Synthesis and Characterization of Imidazolium-Based Ionic Liquids and Evaluating Their Performance as Asphaltene Dispersants
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methodology
2.3. Characterization of the Prepared ILs
2.4. Asphaltene Extraction Method
2.5. Determining the Onset of Asphaltene Precipitation Using the Viscometric Method
2.6. Determining the Onset of Asphaltene Precipitation Using the UV Spectroscopic Method
3. Results and Discussion
3.1. Description of the Synthesized Ionic Liquids
3.2. Elemental Analysis
3.3. FT-IR Spectra
3.4. 1H NMR Spectra
3.5. Thermal Gravimetric Analysis of the Prepared ILs
3.6. Quantum Studies
3.7. Surface Tension Measurements of the Prepared ILs
3.7.1. The Efficiency of PC20
3.7.2. Maximum Surface Excess Concentration (Γmax)
3.7.3. Minimum Surface Area (Amin)
3.7.4. Standard Free Energy of Micellization (ΔGomic) and Standard Free Energy of Adsorption (∆Goads)
3.7.5. Interfacial Tension
3.8. Evaluation of the Prepared ILs as Asphaltene Dispersants
3.8.1. Viscometric Method
3.8.2. UV-Vis Spectroscopic Method
4. Conclusions
- Four new ionic liquids were synthesized via the reaction of alkyl imidazoles with dodecylbenzene sulfonic acid. They were characterized well by FT-IR, 1H-NMR, and Elemental Analysis.
- The synthesized ILs showed good physico-chemical characteristics, including surface activity and thermal stability.
- The evaluation of ILs as asphaltene dispersants was assessed by spectroscopic and viscometric techniques. The experimental studies indicate that IL-10 and IL-16 are the most effective dispersants, relating to the long alkyl chain and the surface activity.
- Additionally, quantum chemical studies using Density Functional Theory (DFT) were studied to investigate the geometry optimization of electronic structures, energy gap (ΔE), reactivity, hardness, and softness. Increasing the alkyl chain length in the dispersant molecule increased the asphaltene aggregation. Therefore, IL-16 and IL-10 are the preferred asphaltene dispersants, over IL-4 and IL-0.
- All of the previous results (experimental and computational) confirmed the excellent dispersion efficiency of the synthesized ILs (IL-16 and IL-10 more than IL-4 and IL-0).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desouky, S.; Betiha, M.; Badawi, A.; Ghanem, A.; Khalil, S. Catalytic aquathermolysis of Egyptian heavy crude oil. Int. J. Chem. Mol. Eng. 2013, 7, 638–643. [Google Scholar]
- El-hoshoudy, A.; Ghanem, A.; Desouky, S. Imidazolium-based ionic liquids for asphaltene dispersion; experimental and computational studies. J. Mol. Liq. 2021, 324, 114698. [Google Scholar] [CrossRef]
- Durand, E.; Clemancey, M.; Lancelin, J.-M.; Verstraete, J.; Espinat, D.; Quoineaud, A.-A. Effect of chemical composition on asphaltenes aggregation. Energy Fuels 2010, 24, 1051–1062. [Google Scholar] [CrossRef]
- Hirschberg, A.; deJong, L.N.; Schipper, B.; Meijer, J. Influence of temperature and pressure on asphaltene flocculation. Soc. Pet. Eng. J. 1984, 24, 283–293. [Google Scholar] [CrossRef]
- Hoepfner, M.P.; Limsakoune, V.; Chuenmeechao, V.; Maqbool, T.; Fogler, H.S. A fundamental study of asphaltene deposition. Energy Fuels 2013, 27, 725–735. [Google Scholar] [CrossRef]
- Mehranfar, M.; Gaikwad, R.; Das, S.; Mitra, S.K.; Thundat, T. Effect of temperature on morphologies of evaporation-triggered asphaltene nanoaggregates. Langmuir 2014, 30, 800–804. [Google Scholar] [CrossRef]
- Mullins, O.C.; Sheu, E.Y.; Hammami, A.; Marshall, A.G. Asphaltenes, Heavy Oils, and Petroleomics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Speight, J. Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum. Oil Gas Sci. Technol. 2004, 59, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Speight, J. The Chemistry and Technology of Crude Oil, 5th ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Vargas, F.M.; Garcia-Bermudes, M.; Boggara, M.; Punnapala, S.; Abutaqiya, M.; Mathew, N.; Prasad, S.; Khaleel, A.; Al Rashed, M.; Al Asafen, H. On the development of an enhanced method to predict asphaltene precipitation. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 5–8 May 2014. [Google Scholar]
- Buenrostro-Gonzalez, E.; Lira-Galeana, C.; Gil-Villegas, A.; Wu, J. Asphaltene precipitation in crude oils: Theory and experiments. AIChE J. 2004, 50, 2552–2570. [Google Scholar] [CrossRef]
- Mahmoudi, B.; Zare-Reisabadi, M.R. Experimental study of temperature effect on onset pressure of asphaltene in live oil. Pet. Coal 2015, 57, 346–352. [Google Scholar]
- Aquino-Olivos, A.; Buenrostro-Gonzalez, E.; Andersen, S.I.; Lira-Galeana, C. Investigations of inhibition of asphaltene precipitation at high pressure using bottomhole samples. Energy Fuels 2001, 15, 236–240. [Google Scholar] [CrossRef]
- Arciniegas, L.M.; Babadagli, T. Asphaltene precipitation, flocculation and deposition during solvent injection at elevated temperatures for heavy oil recovery. Fuel 2014, 124, 202–211. [Google Scholar] [CrossRef]
- Maqbool, T.; Srikiratiwong, P.; Fogler, H.S. Effect of temperature on the precipitation kinetics of asphaltenes. Energy Fuels 2011, 25, 694–700. [Google Scholar] [CrossRef]
- Dehghani, S.M.; Sefti, M.V.; Mansoori, G. Simulation of natural depletion and miscible gas injection effects on asphaltene stability in petroleum reservoir fluids. Pet. Sci. Technol. 2007, 25, 1435–1446. [Google Scholar] [CrossRef]
- Esmaeili, S.; Maaref, S. Applying the Patel-Teja EoS with regular solution theory to predict the onset of asphaltene precipitation. Fluid Phase Equilibria 2018, 473, 112–126. [Google Scholar] [CrossRef]
- Sanati, A.; Malayeri, M.; Busse, O.; Weigand, J. Inhibition of asphaltene precipitation using hydrophobic deep eutectic solvents and ionic liquid. J. Mol. Liq. 2021, 334, 116100. [Google Scholar] [CrossRef]
- El-Nagar, R.; Nessim, M.; El-Wahab, A.A.; Ibrahim, R.; Faramawy, S. Investigating the efficiency of newly prepared imidazolium ionic liquids for carbon dioxide removal from natural gas. J. Mol. Liq. 2017, 237, 484–489. [Google Scholar] [CrossRef]
- Nategh, M.; Mahdiyar, H.; Malayeri, M.R.; Binazadeh, M. Impact of Asphaltene Surface Energy on Stability of Asphaltene–Toluene System: A Parametric Study. Langmuir 2018, 34, 13845–13854. [Google Scholar] [CrossRef]
- Zheng, C.; Brunner, M.; Li, H.; Zhang, D.; Atkin, R. Dissolution and suspension of asphaltenes with ionic liquids. Fuel 2019, 238, 129–138. [Google Scholar] [CrossRef]
- Creek, J.L. Freedom of action in the state of asphaltenes: Escape from conventional wisdom. Energy Fuels 2005, 19, 1212–1224. [Google Scholar] [CrossRef]
- Ashoori, S.; Sharifi, M.; Masoumi, M.; Salehi, M.M. The relationship between SARA fractions and crude oil stability. Egypt. J. Pet. 2017, 26, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Alrashidi, H.; Afra, S.; Nasr-El-Din, H.A. Application of natural fatty acids as asphaltenes solvents with inhibition and dispersion effects: A mechanistic study. J. Pet. Sci. Eng. 2019, 172, 724–730. [Google Scholar] [CrossRef]
- Doryani, H.; Malayeri, M.; Riazi, M. Precipitation and deposition of asphaltene in porous media: Impact of various connate water types. J. Mol. Liq. 2018, 258, 124–132. [Google Scholar] [CrossRef]
- Ghadimi, M.; Amani, M.J.; Ghaedi, M.; Malayeri, M.R. Modeling of formation damage due to asphaltene deposition in near wellbore region using a cylindrical compositional simulator. J. Pet. Sci. Eng. 2019, 173, 630–639. [Google Scholar] [CrossRef]
- Ghanem, A.; Mandor, M.A.; El-Nagar, R.; Eid, K. Atomic and Molecular Functionalization of Graphitic Carbon Nitride for Solar Cell Applications. In Carbon Nitride Nanostructures for Sustainable Energy Production and Environmental Remediation; The Royal Society of Chemistry: London, UK, 2021; pp. 221–261. [Google Scholar]
- El-Nagar, R.A.; Ghanem, A.A. Syngas production, properties, and its importance. In Sustainable Alternative Syngas Fuel; IntechOpen: London, UK, 2019; Volume 2, pp. 1–8. [Google Scholar]
- Boukherissa, M.; Mutelet, F.; Modarressi, A.; Dicko, A.; Dafri, D.; Rogalski, M. Ionic liquids as dispersants of petroleum asphaltenes. Energy Fuels 2009, 23, 2557–2564. [Google Scholar] [CrossRef]
- Martins, R.G.; Martins, L.S.; Santos, R.G. Effects of short-chain n-alcohols on the properties of asphaltenes at toluene/air and toluene/water interfaces. Colloids Interfaces 2018, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Mardani, E.; Mokhtari, B.; Soulgani, B.S. Comparison of the inhibitory capacity of vegetable oils, and their nonionic surfactants on Iran crude oil asphaltene precipitation using Quartz crystal microbalance. Pet. Sci. Technol. 2018, 36, 744–749. [Google Scholar] [CrossRef]
- Junior, L.C.R.; Ferreira, M.S.; da Silva Ramos, A.C. Inhibition of asphaltene precipitation in Brazilian crude oils using new oil soluble amphiphiles. J. Pet. Sci. Eng. 2006, 51, 26–36. [Google Scholar] [CrossRef]
- Curren, M.; Kaiser, A.; Adkins, S.; Qubian, A.; Al-Enezi, H.; Sana, H.; Al-Murayri, M.; Delshad, M. Effects of CEOR Chemicals on Asphaltene Precipitation. In Proceedings of the SPE Annual Technical Conference and Exhibition, Dallas, TX, USA, 24–26 September 2018. [Google Scholar]
- Enayat, S.; Babu, N.R.; Kuang, J.; Rezaee, S.; Lu, H.; Tavakkoli, M.; Wang, J.; Vargas, F.M. On the development of experimental methods to determine the rates of asphaltene precipitation, aggregation, and deposition. Fuel 2020, 260, 116250. [Google Scholar] [CrossRef]
- Ghloum, E.F.; Rashed, A.M.; Safa, M.A.; Sablit, R.C.; Al-Jouhar, S.M. Mitigation of asphaltenes precipitation phenomenon via chemical inhibitors. J. Pet. Sci. Eng. 2019, 175, 495–507. [Google Scholar] [CrossRef]
- Fotland, P.; Anfindsen, H.; Fadnes, F.H. Detection of asphaltene precipitation and amounts precipitated by measurement of electrical conductivity. Fluid Phase Equilibria 1993, 82, 157–164. [Google Scholar] [CrossRef]
- Ismail, M.; Yang, Y.; Chaisoontornyotin, W.; Ovalles, C.; Rogel, E.; Moir, M.E.; Hoepfner, M.P. Effect of chemical inhibitors on asphaltene precipitation and morphology using ultra-small-angle X-ray scattering. Energy Fuels 2018, 33, 3681–3693. [Google Scholar] [CrossRef]
- Goual, L.; Sedghi, M.; Wang, X.; Zhu, Z. Asphaltene aggregation and impact of alkylphenols. Langmuir 2014, 30, 5394–5403. [Google Scholar] [CrossRef] [PubMed]
- Mousavi-Dehghani, S.; Riazi, M.; Vafaie-Sefti, M.; Mansoori, G. An analysis of methods for determination of onsets of asphaltene phase separations. J. Pet. Sci. Eng. 2004, 42, 145–156. [Google Scholar] [CrossRef]
- Keshavarz, B.; Saeedi Dehaghani, A.H.; Mousavi Dehghani, S.A. Investigation the impact of additives on the displacement of the onset point of asphaltene precipitation using interfacial tension measurement. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1360–1371. [Google Scholar] [CrossRef]
- Buckley, J.S. Asphaltene deposition. Energy Fuels 2012, 26, 4086–4090. [Google Scholar] [CrossRef]
- Barcenas, M.; Orea, P.; Buenrostro-González, E.; Zamudio-Rivera, L.S.; Duda, Y. Study of medium effect on asphaltene agglomeration inhibitor efficiency. Energy Fuels 2008, 22, 1917–1922. [Google Scholar] [CrossRef] [Green Version]
- El-Nagar, R.A.; Ghanem, A.A.; Nessim, M.I. Capture of CO2 from Natural Gas Using Ionic Liquids. In Shale Gas—New Aspects and Technologies; IntechOpen: London, UK, 2018; Volume 2, pp. 83–99. [Google Scholar]
- Atef, Y.; Ghanem, A. Ionic Liquids based on Different Chain Fatty Acids as Green Corrosion Inhibitors for C-steel in Produced Oilfield Water. IOP Conf. Ser. Mater. Sci. Eng. 2020, 975, 012014. [Google Scholar] [CrossRef]
- Nessim, M.I.; Abdallah, R.I.; Elsayed, G.E.; El-Nagar, R.A. Effect of Ionic Liquids in CO2 Capture from Natural Gas. Life Sci. J. 2013, 10, 1716–1723. [Google Scholar]
- El-Nagar, R.; Attia, S.; Rizk, S.; Osman, D.; Abdallah, R. Rheological and Physical Properties of Ionic Liquids with Ammonium Cations as Synthetic Lubricants. Egypt. J. Chem. 2018, 61, 349–360. [Google Scholar] [CrossRef]
- Sakthivel, S.; Velusamy, S.; Gardas, R.L.; Sangwai, J.S. Experimental investigation on the effect of aliphatic ionic liquids on the solubility of heavy crude oil using UV–visible, Fourier transform-infrared, and 13C NMR spectroscopy. Energy Fuels 2014, 28, 6151–6162. [Google Scholar] [CrossRef]
- Hu, Y.-F.; Guo, T.-M. Effect of the structures of ionic liquids and alkylbenzene-derived amphiphiles on the inhibition of asphaltene precipitation from CO2-injected reservoir oils. Langmuir 2005, 21, 8168–8174. [Google Scholar] [CrossRef]
- Fan, Z.-X.; Wang, T.-F.; HE, Y.-H. Upgrading and viscosity reducing of heavy oils by [BMIM][AlCl4] ionic liquid. J. Fuel Chem. Technol. 2009, 37, 690–693. [Google Scholar] [CrossRef]
- Bowers, J.; Vergara-Gutierrez, M.C.; Webster, J.R. Surface ordering of amphiphilic ionic liquids. Langmuir 2004, 20, 309–312. [Google Scholar] [CrossRef] [PubMed]
- Nandwani, S.K.; Malek, N.I.; Lad, V.; Chakraborty, M.; Gupta, S. Study on interfacial properties of Imidazolium ionic liquids as surfactant and their application in enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 383–393. [Google Scholar] [CrossRef]
- Pillai, P.; Kumar, A.; Mandal, A. Mechanistic studies of enhanced oil recovery by imidazolium-based ionic liquids as novel surfactants. J. Ind. Eng. Chem. 2018, 63, 262–274. [Google Scholar] [CrossRef]
- El-Nagar, R.; Nessim, M.; Khalil, M.; Shaban, M.; Alharthy, R.D.; Ismail, D.; Abdallah, R.; Moustafa, Y. Application of asymmetric dicationic ionic liquids for oil spill remediation in sea water. Arab. J. Chem. 2021, 14, 103123. [Google Scholar]
- Adenaya, A.; Haack, M.; Stolle, C.; Wurl, O.; Ribas-Ribas, M. Effects of Natural and Artificial Surfactants on Diffusive Boundary Dynamics and Oxygen Exchanges across the Air–Water Interface. Oceans 2021, 2, 752–771. [Google Scholar] [CrossRef]
- Tazikeh, S.; Amin, J.S.; Zendehboudi, S. Experimental study of asphaltene precipitation and metastable zone in the presence of polythiophene-coated Fe3O4 nanoparticles. J. Mol. Liq. 2020, 301, 112254. [Google Scholar] [CrossRef]
- Brycki, B.; Małecka, I.; Koziróg, A.; Otlewska, A. Synthesis, structure and antimicrobial properties of novel benzalkonium chloride analogues with pyridine rings. Molecules 2017, 22, 130. [Google Scholar] [CrossRef]
- Yu, J.; Wheelhouse, R.T.; Honey, M.A.; Karodia, N. Synthesis and characterisation of novel nopyl-derived phosphonium ionic liquids. J. Mol. Liq. 2020, 316, 113857. [Google Scholar] [CrossRef]
- Monteiro, B.; Maria, L.; Cruz, A.; Carretas, J.M.; Marçalo, J.; Leal, J.P. Thermal stability and specific heats of coordinating ionic liquids. Thermochim. Acta 2020, 684, 178482. [Google Scholar] [CrossRef]
- Deyab, M.; Moustafa, Y.; Nessim, M.; Fatthallah, N.A.; Bagato, N.M.A. New series of ionic liquids based on benzalkonium chloride derivatives: Synthesis, characterizations, and applications. J. Mol. Liq. 2020, 313, 113566. [Google Scholar] [CrossRef]
- Hijji, Y.; Rajan, R.; Su, H.-L.; Tabba, H.; Zarrouk, A.; Warad, I. One minute microwave synthesis of [O2N-Ph-CH2-Py = N(Me)2]+[Cl]− ionic liquid: XRD/HSA-interactions, physicochemical, optical, thermal and A DFT/TD-DFT analysis. J. Mol. Liq. 2021, 339, 116737. [Google Scholar] [CrossRef]
- Shukla, M.; Verma, A.; Kumar, S.; Pal, S.; Sinha, I. Experimental and DFT calculation study of interaction between silver nanoparticle and 1-butyl-3-methyl imidazolium tetrafluoroborate ionic liquid. Heliyon 2021, 7, e06065. [Google Scholar] [CrossRef] [PubMed]
- Pillai, P.; Pal, N.; Mandal, A. Synthesis, characterization, surface properties and micellization behaviour of imidazolium-based ionic liquids. J. Surfactants Deterg. 2017, 20, 1321–1335. [Google Scholar] [CrossRef]
- Zeng, X.; Zhang, Y.; Li, Y.; Wang, W.; Wang, L. Synthesis and solution properties of ionic liquid-type polysiloxane bola surfactants. J. Dispers. Sci. Technol. 2018, 39, 227–233. [Google Scholar] [CrossRef]
- Pillai, P.; Mandal, A. Wettability modification and adsorption characteristics of imidazole-based ionic liquid on carbonate rock: Implications for enhanced oil recovery. Energy Fuels 2019, 33, 727–738. [Google Scholar] [CrossRef]
- Shadman, M.M.; Dehghanizadeh, M.; Dehaghani, A.H.S.; Sefti, M.V.; Mokhtarian, N. An investigation of the effect of aromatic, anionic and nonionic inhibitors on the onset of asphaltene precipitation. J. Oil Gas Petrochem. Technol. 2014, 1, 17–28. [Google Scholar]
- Escobedo, J.; Mansoori, G.A. Viscometric determination of the onset of asphaltene flocculation: A novel method. SPE Prod. Facil. 1995, 10, 115–118. [Google Scholar] [CrossRef]
- Abdullah, M.M.; Al-Lohedan, H.A. Synthesis and characterization of tannic acid esters and their performances as asphaltenes dispersants. J. Pet. Sci. Eng. 2021, 201, 108389. [Google Scholar] [CrossRef]
Experiment | Method | Result |
---|---|---|
Density@ 15.56 °C Specific gravity API [email protected] °C | ASTM D-4052 | 0.9558 0.9568 16.3 |
Kinematic Viscosity @40 °C, cSt | ASTM D-445 | 1820.35 |
Asphaltene content, wt% | IP-143 | 21.83 |
Wax content, wt% | UOP-64 | 1.37 |
Water content, vol% | ASTM D-97 | 7.5 |
Pour point, °C | ASTM D-95 | 15 |
Flash point, °C | ASTM D-93 | <−22 |
Chemical Composition, wt.% | |||
---|---|---|---|
Asphaltene | Maltene, wt.% | ||
Oil, wt.% | |||
Resin | Saturate | Aromatic | |
21.83 | 26.52 | 18.43 | 33.21 |
ILs | Value | Molecular Structures |
---|---|---|
IL-0 mol wt. yield | 394.57 79% | |
IL-4 mol wt. yield | 450.68 81% | |
IL-10 mol wt. yield | 534.84 80% | |
IL-16 mol wt. yield | 619.00 83% |
Elements | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
ILs | C% | H% | N% | O% | S% | |||||
Calc. | Obs. | Calc. | Obs. | Calc. | Obs. | Calc. | Obs. | Calc | Obs. | |
IL-0 | 63.92 | 63.87 | 8.69 | 8.73 | 7.10 | 7.13 | 12.16 | 12.07 | 8.13 | 8.20 |
IL-4 | 66.63 | 66.59 | 9.39 | 9.42 | 6.22 | 6.16 | 10.65 | 10.71 | 7.11 | 7.12 |
IL-10 | 69.62 | 69.64 | 10.18 | 10.15 | 5.24 | 5.21 | 8.97 | 9.01 | 6.00 | 5.99 |
IL-16 | 71.79 | 71.72 | 10.75 | 10.81 | 4.53 | 4.59 | 7.75 | 7.72 | 5.18 | 5.16 |
IL | C-H Aromatic | C-H Aliphatic | C-C Aromatic | C=C Aromatic | C-N | S=O | C-H in Plane Bending | Symmetric Stretching SO3− |
---|---|---|---|---|---|---|---|---|
IL-0 | 3147 | 2958–2855 | 1588 | 1460 | 1408 | 1376 | 1127 | 1036 |
IL-4 | 3137 | 2958–2855 | 1579 | 1462 | 1407 | 1377 | 1126 | 1034 |
IL-10 | 3144 | 2960–2855 | 1589 | 1461 | 1408 | 1375 | 1129 | 1034 |
IL-16 | 3138 | 2958–2854 | 1589 | 1461 | 1409 | 1372 | 1126 | 1035 |
ILs | Chemical Shift (δ ppm) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | g | h | i | j | k | l | m | n | |
IL-0 | 9.096 (s) | 7.81 (d) | 7.64 (s) | 7.37 (d) | 7.13 (d) | 2.68 (t) | 1.55 (m) | 1.05 (t) | 0.80 (t) | - | - | - | - | - |
IL-4 | 9.19 (s) | 7.8 (d) | 7.67 (s) | 7.36 (d) | 7.25 (d) | 7.17 (d) | 4.18 (t) | 2.63 (m) | 1.76 (t) | 1.63 (t) | 1.36 (m) | 1.15 (t) | 0.83 (t) | 0.75 (t) |
IL-10 | 9.27 (s) | 7.80 (d) | 7.60 (s) | 7.51 (d) | 7.13 (d) | 2.08 (d) | 4.91 (t) | 2.54 (t) | 1.76 (m) | 1.48 (m) | 1.21 (m) | 0.83 (t) | 0.77 (t) | - |
IL-16 | 8.54 (s) | 7.61 (d) | 7.42 (s) | 7.39 (d) | 7.12 (d) | 7.09 (d) | 4.34 (t) | 2.67 (t) | 1.73 (m) | 1.21 (m) | 1.13 (m) | 0.79 (t) | 0.68 (t) | - |
Compound | IL-0 | IL-4 | IL-10 | IL-16 |
---|---|---|---|---|
Cation | 1H-imidazole | 1-butyl-1H-imidazole | 1-decyl-1H-imidazole | 1-hexadecyl-1H-imidazole |
First degradation, °C | 311 | 306 | 303 | 295 |
Final degradation, °C | 390 | 389 | 490 | 374 |
IL’s Cation | EHOMO, (eV) | ELUMO, (eV) | Energy Gap ΔE, (eV) | Dipole Moment µ, (Debye) | Electron Affinity A, (eV) | Ionization Energy I, (eV) | Electronegativity, (eV mol−1) | Hardness ɳ, (eV mol−1) | Softness σ, (eV−1) |
---|---|---|---|---|---|---|---|---|---|
IL-16 | −0.04125 | 0.072 | 0.11325 | 0.278734 | −0.072 | 0.04125 | −0.015375 | 0.056625 | 17.66004 |
IL-10 | −0.04128 | 0.07201 | 0.11329 | 0.278559 | −0.07201 | 0.04128 | −0.015365 | 0.056645 | 17.65380 |
IL-4 | −0.04159 | 0.07184 | 0.11343 | 0.269447 | −0.07184 | 0.04159 | −0.015125 | 0.056715 | 17.6320 |
IL-0 | −0.08769 | 0.06323 | 0.15092 | 0.87033 | −0.06323 | 0.08769 | 0.01223 | 0.07546 | 13.25205 |
IL | Temperature, °K | CMC mol./L | γCMC, mN/m | πCMC mN/m | Pc20 | Γmax × 10−10 mol./cm2 | Amin nm2 | ΔGomic KJ/mol | ΔGoads KJ/mol |
---|---|---|---|---|---|---|---|---|---|
IL-0 | 303 | 1.25 × 10−2 | 35 | 37.3 | 3.9 × 10−4 | 2.310 | 7.1873 | −20.412 | −22.053 |
313 | 1.13 × 10−2 | 34 | 38.3 | 1.757 × 10−4 | 2.016 | 8.2351 | −21.5928 | −23.492 | |
323 | 1.12 × 10−2 | 33.5 | 38.8 | 1.75 × 10−4 | 1.846 | 8.907 | −22.282 | −24.383 | |
IL-4 | 303 | 6.25 × 10−3 | 34 | 38.3 | 1.95 × 10−4 | 1.902 | 8.725 | −23.641 | −25.653 |
313 | 5.625 × 10−3 | 33 | 39.3 | 8.789 × 10−4 | 1.770 | 9.377 | −24.928 | −27.147 | |
323 | 2.69 × 10−3 | 33 | 39.3 | 8.398 × 10−4 | 1.704 | 9.738 | −29.392 | −31.696 | |
IL-10 | 303 | 5.75 × 10−3 | 31 | 41.3 | 8.98 × 10−5 | 1.880 | 8.829 | −25.977 | −28.173 |
313 | 2.75 × 10−3 | 30 | 42.3 | 4.29 × 10−5 | 1.681 | 9.872 | −29.692 | −32.207 | |
323 | 2.63 × 10−3 | 29 | 43.3 | 2.05 × 10−5 | 1.609 | 10.317 | −29.926 | −32.616 | |
IL-16 | 303 | 5.88 × 10−3 | 32 | 40.3 | 9.375 × 10−5 | 1.893 | 8.768 | −25.869 | −27.997 |
313 | 2.88 × 10−3 | 31 | 41.3 | 4.49 × 10−5 | 1.674 | 9.915 | −29.468 | −31.934 | |
323 | 2.69 × 10−3 | 29 | 43.3 | 3.149 × 10−5 | 1.60 | 10.31 | −29.807 | −32.498 |
IL | Interfacial Tension, mN/m |
---|---|
IL-0 | 10 |
IL-4 | 7 |
IL-10 | 3 |
IL-16 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanem, A.; Alharthy, R.D.; Desouky, S.M.; El-Nagar, R.A. Synthesis and Characterization of Imidazolium-Based Ionic Liquids and Evaluating Their Performance as Asphaltene Dispersants. Materials 2022, 15, 1600. https://doi.org/10.3390/ma15041600
Ghanem A, Alharthy RD, Desouky SM, El-Nagar RA. Synthesis and Characterization of Imidazolium-Based Ionic Liquids and Evaluating Their Performance as Asphaltene Dispersants. Materials. 2022; 15(4):1600. https://doi.org/10.3390/ma15041600
Chicago/Turabian StyleGhanem, Alaa, Rima D. Alharthy, Saad M. Desouky, and Raghda A. El-Nagar. 2022. "Synthesis and Characterization of Imidazolium-Based Ionic Liquids and Evaluating Their Performance as Asphaltene Dispersants" Materials 15, no. 4: 1600. https://doi.org/10.3390/ma15041600
APA StyleGhanem, A., Alharthy, R. D., Desouky, S. M., & El-Nagar, R. A. (2022). Synthesis and Characterization of Imidazolium-Based Ionic Liquids and Evaluating Their Performance as Asphaltene Dispersants. Materials, 15(4), 1600. https://doi.org/10.3390/ma15041600