Carbon Nanotube Devices for Quantum Technology
Abstract
:1. Introduction
2. Basics of Carbon Nanotubes
3. Devices Based on Individual Carbon Nanotubes
3.1. Single-Electron Devices
3.1.1. Charge and Spin Qubits
3.1.2. Nanomechanical Qubits
3.1.3. Spin–Nanomechanical Hybrid Devices
3.2. Single-Photon Devices
3.2.1. Single-Photon Emitters
3.2.2. Cavity Enhancement of Single-Photon Emission
4. Devices Based on Assembled Carbon Nanotubes
4.1. Devices Based on Randomly Oriented Nanotube Assemblies
4.2. Devices Based on Aligned Nanotube Assemblies
5. Summary and Outlook
- CNT charge qubits have already demonstrated electric field sensitivity better than that of a single-electron transistor, and DC magnetic field sensitivity comparable to that of NV centers [86].
- CNT spin qubits with long coherence times and a circuit QED spin–photon interface have been realized [90]. The theoretical limit for the spin coherence time in CNTs can exceed tens of seconds [165]. Moreover, since then, industry has taken over with the goal of realizing CNT spin-based quantum processors [166].
- Suspended CNTs make perfect nanomechanical resonators with quality factors of up to 5 million [94]. Once a CNT-based nanomechanical qubit is realized, it promises to exhibit a long qubit decoherence time and the capability to couple to a wide range of modalities for external fields [100], which will find applications in quantum sensing and computing.
- Single-photon emitters hosted in CNTs are especially sought-after in the telecommunication bands as functionalized SWCNTs bring several unique advantages not available in other materials [17].
- Exciton-polaritons in highly aligned films of SWCNTs form a unique system with on-demand USC [156], which can find applications in quantum information processing and sensing.
- Due to the electronic and mechanical properties of CNTs, they are used in hybrid quantum devices to improve superconducting circuits [49].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arute, F.; Arya, K.; Babbush, R.; Bacon, D.; Bardin, J.C.; Barends, R.; Biswas, R.; Boixo, S.; Brandao, F.G.S.L.; Buell, D.A.; et al. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Bao, W.S.; Cao, S.; Chen, F.; Chen, M.C.; Chen, X.; Chung, T.H.; Deng, H.; Du, Y.; Fan, D.; et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 2021, 127, 180501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Pagano, G.; Hess, P.W.; Kyprianidis, A.; Becker, P.; Kaplan, H.; Gorshkov, A.V.; Gong, Z.X.; Monroe, C. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 2017, 551, 601–604. [Google Scholar] [CrossRef]
- Pagano, G.; Bapat, A.; Becker, P.; Collins, K.S.; De, A.; Hess, P.W.; Kaplan, H.B.; Kyprianidis, A.; Tan, W.L.; Baldwin, C.; et al. Quantum approximate optimization of the long-range Ising model with a trapped-ion quantum simulator. Proc. Natl. Acad. Sci. USA 2020, 117, 25396–25401. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, S.; Wang, T.T.; Levine, H.; Keesling, A.; Semeghini, G.; Omran, A.; Bluvstein, D.; Samajdar, R.; Pichler, H.; Ho, W.W.; et al. Quantum phases of matter on a 256-atom programmable quantum simulator. Nature 2021, 595, 227–232. [Google Scholar] [CrossRef]
- Rondin, L.; Tetienne, J.P.; Hingant, T.; Roch, J.F.; Maletinsky, P.; Jacques, V. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 2014, 77, 056503. [Google Scholar] [CrossRef] [Green Version]
- Schirhagl, R.; Chang, K.; Loretz, M.; Degen, C.L. Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 2014, 65, 83–105. [Google Scholar] [CrossRef] [Green Version]
- Aharonovich, I.; Englund, D.; Toth, M. Solid-state single-photon emitters. Nat. Photonics 2016, 10, 631–641. [Google Scholar] [CrossRef]
- Ando, T. Theory of electronic states and transport in carbon nanotubes. J. Phys. Soc. Jpn. 2005, 74, 777–817. [Google Scholar] [CrossRef] [Green Version]
- Barros, E.B.; Jorio, A.; Samsonidze, G.G.; Capaz, R.B.; Souza Filho, A.G.; Mendes Filho, J.; Dresselhaus, G.; Dresselhaus, M.S. Review on the symmetry-related properties of carbon nanotubes. Phys. Rep. 2006, 431, 261–302. [Google Scholar] [CrossRef]
- Lee, L.; Zhang, R.; Yang, B. A novel architecture of high optical non linearity in carbon nanotube based nano fiber optic for future quantum communication. In Proceedings of the 2007 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Bangkok, Thailand, 16–19 January 2007; pp. 801–804. [Google Scholar] [CrossRef]
- Wang, R.; Xie, L.; Hameed, S.; Wang, C.; Ying, Y. Mechanisms and applications of carbon nanotubes in terahertz devices: A review. Carbon 2018, 132, 42–58. [Google Scholar] [CrossRef]
- Gao, W.; Komatsu, N.; Taylor, L.W.; Naik, G.V.; Yanagi, K.; Pasquali, M.; Kono, J. Macroscopically aligned carbon nanotubes for flexible and high-temperature electronics, optoelectronics, and thermoelectrics. J. Phys. D Appl. Phys. 2019, 53, 063001. [Google Scholar] [CrossRef]
- Gao, W.; Kono, J. Science and applications of wafer-scale crystalline carbon nanotube films prepared through controlled vacuum filtration. R. Soc. Open Sci. 2019, 6, 181605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisman, R.B.; Kono, J. Introduction to optical spectroscopy of single-wall carbon nanotubes. In World Scientific Series on Carbon Nanoscience; World Scientific: Singapore, 2019; Volume 10, pp. 1–43. [Google Scholar] [CrossRef]
- Zheng, Y.; Kim, Y.; Jones, A.C.; Olinger, G.; Bittner, E.R.; Bachilo, S.M.; Doorn, S.K.; Weisman, R.B.; Piryatinski, A.; Htoon, H. Quantum light emission from coupled defect states in DNA-functionalized carbon nanotubes. ACS Nano 2021, 15, 10406–10414. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hartmann, N.F.; Ma, X.; Kim, Y.; Ihly, R.; Blackburn, J.L.; Gao, W.; Kono, J.; Yomogida, Y.; Hirano, A.; et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics 2017, 11, 577–582. [Google Scholar] [CrossRef]
- Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M.M.; et al. Fully integrated quantum photonic circuit with an electrically driven light source. Nat. Photonics 2016, 10, 727–732. [Google Scholar] [CrossRef]
- Luo, Y.; He, X.; Kim, Y.; Blackburn, J.L.; Doorn, S.K.; Htoon, H.; Strauf, S. Carbon nanotube color centers in plasmonic nanocavities: A path to photon indistinguishability at telecom bands. Nano Lett. 2019, 19, 9037–9044. [Google Scholar] [CrossRef]
- He, X.; Htoon, H.; Doorn, S.K.; Pernice, W.H.P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 2018, 17, 663–670. [Google Scholar] [CrossRef]
- He, X.; Gao, W.; Xie, L.; Li, B.; Zhang, Q.; Lei, S.; Robinson, J.M.; Hároz, E.H.; Doorn, S.K.; Wang, W.; et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat. Nanotechnol. 2016, 11, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, N.; Nakamura, M.; Ghosh, S.; Kim, D.; Chen, H.; Katagiri, A.; Yomogida, Y.; Gao, W.; Yanagi, K.; Kono, J. Groove-assisted global spontaneous alignment of carbon nanotubes in vacuum filtration. Nano Lett. 2020, 20, 2332–2338. [Google Scholar] [CrossRef]
- Liu, L.; Han, J.; Xu, L.; Zhou, J.; Zhao, C.; Ding, S.; Shi, H.; Xiao, M.; Ding, L.; Ma, Z.; et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science 2020, 368, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Shen, J.; Zhao, Z.; Arellano, N.; Rettner, C.; Tang, J.; Cao, T.; Zhou, Z.; Ta, T.; Streit, J.K.; et al. Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science 2020, 368, 874–877. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Chen, Y.; Wang, K.; Zhang, Z.; Streit, J.K.; Fagan, J.A.; Tang, J.; Zheng, M.; Yang, C.; Zhu, Z.; et al. DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science 2020, 368, 878–881. [Google Scholar] [CrossRef]
- Rust, C.; Li, H.; Gordeev, G.; Spari, M.; Guttmann, M.; Jin, Q.; Reich, S.; Flavel, B.S. Global alignment of carbon nanotubes via high precision microfluidic dead-end filtration. Adv. Funct. Mater. 2021, 2107411. [Google Scholar] [CrossRef]
- Behabtu, N.; Young, C.C.; Tsentalovich, D.E.; Kleinerman, O.; Wang, X.; Ma, A.W.K.; Bengio, E.A.; ter Waarbeek, R.F.; de Jong, J.J.; Hoogerwerf, R.E.; et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.W.; Dewey, O.S.; Headrick, R.J.; Komatsu, N.; Peraca, N.M.; Wehmeyer, G.; Kono, J.; Pasquali, M. Improved properties, increased production, and the path to broad adoption of carbon nanotube fibers. Carbon 2021, 171, 689–694. [Google Scholar] [CrossRef]
- Ren, L.; Pint, C.L.; Booshehri, L.G.; Rice, W.D.; Wang, X.; Hilton, D.J.; Takeya, K.; Kawayama, I.; Tonouchi, M.; Hauge, R.H.; et al. Carbon nanotube terahertz polarizer. Nano Lett. 2009, 9, 2610–2613. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Pint, C.L.; Arikawa, T.; Takeya, K.; Kawayama, I.; Tonouchi, M.; Hauge, R.H.; Kono, J. Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks. Nano Lett. 2012, 12, 787–790. [Google Scholar] [CrossRef]
- Komatsu, N.; Gao, W.; Chen, P.; Guo, C.; Babakhani, A.; Kono, J. Modulation-doped multiple quantum wells of aligned single-wall carbon nanotubes. Adv. Func. Mater. 2017, 27, 1606022. [Google Scholar] [CrossRef] [Green Version]
- Baydin, A.; Komatsu, N.; Tay, F.; Ghosh, S.; Makihara, T.; Noe, G.T.; Kono, J. Giant terahertz polarization rotation in ultrathin films of aligned carbon nanotubes. Optica 2021, 8, 760. [Google Scholar] [CrossRef]
- Docherty, C.J.; Stranks, S.D.; Habisreutinger, S.N.; Joyce, H.J.; Herz, L.M.; Nicholas, R.J.; Johnston, M.B. An ultrafast carbon nanotube terahertz polarisation modulator. J. Appl. Phys. 2014, 115, 203108. [Google Scholar] [CrossRef] [Green Version]
- Moser, M.L.; Li, G.; Chen, M.; Bekyarova, E.; Itkis, M.E.; Haddon, R.C. Fast electrochromic device based on single-walled carbon nanotube thin films. Nano Lett. 2016, 16, 5386–5393. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, P.; Lapointe, F.; Desjardins, P.; Martel, R. Double-walled carbon nanotube film as the active electrode in an electro-optical modulator for the mid-infrared and terahertz regions. J. Appl. Phys. 2020, 128, 233103. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Y.; Lu, R.; Tan, F.; Fu, Y.; Wang, G.; Wang, D.; Liu, K.; Fan, S.; Jiang, K.; et al. A flexible, multifunctional, active terahertz modulator with an ultra-low triggering threshold. J. Mater. Chem. C 2020, 8, 10213–10220. [Google Scholar] [CrossRef]
- Gao, W.; Doiron, C.F.; Li, X.; Kono, J.; Naik, G.V. Macroscopically aligned carbon nanotubes as a refractory platform for hyperbolic thermal emitters. ACS Photonics 2019, 6, 1602–1609. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.A.; Yu, S.J.; Ho, P.H.; Schoeche, S.; Falk, A.L.; Fan, J.A. Tunable hyperbolic metamaterials based on self-assembled carbon nanotubes. Nano Lett. 2019, 19, 3131–3137. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.A.; Ho, P.H.; Yu, S.J.; Wu, X.; Luo, Y.; Wilson, W.L.; Falk, A.L.; Fan, J.A. Multiple tunable hyperbolic resonances in broadband infrared carbon-nanotube metamaterials. Phys. Rev. Appl. 2020, 14, 044006. [Google Scholar] [CrossRef]
- Schöche, S.; Ho, P.H.; Roberts, J.A.; Yu, S.J.; Fan, J.A.; Falk, A.L. Mid-IR and UV-Vis-NIR Mueller matrix ellipsometry characterization of tunable hyperbolic metamaterials based on self-assembled carbon nanotubes. J. Vac. Sci. Technol. B 2020, 38, 014015. [Google Scholar] [CrossRef]
- He, X.; Léonard, F.; Kono, J. Uncooled carbon nanotube photodetectors. Adv. Opt. Mater. 2015, 3, 989–1011. [Google Scholar] [CrossRef] [Green Version]
- Avery, A.D.; Zhou, B.H.; Lee, J.; Lee, E.S.; Miller, E.M.; Ihly, R.; Wesenberg, D.; Mistry, K.S.; Guillot, S.L.; Zink, B.L.; et al. Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties. Nat. Energy 2016, 1, 16033. [Google Scholar] [CrossRef]
- Blackburn, J.L.; Ferguson, A.J.; Cho, C.; Grunlan, J.C. Carbon-nanotube-based thermoelectric materials and devices. Adv. Mater. 2018, 30, 1704386. [Google Scholar] [CrossRef]
- He, X.; Wang, X.; Nanot, S.; Cong, K.; Jiang, Q.; Kane, A.A.; Goldsmith, J.E.; Hauge, R.H.; Léonard, F.; Kono, J. Photothermoelectric p–n junction photodetector with intrinsic broadband polarimetry based on macroscopic carbon nanotube films. ACS Nano 2013, 7, 7271–7277. [Google Scholar] [CrossRef]
- He, X.; Fujimura, N.; Lloyd, J.M.; Erickson, K.J.; Talin, A.A.; Zhang, Q.; Gao, W.; Jiang, Q.; Kawano, Y.; Hauge, R.H.; et al. Carbon nanotube terahertz detector. Nano Lett. 2014, 14, 3953–3958. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, J.; Wang, P.; Hu, Q.; Wang, Y.; Xie, Y.; Zhao, Z.; Dong, Z.; Zhu, J.L.; Chu, W.; et al. High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films. ACS Appl. Mater. Interfaces 2018, 10, 36304–36311. [Google Scholar] [CrossRef]
- Bena, C.; Vishveshwara, S.; Balents, L.; Fisher, M.P.A. Quantum entanglement in carbon nanotubes. Phys. Rev. Lett. 2002, 89, 037901. [Google Scholar] [CrossRef] [Green Version]
- Recher, P.; Loss, D. Superconductor coupled to two luttinger liquids as an entangler for electron spins. Phys. Rev. B 2002, 65, 165327. [Google Scholar] [CrossRef] [Green Version]
- Mergenthaler, M.; Nersisyan, A.; Patterson, A.; Esposito, M.; Baumgartner, A.; Schönenberger, C.; Briggs, G.A.D.; Laird, E.A.; Leek, P.J. Circuit quantum electrodynamics with carbon-nanotube-based superconducting quantum circuits. Phys. Rev. Appl. 2021, 15, 064050. [Google Scholar] [CrossRef]
- Cubaynes, T.; Contamin, L.C.; Dartiailh, M.C.; Desjardins, M.M.; Cottet, A.; Delbecq, M.R.; Kontos, T. Nanoassembly technique of carbon nanotubes for hybrid circuit-QED. Appl. Phys. Lett. 2020, 117, 114001. [Google Scholar] [CrossRef]
- Moghaddam, M.V.; Chang, C.W.S.; Nsanzineza, I.; Vadiraj, A.M.; Wilson, C.M. Carbon nanotube-based lossy transmission line filter for superconducting qubit measurements. Appl. Phys. Lett. 2019, 115, 213504. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Nanot, S.; Hároz, E.H.; Kim, J.H.; Hauge, R.H.; Kono, J. Optoelectronic properties of single-wall carbon nanotubes. Adv. Mater. 2012, 24, 4977–4994. [Google Scholar] [CrossRef]
- Nanot, S.; Thompson, N.A.; Kim, J.H.; Wang, X.; Rice, W.D.; Hároz, E.H.; Ganesan, Y.; Pint, C.L.; Kono, J. Single-walled carbon nanotubes. In Handbook of Nanomaterials; Vajtai, R., Ed.; Springer: Berlin, Germany, 2013; pp. 105–146. [Google Scholar] [CrossRef]
- Hároz, E.H.; Duque, J.G.; Tu, X.; Zheng, M.; Walker, A.R.H.; Hauge, R.H.; Doorn, S.K.; Kono, J. Fundamental optical processes in armchair carbon nanotubes. Nanoscale 2013, 5, 1411–1439. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.; Kleinman, D.; Tsang, W.; Gossard, A. Observation of the excited level of excitons in GaAs quantum wells. Phys. Rev. B 1981, 24, 1134. [Google Scholar] [CrossRef]
- Maultzsch, J.; Pomraenke, R.; Reich, S.; Chang, E.; Prezzi, D.; Ruini, A.; Molinari, E.; Strano, M.S.; Thomsen, C.; Lienau, C. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 2005, 72, 241402. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Dukovic, G.; Brus, L.E.; Heinz, T.F. The optical resonances in carbon nanotubes arise from excitons. Science 2005, 308, 838–841. [Google Scholar] [CrossRef] [Green Version]
- Ajiki, H.; Ando, T. Electronic states of carbon nanotubes. J. Phys. Soc. Jpn. 1993, 62, 1255–1266. [Google Scholar] [CrossRef]
- Ajiki, H.; Ando, T. Aharonov-Bohm effect in carbon nanotubes. Phys. B Condens. Matter 1994, 201, 349–352. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar] [CrossRef]
- Saito, R.; Kataura, H. Optical properties and raman spectroscopy of carbon nanotubes. In Carbon Nanotubes: Synthesis, Structure, Properties, and Applications; Dresselhaus, M.S., Dresselhaus, G., Avouris, P., Eds.; Springer: Berlin, Germany, 2001; pp. 216–250. [Google Scholar] [CrossRef]
- Katsutani, F.; Gao, W.; Li, X.; Ichinose, Y.; Yomogida, Y.; Yanagi, K.; Kono, J. Direct observation of cross-polarized excitons in aligned single-chirality single-wall carbon nanotubes. Phys. Rev. B 2019, 99, 035426. [Google Scholar] [CrossRef] [Green Version]
- Weisman, R.B.; Kono, J. (Eds.) Optical Properties of Carbon Nanotubes: A Volume Dedicated to the Memory of Professor Mildred Dresselhaus; World Scientific: Singapore, 2019. [Google Scholar] [CrossRef]
- Nakanishi, T.; Ando, T. Optical response of finite-length carbon nanotubes. J. Phys. Soc. Jpn. 2009, 78, 114708. [Google Scholar] [CrossRef]
- Zhang, Q.; Hároz, E.H.; Jin, Z.; Ren, L.; Wang, X.; Arvidson, R.S.; Lüttge, A.; Kono, J. Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes. Nano Lett. 2013, 13, 5991–5996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanagi, K.; Okada, R.; Ichinose, Y.; Yomogida, Y.; Katsutani, F.; Gao, W.; Kono, J. Intersubband plasmons in the quantum limit in gated and aligned carbon nanotubes. Nat. Commun. 2018, 9, 1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dresselhaus, M.S.; Eklund, P.C. Phonons in carbon nanotubes. Adv. Phys. 2000, 49, 705–814. [Google Scholar] [CrossRef]
- Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M.S. Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 2011, 60, 413–550. [Google Scholar] [CrossRef]
- Jorio, A.; Saito, R.; Hafner, J.H.; Lieber, C.M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M.S. Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering. Phys. Rev. Lett. 2001, 86, 1118–1121. [Google Scholar] [CrossRef]
- Dresselhaus, M.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Dresselhaus, M.; Jorio, A.; Saito, R. Characterizing graphene, graphite, and carbon nanotubes by raman spectroscopy. Annu. Rev. Condens. Matter Phys. 2010, 1, 89–108. [Google Scholar] [CrossRef]
- Sanders, G.D.; Nugraha, A.R.T.; Sato, K.; Kim, J.H.; Kono, J.; Saito, R.; Stanton, C.J. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons. J. Phys. Condens. Matter 2013, 25, 144201. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.S.; Yee, K.J.; Kim, J.H.; Hároz, E.H.; Shaver, J.; Kono, J.; Doorn, S.K.; Hauge, R.H.; Smalley, R.E. Coherent lattice vibrations in single-walled carbon nanotubes. Nano Lett. 2006, 6, 2696–2700. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Han, K.J.; Kim, N.J.; Yee, K.J.; Lim, Y.S.; Sanders, G.D.; Stanton, C.J.; Booshehri, L.G.; Hároz, E.H.; Kono, J. Chirality-selective excitation of coherent phonons in carbon nanotubes by femtosecond optical pulses. Phys. Rev. Lett. 2009, 102, 037402. [Google Scholar] [CrossRef] [Green Version]
- Sanders, G.D.; Stanton, C.J.; Kim, J.H.; Yee, K.J.; Lim, Y.S.; Hároz, E.H.; Booshehri, L.G.; Kono, J.; Saito, R. Resonant coherent phonon spectroscopy of single-walled carbon nanotubes. Phys. Rev. B 2009, 79, 205434. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Nugraha, A.; Booshehri, L.; Hároz, E.; Sato, K.; Sanders, G.; Yee, K.J.; Lim, Y.S.; Stanton, C.; Saito, R.; et al. Coherent phonons in carbon nanotubes and graphene. Chem. Phys. 2013, 413, 55–80. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.S.; Nugraha, A.R.T.; Cho, S.J.; Noh, M.Y.; Yoon, E.J.; Liu, H.; Kim, J.H.; Telg, H.; Hároz, E.H.; Sanders, G.D.; et al. Ultrafast generation of fundamental and multiple-order phonon excitations in highly enriched (6,5) single-wall carbon nanotubes. Nano Lett. 2014, 14, 1426–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygård, J.; Flensberg, K.; Kouwenhoven, L.P. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 2015, 87, 703–764. [Google Scholar] [CrossRef] [Green Version]
- Ishibashi, K.; Moriyama, S.; Fuse, T.; Kawano, Y.; Yamaguchi, T. Carbon nanotubes for building blocks of quantum computing devices. In Quantum Bio-Informatics III; World Scientific: Singapore; Tokyo University of Science: Tokyo, Japan, 2010; pp. 465–479. [Google Scholar] [CrossRef]
- Ishibashi, K.; Suzuki, M.; Ida, T.; Aoyagi, Y. Formation of Coupled Quantum Dots in Single-Wall Carbon Nanotubes. Appl. Phys. Lett. 2001, 79, 1864–1866. [Google Scholar] [CrossRef]
- Churchill, H.O.H.; Bestwick, A.J.; Harlow, J.W.; Kuemmeth, F.; Marcos, D.; Stwertka, C.H.; Watson, S.K.; Marcus, C.M. Electron–nuclear interaction in 13 C nanotube double quantum dots. Nat. Phys. 2009, 5, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Laird, E.A.; Pei, F.; Kouwenhoven, L.P. A valley–spin qubit in a carbon nanotube. Nat. Nanotechnol. 2013, 8, 565–568. [Google Scholar] [CrossRef] [Green Version]
- Viennot, J.J.; Dartiailh, M.C.; Cottet, A.; Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 2015, 349, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Penfold-Fitch, Z.V.; Sfigakis, F.; Buitelaar, M.R. Microwave spectroscopy of a carbon nanotube charge qubit. Phys. Rev. Appl. 2017, 7, 054017. [Google Scholar] [CrossRef] [Green Version]
- Khivrich, I.; Ilani, S. Atomic-like charge qubit in a carbon nanotube enabling electric and magnetic field nano-sensing. Nat. Commun. 2020, 11, 2299. [Google Scholar] [CrossRef]
- Sapmaz, S.; Meyer, C.; Beliczynski, P.; Jarillo-Herrero, P.; Kouwenhoven, L.P. Excited state spectroscopy in carbon nanotube double quantum dots. Nano Lett. 2006, 6, 1350–1355. [Google Scholar] [CrossRef] [Green Version]
- Nowack, K.C.; Koppens, F.H.L.; Nazarov, Y.V.; Vandersypen, L.M.K. Coherent control of a single electron spin with electric fields. Science 2007, 318, 1430–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, T.; Pályi, A.; Mergenthaler, M.; Ares, N.; Mavalankar, A.; Warner, J.H.; Briggs, G.A.D.; Laird, E.A. Hyperfine and spin-orbit coupling effects on decay of spin-valley states in a carbon nanotube. Phys. Rev. Lett. 2017, 118, 177701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cubaynes, T.; Delbecq, M.R.; Dartiailh, M.C.; Assouly, R.; Desjardins, M.M.; Contamin, L.C.; Bruhat, L.E.; Leghtas, Z.; Mallet, F.; Cottet, A.; et al. Highly coherent spin states in carbon nanotubes coupled to cavity photons. NPJ Quantum Inf. 2019, 5, 47. [Google Scholar] [CrossRef]
- Lohmann, S.H.; Trerayapiwat, K.J.; Niklas, J.; Poluektov, O.G.; Sharifzadeh, S.; Ma, X. Sp3-functionalization of single-walled carbon nanotubes creates localized spins. ACS Nano 2020, 14, 17675–17682. [Google Scholar] [CrossRef] [PubMed]
- Sazonova, V.; Yaish, Y.; Üstünel, H.; Roundy, D.; Arias, T.A.; McEuen, P.L. A tunable carbon nanotube electromechanical oscillator. Nature 2004, 431, 284–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hüttel, A.K.; Steele, G.A.; Witkamp, B.; Poot, M.; Kouwenhoven, L.P.; van der Zant, H.S.J. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 2009, 9, 2547–2552. [Google Scholar] [CrossRef] [Green Version]
- Moser, J.; Eichler, A.; Güttinger, J.; Dykman, M.I.; Bachtold, A. Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotechnol. 2014, 9, 1007–1011. [Google Scholar] [CrossRef] [Green Version]
- Chaste, J.; Sledzinska, M.; Zdrojek, M.; Moser, J.; Bachtold, A. High-frequency nanotube mechanical resonators. Appl. Phys. Lett. 2011, 99, 213502. [Google Scholar] [CrossRef] [Green Version]
- Laird, E.A.; Pei, F.; Tang, W.; Steele, G.A.; Kouwenhoven, L.P. A high quality factor carbon nanotube mechanical resonator at 39 GHz. Nano Lett. 2012, 12, 193–197. [Google Scholar] [CrossRef]
- Khivrich, I.; Ilani, S. Nanotubes resound better. Nat. Nanotechnol. 2014, 9, 963–964. [Google Scholar] [CrossRef]
- Rips, S.; Hartmann, M.J. Quantum information processing with nanomechanical qubits. Phys. Rev. Lett. 2013, 110, 120503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rips, S.; Wilson-Rae, I.; Hartmann, M.J. Nonlinear nanomechanical resonators for quantum optoelectromechanics. Phys. Rev. A 2014, 89, 013854. [Google Scholar] [CrossRef] [Green Version]
- Pistolesi, F.; Cleland, A.N.; Bachtold, A. Proposal for a nanomechanical qubit. Phys. Rev. X 2021, 11, 031027. [Google Scholar] [CrossRef]
- Pályi, A.; Struck, P.R.; Rudner, M.; Flensberg, K.; Burkard, G. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys. Rev. Lett. 2012, 108, 206811. [Google Scholar] [CrossRef] [Green Version]
- Sodisetti, V.R.; Ncube, S.; Coleman, C.; Erasmus, R.M.; Flahaut, E.; Bhattacharyya, S. Strong spin–phonon coupling in Gd-filled nanotubes. J. Appl. Phys. 2021, 130, 214301. [Google Scholar] [CrossRef]
- Ganzhorn, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nat. Nanotechnol. 2013, 8, 165–169. [Google Scholar] [CrossRef]
- Li, P.B.; Xiang, Z.L.; Rabl, P.; Nori, F. Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 2016, 117, 015502. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Da Silva, S.; Martínez, J.I.; Develioglu, A.; Nieto-Ortega, B.; de Juan-Fernández, L.; Ruiz-Gonzalez, L.; Picón, A.; Oberli, S.; Alonso, P.J.; Moonshiram, D.; et al. Magnetic, mechanically interlocked porphyrin–carbon nanotubes for quantum computation and spintronics. J. Am. Chem. Soc. 2021, 143, 21286–21293. [Google Scholar] [CrossRef]
- Casola, F.; van der Sar, T.; Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 2018, 3, 17088. [Google Scholar] [CrossRef]
- Toyli, D.M.; Christle, D.J.; Alkauskas, A.; Buckley, B.B.; Van de Walle, C.G.; Awschalom, D.D. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2012, 2, 031001. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.Q.; Feng, X.; Wang, N.; Li, Q.; Liu, R.B. Coherent quantum control of nitrogen-vacancy center spins near 1000 Kelvin. Nat. Commun. 2019, 10, 1344. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chen, X.D.; Guo, G.C.; Sun, F.W. Robust scalable architecture for a hybrid spin-mechanical quantum entanglement system. Phys. Rev. B 2019, 100, 214103. [Google Scholar] [CrossRef]
- Ma, Y.H.; Ding, Q.Z.; Wu, E. Entanglement of two nitrogen-vacancy ensembles via a nanotube. Phys. Rev. A 2020, 101, 022311. [Google Scholar] [CrossRef]
- Song, W.; Du, T.; Liu, H.; Betzholz, R.; Cai, J. Nanotube double quantum dot spin transducer for scalable quantum information processing. New J. Phys. 2020, 22, 063029. [Google Scholar] [CrossRef]
- Wang, B.L.; Li, B.; Li, X.X.; Li, F.L.; Li, P.B. Generation of multiparticle entangled states of nitrogen-vacancy centers with carbon nanotubes. Quantum Inf. Process 2020, 19, 223. [Google Scholar] [CrossRef]
- Ghosh, S.; Bachilo, S.M.; Simonette, R.A.; Beckingham, K.M.; Weisman, R.B. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 2010, 330, 1656–1659. [Google Scholar] [CrossRef]
- Zaumseil, J. Luminescent defects in single-walled carbon nanotubes for applications. Adv. Opt. Mater. 2021, 10, 2101576. [Google Scholar] [CrossRef]
- Högele, A.; Galland, C.; Winger, M.; Imamoğlu, A. Photon Antibunching in the Photoluminescence Spectra of a Single Carbon Nanotube. Phys. Rev. Lett. 2008, 100, 217401. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.S.; Glückert, J.T.; Noé, J.; Bourjau, C.; Dehmel, R.; Högele, A. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nat. Nanotechnol. 2013, 8, 502–505. [Google Scholar] [CrossRef] [Green Version]
- Endo, T.; Ishi-Hayase, J.; Maki, H. Photon antibunching in single-walled carbon nanotubes at telecommunication wavelengths and room temperature. Appl. Phys. Lett. 2015, 106, 113106. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Hartmann, N.F.; Baldwin, J.K.S.; Doorn, S.K.; Htoon, H. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotechnol. 2015, 10, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Bachilo, S.M.; Zheng, Y.; Tsedev, U.; Huang, S.; Weisman, R.B.; Belcher, A.M. Creating fluorescent quantum defects in carbon nanotubes using hypochlorite and light. Nat. Commun. 2019, 10, 2874. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Bachilo, S.M.; Weisman, R.B. Controlled patterning of carbon nanotube energy levels by covalent DNA functionalization. ACS Nano 2019, 13, 8222–8228. [Google Scholar] [CrossRef] [Green Version]
- Peraca, N.M.; Baydin, A.; Gao, W.; Bamba, M.; Kono, J. Chapter three-ultrastrong light-matter coupling in semiconductors. In Semiconductors and Semimetals; Cundiff, S.T., Kira, M., Eds.; Semiconductor Quantum Science and Technology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 105, pp. 89–151. [Google Scholar] [CrossRef]
- Legrand, D.; Roquelet, C.; Lanty, G.; Roussignol, P.; Lafosse, X.; Bouchoule, S.; Deleporte, E.; Voisin, C.; Lauret, J.S. Monolithic microcavity with carbon nanotubes as active material. Appl. Phys. Lett. 2013, 102, 153102. [Google Scholar] [CrossRef] [Green Version]
- Xia, F.; Steiner, M.; Lin, Y.m.; Avouris, P. A microcavity-controlled, current-driven, on-chip nanotube emitter at infrared wavelengths. Nat. Nanotechnol. 2008, 3, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Walden-Newman, W.; Sarpkaya, I.; Strauf, S. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett. 2012, 12, 1934–1941. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, M.; Tsuya, D.; Maki, H. Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices. Appl. Phys. Lett. 2013, 103, 143122. [Google Scholar] [CrossRef]
- Gaufrès, E.; Izard, N.; Le Roux, X.; Kazaoui, S.; Marris-Morini, D.; Cassan, E.; Vivien, L. Optical microcavity with semiconducting single-wall carbon nanotubes. Opt. Express 2010, 18, 5740–5745. [Google Scholar] [CrossRef]
- Watahiki, R.; Shimada, T.; Zhao, P.; Chiashi, S.; Iwamoto, S.; Arakawa, Y.; Maruyama, S.; Kato, Y.K. Enhancement of carbon nanotube photoluminescence by photonic crystal nanocavities. Appl. Phys. Lett. 2012, 101, 141124. [Google Scholar] [CrossRef] [Green Version]
- Sumikura, H.; Kuramochi, E.; Taniyama, H.; Notomi, M. Cavity-enhanced raman scattering of single-walled carbon nanotubes. Appl. Phys. Lett. 2013, 102, 231110. [Google Scholar] [CrossRef]
- Miura, R.; Imamura, S.; Ohta, R.; Ishii, A.; Liu, X.; Shimada, T.; Iwamoto, S.; Arakawa, Y.; Kato, Y. Ultralow mode-volume photonic crystal nanobeam cavities for high-efficiency coupling to individual carbon nanotube emitters. Nat. Commun. 2014, 5, 5580. [Google Scholar] [CrossRef] [Green Version]
- Imamura, S.; Watahiki, R.; Miura, R.; Shimada, T.; Kato, Y. Optical control of individual carbon nanotube light emitters by spectral double resonance in silicon microdisk resonators. Appl. Phys. Lett. 2013, 102, 161102. [Google Scholar] [CrossRef] [Green Version]
- Noury, A.; Le Roux, X.; Vivien, L.; Izard, N. Controlling carbon nanotube photoluminescence using silicon microring resonators. Nanotechnology 2014, 25, 215201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Ahmadi, E.D.; Shayan, K.; Ma, Y.; Mistry, K.S.; Zhang, C.; Hone, J.; Blackburn, J.L.; Strauf, S. Purcell-enhanced quantum yield from carbon nanotube excitons coupled to plasmonic nanocavities. Nat. Commun. 2017, 8, 1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeantet, A.; Chassagneux, Y.; Raynaud, C.; Roussignol, P.; Lauret, J.S.; Besga, B.; Estève, J.; Reichel, J.; Voisin, C. Widely tunable single-photon source from a carbon nanotube in the Purcell regime. Phys. Rev. Lett. 2016, 116, 247402. [Google Scholar] [CrossRef] [Green Version]
- Ishii, A.; He, X.; Hartmann, N.F.; Machiya, H.; Htoon, H.; Doorn, S.K.; Kato, Y.K. Enhanced single-photon emission from carbon-nanotube dopant states coupled to silicon microcavities. Nano Lett. 2018, 18, 3873–3878. [Google Scholar] [CrossRef]
- Russell, K.J.; Liu, T.L.; Cui, S.; Hu, E.L. Large spontaneous emission enhancement in plasmonic nanocavities. Nat. Photonics 2012, 6, 459–462. [Google Scholar] [CrossRef]
- Akselrod, G.M.; Argyropoulos, C.; Hoang, T.B.; Ciracì, C.; Fang, C.; Huang, J.; Smith, D.R.; Mikkelsen, M.H. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Shepard, G.D.; Ardelean, J.V.; Rhodes, D.A.; Kim, B.; Barmak, K.; Hone, J.C.; Strauf, S. Deterministic coupling of site-controlled quantum emitters in monolayer WSe 2 to plasmonic nanocavities. Nat. Nanotechnol. 2018, 13, 1137–1142. [Google Scholar] [CrossRef] [Green Version]
- Bogdanov, S.I.; Boltasseva, A.; Shalaev, V.M. Overcoming quantum decoherence with plasmonics. Science 2019, 364, 532–533. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J.; Li, H.B.; Bhola, R.; Jackson, E.A.; Scott, L.T.; Page, A.; Irle, S.; Morokuma, K.; Zhou, C. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. Nano Lett. 2015, 15, 586–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Zhang, S.; Zheng, Z.; Hu, W.; Zhang, J. Microwave-assisted regeneration of single-walled carbon nanotubes from carbon fragments. Small 2018, 14, 1800033. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Yuan, D.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429. [Google Scholar] [CrossRef]
- Wang, H.; Hsieh, B.; Jiménez-Osés, G.; Liu, P.; Tassone, C.J.; Diao, Y.; Lei, T.; Houk, K.N.; Bao, Z. Solvent effects on polymer sorting of carbon nanotubes with applications in printed electronics. Small 2015, 11, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Hersam, M.C. Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 2008, 3, 387–394. [Google Scholar] [CrossRef]
- Fagan, J.A.; Khripin, C.Y.; Silvera Batista, C.A.; Simpson, J.R.; Hároz, E.H.; Hight Walker, A.R.; Zheng, M. Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv. Mater. 2014, 26, 2800–2804. [Google Scholar] [CrossRef]
- Zorn, N.F.; Berger, F.J.; Zaumseil, J. Charge transport in and electroluminescence from sp3-functionalized carbon nanotube networks. ACS Nano 2021, 15, 10451–10463. [Google Scholar] [CrossRef]
- O’Brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef] [Green Version]
- Bock, M.; Lenhard, A.; Chunnilall, C.; Becher, C. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. Opt. Express 2016, 24, 23992. [Google Scholar] [CrossRef]
- Lee, K.F.; Tian, Y.; Yang, H.; Mustonen, K.; Martinez, A.; Dai, Q.; Kauppinen, E.I.; Malowicki, J.; Kumar, P.; Sun, Z. Photon-pair generation with a 100 nm thick carbon nanotube film. Adv. Mater. 2017, 29, 1605978. [Google Scholar] [CrossRef] [Green Version]
- Jenke, P.K.; Calafell, I.A.; Trenti, A.; Mustonen, K.; Rozema, L.A.; Walther, P. Photon pair generation in ultra-thin carbon nanotube films without phase-matching. In Proceedings of the 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 21–25 June 2021; p. 1. [Google Scholar] [CrossRef]
- Kasprzak, J.; Richard, M.; Kundermann, S.; Baas, A.; Jeambrun, P.; Keeling, J.M.J.; Marchetti, F.; Szymańska, M.; André, R.; Staehli, J.; et al. Bose–Einstein condensation of exciton polaritons. Nature 2006, 443, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, Á.; Carreño, J.C.L.; Silva, B.; De Giorgi, M.; Suárez-Forero, D.G.; Muñoz, C.S.; Fieramosca, A.; Cardano, F.; Marrucci, L.; Tasco, V.; et al. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton. Sci. Adv. 2018, 4, eaao6814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirchyan, S.; Chestnov, I.Y.; Alodjants, A.; Glazov, M.; Kavokin, A. Qubits based on polariton Rabi oscillators. Phys. Rev. Lett. 2014, 112, 196403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Liew, T.C. Quantum computing with exciton-polariton condensates. NPJ Quantum Inf. 2020, 6, 16. [Google Scholar] [CrossRef]
- Graf, A.; Held, M.; Zakharko, Y.; Tropf, L.; Gather, M.C.; Zaumseil, J. Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities. Nat. Mater. 2017, 16, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Zakharko, Y.; Graf, A.; Zaumseil, J. Plasmonic crystals for strong light–matter coupling in carbon nanotubes. Nano Lett. 2016, 16, 6504–6510. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Li, X.; Bamba, M.; Kono, J. Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton-polaritons. Nat. Photonics 2018, 12, 362–367. [Google Scholar] [CrossRef]
- Graf, A.; Tropf, L.; Zakharko, Y.; Zaumseil, J.; Gather, M.C. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities. Nat. Commun. 2016, 7, 13078. [Google Scholar] [CrossRef] [Green Version]
- Dicke, R.H. Coherence in spontaneous radiation processes. Phys. Rev. 1954, 93, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Tavis, M.; Cummings, F.W. Approximate solutions for an N-molecule-radiation-field Hamiltonian. Phys. Rev. 1969, 188, 692–695. [Google Scholar] [CrossRef]
- Cong, K.; Zhang, Q.; Wang, Y.; Noe, G.T.; Belyanin, A.; Kono, J. Dicke superradiance in solids. J. Opt. Soc. Am. B 2016, 33, C80–C101. [Google Scholar] [CrossRef]
- Zhang, Q.; Lou, M.; Li, X.; Reno, J.L.; Pan, W.; Watson, J.D.; Manfra, M.J.; Kono, J. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys. 2016, 12, 1005–1011. [Google Scholar] [CrossRef] [Green Version]
- Dierking, I.; Scalia, G.; Morales, P. Liquid crystal–carbon nanotube dispersions. J. Appl. Phys 2005, 97, 044309. [Google Scholar] [CrossRef]
- Cao, Q.; Han, S.j.; Tulevski, G.S.; Zhu, Y.; Lu, D.D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180–186. [Google Scholar] [CrossRef]
- Komatsu, N.; Ichinose, Y.; Dewey, O.S.; Taylor, L.W.; Trafford, M.A.; Yomogida, Y.; Wehmeyer, G.; Pasquali, M.; Yanagi, K.; Kono, J. Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor. Nat. Commun. 2021, 12, 4931. [Google Scholar] [CrossRef] [PubMed]
- Bulaev, D.V.; Trauzettel, B.; Loss, D. Spin-orbit interaction and anomalous spin relaxation in carbon nanotube quantum dots. Phys. Rev. B 2008, 77, 235301. [Google Scholar] [CrossRef] [Green Version]
- C12 Quantum Electronics. Available online: https://www.c12qe.com (accessed on 30 December 2021).
- Web of Science. Available online: https://www.webofknowledge.com (accessed on 30 December 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baydin, A.; Tay, F.; Fan, J.; Manjappa, M.; Gao, W.; Kono, J. Carbon Nanotube Devices for Quantum Technology. Materials 2022, 15, 1535. https://doi.org/10.3390/ma15041535
Baydin A, Tay F, Fan J, Manjappa M, Gao W, Kono J. Carbon Nanotube Devices for Quantum Technology. Materials. 2022; 15(4):1535. https://doi.org/10.3390/ma15041535
Chicago/Turabian StyleBaydin, Andrey, Fuyang Tay, Jichao Fan, Manukumara Manjappa, Weilu Gao, and Junichiro Kono. 2022. "Carbon Nanotube Devices for Quantum Technology" Materials 15, no. 4: 1535. https://doi.org/10.3390/ma15041535
APA StyleBaydin, A., Tay, F., Fan, J., Manjappa, M., Gao, W., & Kono, J. (2022). Carbon Nanotube Devices for Quantum Technology. Materials, 15(4), 1535. https://doi.org/10.3390/ma15041535