Effect of Temperature on the Corrosion Behavior and Corrosion Resistance of Copper–Aluminum Laminated Composite Plate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Salt-Spray Corrosion Test
2.3. Electrochemical Test
3. Results
3.1. Microstructure Analysis
3.2. Corrosion Rate Analysis
3.3. XPS Analysis of Corrosion Products
3.4. Formation and Process of Corrosion Products
3.5. AC Impedance Spectrum Analysis
3.6. Polarization Curve Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.L.; Zuo, X.J.; Yuan, X.G.; Zhu, H.J.; Huang, H.J.; Wang, Y.X.; Zhang, Y.F. Preparation of fluorine silicon copolymer superhydrophobic anticorrosive coating on copper aluminium composite by one step spraying. Mater. Lett. 2021, 304, 130496. [Google Scholar] [CrossRef]
- Bai, Q.; Zhang, L.L.; Ke, L.; Zhu, P.; Ma, Y.T.; Xia, S.; Zhou, B.X. The effects of surface chemical treatment on the corrosion behavior of an Al-B4C metal matrix composite in boric acid solutions at different temperatures. Corros. Sci. 2020, 164, 108356. [Google Scholar] [CrossRef]
- Dyja, H.; Mróz, S.; Milenin, A. Theoretical and experimental analysis of the rolling process of bimetallic rods Cu-steel and Cu-Al. J. Mater. Process. Technol. 2004, 153–154, 100–107. [Google Scholar] [CrossRef]
- Chen, X.L.; Shi, Q.N. Research on roll welding process of Cu/Al composite plates. Adv. Mater. Res. 2013, 743, 227–230. [Google Scholar] [CrossRef]
- Radim, K.; Lenka, K.; Petr, K.; Pavel, S. Characterization of innovative rotary swaged Cu-Al clad composite wire conductors. Mater. Des. 2018, 160, 828–835. [Google Scholar]
- Wang, L.; Liu, J.; Kong, C.H.; Pesin, A.; Zhilyaev, A.P.; Yu, H.L. Sandwich-Like Cu/Al/Cu composites fabricated by cryorolling. Adv. Eng. Mater. 2020, 22, 2000122. [Google Scholar] [CrossRef]
- Vera, R.; Delgado, D.; Rosales, B.M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy. Corros. Sci. 2005, 48, 2882–2900. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Yuan, X.G.; Huang, H.J.; Zuo, X.J.; Cheng, Y.L. Influence of chloride ion concentration and temperature on the corrosion of Cu-Al composite plates in salt fog. J. Alloys Compd. 2020, 821, 153249. [Google Scholar] [CrossRef]
- Huo, Y.; Tan, M.Y.J.; Shu, L. Effects of high salt concentration and residue on copper and aluminum corrosion. Chem. Res. Chin. Univ. 2013, 29, 538–544. [Google Scholar] [CrossRef]
- Boettcher, T.; Rother, M.; Liedtke, S.; Ullrich, M.; Bollmann, M.; Pinkernelle, A.; Gruber, D.; Funke, H.J.; Kaiser, M.; Lee, K.; et al. On the intermetallic corrosion of Cu-Al wire bonds. In Proceedings of the 12th Electronics Packaging Technology Conference (EPTC 2010), Singapore, 8–10 December 2010. [Google Scholar]
- Bakos, I.; Szabo, S. Corrosion behaviour of aluminium in copper containing environment. Corros. Sci. 2008, 50, 200–205. [Google Scholar] [CrossRef]
- Jorcin, J.B.; Blanc, C.; Pebere, N.; Tribollet, B.; Vivier, V. Galvanic coupling between pure copper and pure aluminum. J. Electrochem. Soc. 2008, 155, 46–51. [Google Scholar] [CrossRef]
- Ko, A.C.Y.; Burnett, A.; Chen, L.; Liu, K. Galvanic corrosion mechanism and suppressed solution on Al/Cu pads. In Proceedings of the International Symposium on the Physical and Failure Analysis of Integrated Circuits, Hangzhou, China, 29 June–2 July 2015. [Google Scholar]
- Vera, R.; Verdugo, P.; Orellana, M.; Muñoz, E. Corrosion of aluminium in copper-aluminium couples under a marine environment: Influence of polyaniline deposited onto copper. Corros. Sci. 2010, 52, 3803–3810. [Google Scholar] [CrossRef]
- Liu, C.P.; Chang, S.J.; Liu, Y.F.; Su, J. Corrosion-induced degradation and its mechanism study of Cu-Al interface for Cu-wire bonding under HAST conditions. J. Alloys Compd. 2020, 825, 154046. [Google Scholar] [CrossRef]
- Kang, G.T.; Hong, S.I. Effect of heat treatment on galvanic corrosion of Cu/Al/Cu clad soaked in 3.5% NaCl brine solution. Adv. Mater. Res. 2015, 1102, 55–58. [Google Scholar] [CrossRef]
- Wang, S.D.; Lamborn, L.; Chen, W.X. Near-neutral pH corrosion and stress corrosion crack initiation of a mill-scaled pipeline steel under the combined effect of oxygen and paint primer. Corros. Sci. 2021, 187, 109511. [Google Scholar] [CrossRef]
- Pu, J.; Zhang, Y.L.; Zhang, X.G.; Yuan, X.L.; Ren, P.D.; Jin, Z.M. Mapping the fretting corrosion behaviors of 6082 aluminum alloy in 3.5% NaCl solution. Wear 2021, 482–483, 203975. [Google Scholar] [CrossRef]
- Zuo, X.J. Study on the Structure and Properties of the Interface Diffusion Layer of Copper-Aluminum Composite Board. Ph.D. Thesis, Shenyang University of Technology, Shenyang, China, 2017. [Google Scholar]
- Ismail, A.S. Corrosion Behavior of Aluminum-Silicon-Copper-Manganese Alloy in Sulfuric Acid Medium. Silicon 2016, 8, 211–216. [Google Scholar] [CrossRef]
- Yang, W.L.; Liu, Z.Q.; Huang, H.L. Galvanic corrosion behavior between AZ91D magnesium alloy and copper in distilled water. Corros. Sci. 2021, 188, 109562. [Google Scholar] [CrossRef]
- Li, Y.Y.; Cao, T.S.; Wang, D.Y.; Zhao, J.; Bao, C.M.; Song, Y.K.; Meng, X.M.; Cheng, C.Q. Electrochemical corrosion of FV520B stainless steel in solutions bearing hydrogen bromide and acetic acid at high temperature from 130 to 200 °C. Corros. Eng. Sci. Technol. 2021, 56, 639–647. [Google Scholar] [CrossRef]
- Wang, J.Z.; Wang, J.Q.; Ming, H.L.; Zhang, Z.M.; Han, E.H. Effect of temperature on corrosion behavior of alloy 690 in high temperature hydrogenated water. J. Mater. Sci. Technol. 2018, 34, 1419–1427. [Google Scholar] [CrossRef]
- Li, X.Y.; Fan, C.H.; Wu, Q.L.; Dong, L.H.; Yin, Y.S. Effect of chloride and temperature on corrosion behavior of PH13-8Mo in acidic environments. Mater. Sci. Technol. 2017, 25, 89–96. [Google Scholar]
- Sun, S.P.; Gu, S.; Jiang, Y.; Yi, D.Q. Activity and solubility of alloying elements in Mo. Chin. J. Nonferrous Met. 2019, 29, 115–121. [Google Scholar]
- Scheiner, S.; Hellmich, C. Finite Volume model for diffusion- and activation-controlled pitting corrosion of stainless steel. Comput. Methods Appl. Mech. Eng. 2009, 198, 2898–2910. [Google Scholar] [CrossRef]
- Zhao, X.H.; Zuo, Y.; Zhao, J.M.; Xiong, J.P.; Tang, Y.M. A study on the self-sealing process of anodic films on aluminum by EIS. Surf. Coat. Technol. 2006, 200, 6846–6853. [Google Scholar] [CrossRef]
- Wharton, J.A.; Barik, R.C.; Kear, G.; Wood, R.J.K.; Stokes, K.R.; Walsh, F.C. The corrosion of nickel-aluminium bronze in seawater. Corros. Sci. 2005, 47, 3336–3367. [Google Scholar] [CrossRef]
- Turdean, G.L.; Craciun, A.; Popa, D.; Constantiniuc, M. Study of electrochemical corrosion of biocompatible Co-Cr and Ni-Cr dental alloys in artificial saliva. Influence of pH of the solution. Mater. Chem. Phys. 2019, 233, 390–398. [Google Scholar] [CrossRef]
- Han, E.H.; Wang, J.Q.; Wu, X.J.; Ke, W. Corrosion mechanisms of stainless steel and nickel base alloys in high temperature high pressure water. Acta Metall. Sin. 2010, 46, 1379–1390. [Google Scholar] [CrossRef]
- Wei, L.; Liu, Y.; Li, Q.; Cheng, Y.F. Effect of roughness on general corrosion and pitting of (FeCoCrNi)0.89(WC)0.11 high-entropy alloy composite in 3.5 wt.% NaCl solution. Corros. Sci. 2018, 146, 44–57. [Google Scholar] [CrossRef]
- Fuente, D.l.D.; Huerta, O.E.; Morcillo, M. Studies of long-term weathering of aluminium in the atmosphere. Corros. Sci. 2007, 49, 3134–3148. [Google Scholar] [CrossRef]
- Lin, B.; Hu, R.G.; Ye, C.Q.; Li, Y.; Lin, C.J. A study on the initiation of pitting corrosion in carbon steel in chloride-containing media using scanning electrochemical probes. Electrochim. Acta 2010, 55, 6542–6545. [Google Scholar] [CrossRef]
- Qiao, C.; Wang, M.N.; Hao, L.; Liu, X.H.; Jiang, X.L.; An, X.Z.; Li, D.Y. Temperature and NaCl deposition dependent corrosion of SAC305 solder alloy in simulated marine atmosphere. J. Mater. Sci. Technol. 2021, 75, 252–264. [Google Scholar] [CrossRef]
Temperature/°C | Rs/Ω·cm2 | Qdl/Ω−1·cm−2·sn | Q-n | Rp/Ω·cm2 |
---|---|---|---|---|
30 | 7.127 | 5.046 × 10−5 | 0.8228 | 4.679 |
35 | 6.910 | 5.665 × 10−5 | 0.8465 | 3.795 |
40 | 6.100 | 7.269 × 10−5 | 0.9136 | 2.918 |
45 | 6.005 | 8.407 × 10−5 | 0.9277 | 2.584 |
50 | 5.411 | 6.501 × 10−5 | 0.9699 | 1.657 |
Temperature/°C | 100 Hz Impedance/Ω·cm2 | Rs/Ω·cm2 | Difference/Ω·cm2 |
---|---|---|---|
30 | 11.5 | 7.127 | 4.373 |
35 | 10.7 | 6.910 | 3.79 |
40 | 8.7 | 6.100 | 2.6 |
45 | 8.4 | 6.005 | 2.395 |
50 | 7.07 | 5.411 | 1.659 |
Temperature/°C | Ecorr/mV | Jcorr/μA·cm−2 | βa/mV | βc/mV |
---|---|---|---|---|
30 | −643.664 | 13.007 | 63.5 | 287.5 |
35 | −648.349 | 14.664 | 49.8 | 301.2 |
40 | −746.500 | 16.562 | 83.3 | 398.5 |
45 | −765.462 | 21.134 | 82.7 | 421.9 |
50 | −1093.796 | 27.211 | 197.8 | 485.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, Y.; Cheng, Y.; Zuo, X.; Wang, Y.; Yuan, X.; Huang, H. Effect of Temperature on the Corrosion Behavior and Corrosion Resistance of Copper–Aluminum Laminated Composite Plate. Materials 2022, 15, 1621. https://doi.org/10.3390/ma15041621
Li Q, Zhang Y, Cheng Y, Zuo X, Wang Y, Yuan X, Huang H. Effect of Temperature on the Corrosion Behavior and Corrosion Resistance of Copper–Aluminum Laminated Composite Plate. Materials. 2022; 15(4):1621. https://doi.org/10.3390/ma15041621
Chicago/Turabian StyleLi, Qiannan, Yifan Zhang, Yulin Cheng, Xiaojiao Zuo, Yinxiao Wang, Xiaoguang Yuan, and Hongjun Huang. 2022. "Effect of Temperature on the Corrosion Behavior and Corrosion Resistance of Copper–Aluminum Laminated Composite Plate" Materials 15, no. 4: 1621. https://doi.org/10.3390/ma15041621
APA StyleLi, Q., Zhang, Y., Cheng, Y., Zuo, X., Wang, Y., Yuan, X., & Huang, H. (2022). Effect of Temperature on the Corrosion Behavior and Corrosion Resistance of Copper–Aluminum Laminated Composite Plate. Materials, 15(4), 1621. https://doi.org/10.3390/ma15041621