dielectric membrane-type acoustic metamaterials. Int. J. Mech. Sci. 2020, 172, 105368. [Google Scholar] [CrossRef]
- Riva, E.; Quadrelli, D.; Cazzulani, G.; Braghin, F. Tunable in-plane topologically protected edge waves in continuum Kagome lattices. J. Appl. Phys. 2018, 124, 164903. [Google Scholar] [CrossRef]
- Kherraz, N.; Radzieński, M.; Mazzotti, M.; Kudela, P.; Bosia, F.; Gliozzi, A.; Misseroni, D.; Pugno, N.; Ostachowicz, W.; Miniaci, M. Experimental full wavefield reconstruction and band diagram analysis in a single-phase phononic plate with internal resonators. J. Sound Vib. 2021, 503, 116098. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Y.; Zhang, K.; Hu, G. Programmable elastic valley Hall insulator with tunable interface propagation routes. Extrem. Mech. Lett. 2019, 28, 76–80. [Google Scholar] [CrossRef]
Material | Density (kg/m3) | Young’s Modulus (Pa) | Poisson’s Ratio |
---|---|---|---|
Lead | 11,300 | 17 × 10 | 0.33 |
Rubber | 115 | 8 × 10 | 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, W.; Han, C.; Chen, Y.; Liu, Y. Valley Hall Elastic Edge States in Locally Resonant Metamaterials. Materials 2022, 15, 1491. https://doi.org/10.3390/ma15041491
Fang W, Han C, Chen Y, Liu Y. Valley Hall Elastic Edge States in Locally Resonant Metamaterials. Materials. 2022; 15(4):1491. https://doi.org/10.3390/ma15041491
Chicago/Turabian StyleFang, Wenbo, Chunyu Han, Yuyang Chen, and Yijie Liu. 2022. "Valley Hall Elastic Edge States in Locally Resonant Metamaterials" Materials 15, no. 4: 1491. https://doi.org/10.3390/ma15041491
APA StyleFang, W., Han, C., Chen, Y., & Liu, Y. (2022). Valley Hall Elastic Edge States in Locally Resonant Metamaterials. Materials, 15(4), 1491. https://doi.org/10.3390/ma15041491