Pyrolysis of Methyl Ricinoleate: Distribution and Characteristics of Fast and Slow Pyrolysis Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Py-GC/MS Experiments
2.3. DFT Computational Details
3. Results and Discussion
3.1. Product Distribution of MR Pyrolysis at Different Heating Rates
3.2. Product Distribution of Fast MR Pyrolysis at Different Temperatures
3.3. DFT Studies on MR Pyrolysis
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Martis, R.; Al-Othman, A.; Tawalbeh, M.; Alkasrawi, M. Energy and economic analysis of date palm biomass feedstock for biofuel production in UAE: Pyrolysis, gasification and fermentation. Energies 2020, 13, 5877. [Google Scholar] [CrossRef]
- Atabani, A.E.; Ali, I.; Naqvi, S.R.; Badruddin, I.A.; Aslam, M.; Mahmoud, E.; Almomani, F.; Juchelková, D.; Atelge, M.R.; Khan, T.M.Y. A state-of-the-art review on spent coffee ground (SCG) pyrolysis for future biorefinery. Chemosphere 2022, 286, 131730. [Google Scholar] [CrossRef] [PubMed]
- Tawalbeh, M.; Al-Othman, A.; Salamah, T.; Alkasrawi, M.; Martis, R.; El-Rub, Z.A. A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials. J. Environ. Manag. 2021, 299, 113597. [Google Scholar] [CrossRef] [PubMed]
- Azad, A.K.; Rasul, M.G.; Khan, M.M.K.; Sharma, S.C.; Mofijur, M.; Bhuiya, M.M.K. Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia. Renew. Sustain. Energy Rev. 2016, 61, 302–318. [Google Scholar] [CrossRef]
- Ogunniyi, D.S. Castor oil: A vital industrial raw material. Bioresour. Technol. 2006, 97, 1086–1091. [Google Scholar] [CrossRef] [PubMed]
- Van, d.S.M.; Stevens, C.V. Undecylenic acid: A valuable and physiologically active renewable building block from castor oil. Chemsuschem 2010, 2, 692–713. [Google Scholar] [CrossRef]
- Bigot, S.; Daghrir, M.; Mhanna, A.; Boni, G.; Pourchet, S.; Lecamp, L.; Plasseraud, L. Undecylenic acid: A tunable bio-based synthon for materials applications. Eur. Polym. J. 2016, 74, 26–37. [Google Scholar] [CrossRef]
- Di Lorenzo, M.L.; Longo, A.; Androsch, R. Polyamide 11/poly(butylene succinate) bio-based polymer blends. Materials 2019, 12, 2833. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.-B.; Park, K.-W.; Kim, Y.-M.; Hong, J.-S.; Kim, W.-H.; Hur, B.-K.; Yang, J.-W. Optimization of production temperatures of heptaldehyde and methyl undecenoate from methyl ricinoleate by pyrolysis process. J. Ind. Eng. Chem. 2000, 6, 238–241. [Google Scholar]
- Guobin, H.; Zuyu, L.; Suling, Y.; Rufeng, Y. Study of reaction and kinetics in pyrolysis of methyl ricinoleate. J. Am. Oil Chem. Soc. 1996, 73, 1109–1112. [Google Scholar] [CrossRef]
- Mao, X.; Xie, Q.; Yi, X.; Duan, Y.; Yu, S.; Wu, Z.; Liang, X.; Nie, Y. Fast pyrolysis of methyl ricinoleate in an inductively heated reactor coupled with atomization feeding. Appl. Therm. Eng. 2021, 194, 117093. [Google Scholar] [CrossRef]
- Nie, Y.; Duan, Y.; Gong, R.; Yu, S.; Lu, M.; Yu, F.; Ji, J. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME). Bioresour. Technol. 2015, 186, 334–337. [Google Scholar] [CrossRef]
- Yu, S.; Duan, Y.; Mao, X.; Xie, Q.; Zeng, G.; Lu, M.; Nie, Y.; Ji, J. Pyrolysis of methyl ricinoleate by microwave-assisted heating coupled with atomization feeding. J. Anal. Appl. Pyrolysis 2018, 135, 176–183. [Google Scholar] [CrossRef]
- He, T.; Tong, C.; Chen, L.; Zhou, Y.; Jin, B.; Zhang, B. Pyrolytic kinetics, products and reaction mechanisms of invasive plant and high-density polyethylene: TG, Py-GC/MS and DFT analysis. Fuel 2021, 303, 121231. [Google Scholar] [CrossRef]
- Lu, Q.; Tian, H.Y.; Hu, B.; Jiang, X.Y.; Dong, C.Q.; Yang, Y.P. Pyrolysis mechanism of holocellulose-based monosaccharides: The formation of hydroxyacetaldehyde. J. Anal. Appl. Pyrolysis 2016, 120, 15–26. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, Q.; Hu, B.; Liu, J.; Dong, C.; Yang, Y. Intermolecular interaction mechanism of lignin pyrolysis: A joint theoretical and experimental study. Fuel 2018, 215, 386–394. [Google Scholar] [CrossRef]
- Kumar Mishra, R. Pyrolysis of low-value waste switchgrass: Physicochemical characterization, kinetic investigation, and online characterization of hot pyrolysis vapours. Bioresour. Technol. 2022, 347, 126720. [Google Scholar] [CrossRef]
- Wang, S.; Guo, X.; Liang, T.; Zhou, Y.; Luo, Z. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies. Bioresour. Technol. 2012, 104, 722–728. [Google Scholar] [CrossRef]
- Adnan, M.; Ur Rahman, T.; Bahadur, A.; Aurang Zeb, M.; Liaqat, W.; Akitsu, T.; Abdel-Hafez, S.H.; El-Sayed, W.A. The effect of AlI3 nanoadditive on the thermal behavior of PMMA subjected to thermoanalytical Py-GC-MS technique. Materials 2021, 14, 7036. [Google Scholar] [CrossRef]
- Menshhein, G.; Costa, V.; Chiarello, L.M.; Scharf, D.R.; Simionato, E.L.; Botton, V.; Meier, H.F.; Wiggers, V.R.; Ender, L. Concentration of renewable products of crude bio-oil from thermal cracking of the methyl esters in castor oil. Renew. Energy 2019, 142, 561–568. [Google Scholar] [CrossRef]
- Safdari, M.S.; Amini, E.; Weise, D.R.; Fletcher, T.H. Heating rate and temperature effects on pyrolysis products from live wildland fuels. Fuel 2019, 242, 295–304. [Google Scholar] [CrossRef]
- Botton, V.; Torres De Souza, R.; Wiggers, V.R.; Scharf, D.R.; Simionatto, E.L.; Ender, L.; Meier, H.F. Thermal cracking of methyl esters in castor oil and production of heptaldehyde and methyl undecenoate. J. Anal. Appl. Pyrolysis 2016, 121, 387–393. [Google Scholar] [CrossRef]
- Bai, X.; Kim, K.H.; Brown, R.C.; Dalluge, E.; Hutchinson, C.; Lee, Y.J.; Dalluge, D. Formation of phenolic oligomers during fast pyrolysis of lignin. Fuel 2014, 128, 170–179. [Google Scholar] [CrossRef]
Compound | Formula | Area Percentage/% | ||
---|---|---|---|---|
5 °C/min | 20 °C/min | Fast Pyrolysis | ||
2-Ethyl-1-butanol | C6H14O | 1.29 | 1.44 | — |
HEP | C7H14O | — | 2.63 | 16.12 |
1-Heptanoic acid | C7H14O2 | 1.72 | 3.35 | — |
2-Octanone | C8H16O | — | 0.64 | — |
(2S)-2-Octanol | C8H18O | — | 0.54 | — |
6-Heptenoic acid methyl ester | C8H14O2 | 0.24 | 0.36 | 1.7 |
2-Nonenal, (2E)- | C9H16O | 0.38 | 1.01 | — |
2-Octenoic acid, methyl ester, (2E)- | C9H16O2 | 0.23 | 0.37 | 0.99 |
Caprylic acid methyl ester | C9H18O2 | 0.66 | 1.16 | — |
Monomethyl suberate | C9H16O4 | 0.45 | 0.94 | — |
4-Decanone | C10H20O | — | 0.37 | — |
Methyl 3-cyclohexylpropanoate | C10H18O2 | 0.76 | 1.18 | — |
Methyl 9-oxononanoate | C10H18O3 | 2.03 | 3.03 | 1.39 |
Undecynol | C11H20O | 0.19 | 0.68 | — |
Dimethyl azelate | C11H20O4 | 0.69 | 0.86 | — |
Decanoic acid methyl ester | C11H22O2 | — | 1.23 | — |
UAME | C12H22O2 | 0.54 | 0.91 | 42.21 |
1-Heptadecene | C17H34 | 0.63 | — | — |
9-Hexadecenoic acid, methyl ester, (9Z)- | C17H32O2 | 0.96 | 0.97 | — |
Methyl 8-(2-hexylcyclopropyl) octanoate | C18H34O2 | 5.14 | 5.03 | — |
9,12-Octadecadienoic acid, methyl ester, (9Z,12Z)- | C19H34O2 | 3.30 | 0.90 | — |
9,15-Octadecadienoic acid, methyl ester, (9E,15E)- | C19H34O2 | 0.47 | 0.85 | 9.86 |
6-Octadecenoic acid, methyl ester, (6Z)- | C19H36O2 | 1.07 | 1.47 | — |
6-Octadecenoic acid, methyl ester, (6E)- | C19H36O2 | 0.83 | 1.34 | — |
11-Octadecenoic acid, methyl ester, (11Z)- | C19H36O2 | 6.37 | 4.50 | 2.67 |
11-Octadecenoic acid, methyl ester, (11E)- | C19H36O2 | 3.40 | 2.31 | — |
9-Octadecenoic acid, methyl ester, (9Z)- | C19H36O2 | 0.28 | 0.31 | — |
9-Octadecenoic acid, methyl ester, (9E)- | C19H36O2 | 1.12 | 2.04 | — |
MR | C19H36O3 | 56.95 | 42.30 | 20.23 |
Compound | Formula | Area Percentage/% | ||
---|---|---|---|---|
400 °C | 500 °C | 600 °C | ||
Ethanol | C2H6O | — | — | 3.43 |
1,3-Butadiene | C4H6 | — | — | 8.24 |
2-Propenoic acid methyl ester | C4H6O2 | — | — | 4.75 |
2-Pentene (Z)- | C5H10 | — | — | 4.76 |
1-Hexene | C6H12 | — | — | 4.14 |
4-Pentenoic acid methyl ester | C6H10O2 | — | — | 1.10 |
Benzene | C6H6 | — | — | 4.44 |
1,3-Cyclohexadiene | C6H8 | — | — | 2.03 |
Toluene | C7H8 | — | — | 2.59 |
HEP | C7H14O | 2.25 | 8.83 | 9.50 |
5-Hexenoic acid methyl ester | C7H12O2 | — | — | 1.81 |
1-Octene | C8H16 | — | — | 1.36 |
6-Heptenoic acid methyl ester | C8H14O2 | — | 0.58 | 3.34 |
4-Octenoic acid methyl ester (Z)- | C9H16O2 | — | — | 2.66 |
Methyl 9-oxononanoate | C10H18O3 | — | 1.45 | — |
UAME | C12H22O2 | 0.61 | 19.39 | 41.37 |
9,12-Octadecadienoic acid, methyl ester, (9E,12E)- | C19H34O2 | — | 2.36 | — |
9,11-Octadecadienoic acid, methyl ester, (9Z,11Z)- | C19H34O2 | — | 2.47 | — |
9,12-Octadecadienoic acid, methyl ester, (9Z,12Z)- | C19H34O2 | — | 1.43 | — |
6-Octadecenoic acid, methyl ester, (6Z)- | C19H36O2 | — | 2.66 | — |
9-Octadecenoic acid, methyl ester, (9E)- | C19H36O2 | — | 0.64 | — |
MR | C19H36O3 | 86.40 | 54.45 | — |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.; Xie, Q.; Duan, Y.; Yu, S.; Nie, Y. Pyrolysis of Methyl Ricinoleate: Distribution and Characteristics of Fast and Slow Pyrolysis Products. Materials 2022, 15, 1565. https://doi.org/10.3390/ma15041565
Mao X, Xie Q, Duan Y, Yu S, Nie Y. Pyrolysis of Methyl Ricinoleate: Distribution and Characteristics of Fast and Slow Pyrolysis Products. Materials. 2022; 15(4):1565. https://doi.org/10.3390/ma15041565
Chicago/Turabian StyleMao, Xiaoning, Qinglong Xie, Ying Duan, Shangzhi Yu, and Yong Nie. 2022. "Pyrolysis of Methyl Ricinoleate: Distribution and Characteristics of Fast and Slow Pyrolysis Products" Materials 15, no. 4: 1565. https://doi.org/10.3390/ma15041565
APA StyleMao, X., Xie, Q., Duan, Y., Yu, S., & Nie, Y. (2022). Pyrolysis of Methyl Ricinoleate: Distribution and Characteristics of Fast and Slow Pyrolysis Products. Materials, 15(4), 1565. https://doi.org/10.3390/ma15041565