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Abstract: Fuel cells are expected to serve as next-generation energy conversion devices owing to their
high energy density, high power, and long life performance. The oxygen reduction reaction (ORR) is
important for determining the performance of fuel cells; therefore, using catalysts to promote the ORR
is essential for realizing the practical applications of fuel cells. Herein, we propose Nb-incorporated
TiO2 as a suitable alternative to conventional Pt-based catalysts, because Nb doping has been reported
to improve the conductivity and electron transfer number of TiO2. In addition, Nb-incorporated TiO2

can induce the electrocatalytic activity for the ORR. In this paper, we report the synthesis method for
Nb-incorporated TiO2 through a hydrothermal process with and without additional load pressures.
The electrocatalytic activity of the synthesized samples for the ORR was also demonstrated. In this
process, the samples obtained under various load pressures exceeding the saturated vapor pressure
featured a high content of Nb and crystalline TiNb2O7, resulting in an ellipsoidal morphology. X-ray
diffraction results also revealed that, on increasing the Nb doping amounts, the diffraction peak
of the anatase TiO2 shifted to a lower angle and the full width at half maximum decreased. This
implies that the Ti atom is exchanged with the Nb atom during this process, resulting in a decrease in
TiO2 crystallinity. At a doping level of 10%, Nb-incorporated TiO2 exhibited the best electrocatalytic
activity in terms of the oxygen reduction current (iORR) and onset potential for the ORR (EORR); this
suggests that 10% Nb-doped samples have the potential for enhancing electrocatalytic activity.

Keywords: Nb doping; TiO2; hydrothermal synthetic process; electrocatalytic activity; ORR

1. Introduction

The increasing use of mobile devices and the advances in electric vehicles have re-
sulted in an increased demand for highly efficient energy conversion and storage devices.
Although Li-ion batteries have been widely used in electronic devices over recent years,
there is limited scope for improving their energy density as they approach the theoretical
limit [1,2]. Thus, to satisfy the demands for enhanced energy density, power, and perfor-
mance in batteries, the development of next-generation batteries and energy conversion
devices is crucial. To this end, fuel cells, which are expected to possess a significantly
higher energy density than currently available rechargeable batteries, have been exten-
sively studied [3–5]. The oxygen reduction reaction (ORR) is important for determining
the performance of fuel cells; therefore, the use of catalysts to promote ORR is essential
for realizing the practical applications of fuel cells [4–7]. With regard to the materials,
generally, Pt-based catalysts exhibit remarkable electrocatalytic activity for the ORR [8–10];
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however, they suffer from disadvantages in terms of commercialization, such as high costs
and long-term instability [11–13]. Therefore, alternative materials similar to Pt catalysts,
including metal oxides [14,15], metal chalcogenides [16], and carbon materials [17,18], have
been proposed.

With regard to the synthetic route, with the advent of industrialization, environmen-
tal pollution has emerged as a major problem. Thus, many researchers have focused on
investigating environmental remediation technologies and environmentally friendly ma-
terials [19,20]. Among various such materials, titanium dioxide (TiO2) has widely been
employed in photocatalytic applications owing to its outstanding performance, abundance,
low cost, high stability, and environment-friendliness [21–23]; however, its low conductivity
and reactivity are major concerns limiting its usage. By contrast, niobium (Nb) doping has
been widely used to improve conductivity and electron transfer numbers by synthesizing
Ti4O7. These synthesized products have exhibited high conductivity, a special crystalline
structure, and good absorption properties [24–27]. The merits of using this synthesized
product are as follows: First, Nb doping induces the structural evolution of TiO2 from the
rutile phase to the anatase phase and improves its photocatalytic activity [28,29]. Second,
the doping of Nb5+ with TiO2 introduces additional electrons in the conduction band.
Consequently, these excess electrons can assist the rapid initial reaction of the organic
decomposition process [30,31].

Based on this concept, Nb doping in TiO2 using an environmentally friendly method
is an interesting research topic for the further development of advanced ORR catalysts. Re-
cently, the hydrothermal synthesis (HS) method for Nb doping has emerged as a promising
choice for developing efficient ORR catalysts. The HS process utilizes the high reactiv-
ity of high-temperature and high-pressure water (subcritical water) via autoclaving; this
process promotes the liquid-phase synthesis of substances that are sparingly soluble in
water. The relationship between the Nb doping level and HS route for enhancing the
electrocatalytic activity for the ORR still remains unclear, and further studies are required.
A previous study reported that doping 10% Nb in TiO2 could potentially promote the
ORR; this information was considered as the base condition in this study for initiating
the experiment [31]. Herein, we systematically demonstrate the relationship between the
electrocatalytic activity for the ORR and the Nb content, by synthesizing Nb-incorporated
TiO2 through a hydrothermal process with and without load pressures. Through this pro-
cess, the samples obtained using various load pressures possessed high contents of Nb and
crystalline TiNb2O7, resulting in an ellipsoidal morphology. In addition, X-ray diffraction
results showed that when the Nb doping amounts were increased, the diffraction peak of
anatase TiO2 shifted to a lower angle and the full width at half maximum decreased. This
implies that the Ti atom was exchanged with the Nb atom during the process; therefore,
the TiO2 crystallinity decreased. Furthermore, 10% Nb-incorporated TiO2 showed the best
electrocatalytic activity in terms of the oxygen reduction current (iORR) and onset potential
for the ORR (EORR), thereby suggesting that the 10% Nb-doped samples have the potential
for enhancing electrocatalytic activity.

2. Materials and Methods
2.1. Preparation of Nb-Incorporated TiO2

To synthesize Nb-incorporated TiO2, TiOSO4 powder (Technical, Sigma-Aldrich,
Tokyo, Japan) was used as the Ti source. First, 1.271 g of TiOSO4 powder was dissolved in
100 mL of pure H2O. To incorporate Nb into TiO2, the Nb doping level was tuned from
10% to 20% against the total number of Ti atoms using NbCl5 powder (99+%-Nb, Strem
Chemicals, Tokyo, Japan) and dissolving it in a solution containing TiOSO4 powder. To
monodisperse the prepared mixture, ultrasonication was performed. To adjust the pH of
the prepared mixture, a 28% ammonia solution was used to set the pH to 10.

The following procedure was performed for HS: First, the prepared mixture, which
was tuned to pH = 10, was input to a 100 mL autoclave container. The high-pressure
mechanism of the high-pressure machine is designed to fill the inside of the pipe with
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high-pressure water using pure water as a mediator. Because of this, the sample filling rate
was set to 100% when hydrothermal heat treatment was performed under high pressure,
whereas, under no pressure, 80% of the filling rate was maintained. Second, the temperature
of the electric furnace was set to 200 ◦C, and HS was performed under pressures of 0, 15,
and 25 MPa for 24 h. After the HS treatment, the autoclave container was cooled down at
room temperature for over 1 h. Subsequently, the samples were washed with pure water
three times and filtered through a suction filter (Millipore, Merck). Finally, the refined
samples were dried in an electric furnace at 90 ◦C for 24 h. The summarized procedure is
shown in Figure 1.
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Figure 1. Procedure of sample preparation.

2.2. Characterization

Changes in the surface morphology (structure, shape, and size) of the obtained samples
were observed using field-emission scanning electron microscopy (FE-SEM) (JSM-7610F,
Jeol Ltd., Tokyo, Japan) operated at 15 kV. To identify and visualize the elemental distri-
butions of Ti, Nb, and O in the as-obtained samples, energy-dispersive X-ray (SEM-EDX)
(JSM-7610F, Jeol Ltd.) analysis was performed at 15 kV with a cps of 3000. Nine points were
selected from each sample for analytical sampling. The crystalline phases of the obtained
samples were identified using X-ray diffraction (XRD) (SmartLab, Rigaku, Tokyo, Japan)
with Cu–Kα radiation (40 kV, 30 mA), within the 2θ ranges of 5–90◦ and a scanning rate
of 2θ = 20◦/min. The ORR was estimated using electrochemical measurements. For the
electrochemical measurements, a glassy carbon (GC) rotating disk electrode (RDE; 3.0 mm
diameter) was used as the working electrode. The GC electrode was first polished with a
1.0 µm diamond paste and subsequently with a 0.05 µm alumina paste. Thereafter, 5 mg
of the prepared powder samples was added to a mixture of 900 µL ethanol and 100 µL
Nafion solution and dispersed ultrasonically for 40 min. Subsequently, 3 µL of the resulting
slurry was dropped onto the polished GC electrode and dried at room temperature in
air. All the electrochemical measurements, including cyclic voltammetry (CV) and linear
sweep voltammetry (LSV), were recorded on a computerized electrochemical analyzer
(704ES, CH Instruments, Inc., Bee Cave, TX, USA). A platinum coil was used as the counter
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electrode and Ag/AgCl (saturated KCl) electrodes were used as reference electrodes. The
platinum coil was inserted into a glass tube, and an ion-permeable membrane was attached
to the apical end of the glass tube. For all the electrochemical measurements, a 0.1 M KOH
solution was used as the electrolyte solution. Before the measurements, we treated N2 or
O2 gas for purging the solution for 20 min at a flow rate of 50 mL/min. The CV and LSV
curves were measured at scan rates of 100 and 10 mV/s, respectively. Herein, from the
results of LSV curves, the n involved in the ORR process can be calculated through the
Koutecký–Levich (K–L) plots, using the following equations [32,33]:

1
I
=

1
IK

+
1
ID

=
1
IK

+
1

0.62nFAC0D2/3
O ν−1/6ω1/2

where I is the measured current density, IK is the kinetic-limiting current density, ID
is the diffusion-limiting current density, A is the surface area of the electrode, ω is the
angular velocity of the electrode, F is the Faraday constant (96,485 C/mol), DO is the
diffusion coefficient of O2 in the electrolyte (1.87 × 10−5 cm2/s), ν is the kinematic viscosity
(0.01 cm2/s) of the electrolyte, and C0 is the bulk concentration of O2 in the electrolyte
(1.21 × 10−6 mol/cm2) [34]. In this study, for a comparison, a Pt/C suspension was also
prepared and dropped on the RDE as a benchmark following the same procedure as
described above. The LSV rotation speed was 1600 rpm, and Pt/C (20 wt% Pt loading on
Vulcan XC-72) was purchased from Sigma-Aldrich.

3. Results and Discussion

Figure 2 illustrates the FE-SEM images of the surfaces of the obtained samples of TiO2
incorporated with different amounts of Nb under different load pressures. The obtained
samples are termed as Nb x%-TiO2 in this study, where x denotes the Nb doping level.
Ellipsoid morphologies were observed in all the obtained samples. Moreover, the size
of the individual ellipsoid particle was approximately 200 nm, and the particle assembly
was several microns. Generally, representative TiO2 crystalline structures, i.e., anatase and
rutile, are shown as octahedral or tetrahedral structures. However, the obtained structure
of Nb 10%-TiO2 in this study was very similar to the spherical morphology; therefore,
the HS method was able to selectively synthesize the spherical morphologies, leading to
an expected high-performance electrocatalytic activity due to the high surface area. In
addition, with an increase in the load pressure, a trend was observed between the particles
in many aspects. Therefore, it was assumed that the crystallinity of the obtained Nb 10%-
TiO2 samples decreased with an increase in the loading pressure, as compared with that of
pure TiO2.
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Figure 3 shows the XRD profiles of the Nb 10%-TiO2 samples prepared under vari-
ous load pressures. As can be confirmed, many anatase peaks from the TiO2 phase were
detected. Remarkably, Nb-incorporated TiO2 phases such as TiNb2O7 were detected at ap-
proximately 2θ = 23◦, indicating that Nb-incorporated TiO2 can be successfully synthesized
via this process. Based on the XRD profile, when the load pressure was increased to 25 MPa,
the peak intensity of the (204) plane for TiNb2O7 to the half-width increased from 6.97 to
9.99, with an expected increase in TiNb2O7 (Figure 3c). It can be assumed that the anatase
phase grew selectively on increasing the load pressure up to 25 MPa. In particular, the (204)
plane was selected as the representative anatase TiO2 phase, and the half-width and peak
intensity were analyzed to determine the effect of the load pressures during the process.
With an increase in the load pressure, both the half-width and peak intensity increased
(Figure 3b). Considering this result, it can be assumed that the obtained amount of anatase
increased, based on the increase in the peak intensity; however, the crystallinity decreased,
as indicated by the decline in the half-width. The SEM results (Figure 2) support this claim.
Thus, it was concluded that the load pressure has a significant effect on the modulation of
the morphology.
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To determine the relationship between the decline in the crystallinity of anatase and
the incorporated Nb content in the obtained crystallinity, EDS analysis was conducted
under different load pressures at a fixed doping level of Nb-10% (Figure 4). Ti, Nb, and O
elements were detected in all the obtained samples. The Nb/Ti ratio without load pressure
was 10.7; therefore, it can be assumed that the Nb doping level is almost 10%. These
results suggest that there exists a direct relationship between the Nb doping level and Nb
content in the obtained samples, and it is assumed that the synthesized Nb oxides are
homogeneously dispersed in the obtained samples. Interestingly, the Nb/Ti ratio increased
with an increase in the load pressure owing to an increase in the quantity of TiNb2O7. In
the case of the Nb 10%-TiO2 samples treated at 15 and 25 MPa, the Nb contents in the
samples were 11.2% and 18.6%, respectively, when the Nb doping level was fixed at 10%
(Figure 4b). Therefore, it can be considered that the load pressures affected the control
over the Nb doping level. Further details regarding the mechanism of increase in the Nb
content with the increasing load pressure are presented in Figure 5. A common type of
conversion reaction is the alloying or compounding of atomic species through a diffusion
couple, which often results in porous structures [35–37]. Void formation can occur within
particles when the species from the particle core diffuse outward more quickly than the
inward diffusion of the reactive species, thereby causing the reaction to occur on or near
the particle surface. It is a manifestation of the Kirkendall effect of void formation owing
to this imbalance on the diffusion rates [38,39]. The conversion of metal into oxides often
occurs through the Kirkendall effect, where the outward diffusion of metal atoms from the
core is faster than the inward diffusion of the reactive species, resulting in void formation.
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Oxidation is a common particle conversion chemical reaction [40–42]. The oxidation of
particles involves a process similar to the oxidation of bulk metals, where a thin oxide layer
forms on the metal surface, followed by the simultaneous outward diffusion of metal ions
through the oxide scale and inward diffusion of oxygen into the particles [35]. As compared
to cations, metal ions often diffuse outward more quickly than oxygen diffuses inward,
which is consistent with the larger ionic radius of anions. The balance in the diffusion
rates defines the structure of the oxidized product. More complex structures, rather than
simply incorporating oxygen in the initial structure wherever the metal is present, can
emerge when the outward diffusion of the metal is significant. If the inward diffusion
of the oxidizing species into the particles is faster than the outward diffusion of metal
cations, then the particle shape (neglecting the change in volume to accommodate this
oxygen incorporation) is typically preserved. This behavior is often detected during the
initial stages of oxidation. At the intermediate stages of oxidation, core/shell structures
are often observed, several examples of which are known [43–45]. The Kirkendall effect,
where the outward diffusion of the metal is faster than the inward diffusion of oxygen, can
drive substantial morphological changes during particle oxidation. In this study, Nb oxides
and/or solid-solved-state Nb elements, including oxygen vacancies, diffused toward the
surface during crystal growth. Therefore, the inward diffusion rate near the surface was
significantly higher than the outward diffusion rate; this difference in the diffusion rates
resulted in the “different oxygen vacancy level” in the structure. As the reactions continue,
inward void flow occurs to balance the unequal matter flow, which eventually results in the
formation of an internal void in the TiO2 bulk structure. Meanwhile, phase transformation
occurs simultaneously with the formation of the hollow structure owing to the activated
diffusion. Finally, the Nb content increases.
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To determine the effect of the Nb doping level on the crystallinity of the obtained Nb-
TiO2 samples, various samples with different Nb doping levels were synthesized, without
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being subjected to the loading pressures; subsequently, the synthesized morphologies were
observed via SEM (Figure 6). In the case of pure TiO2 particles, a spherical morphology
was observed (Image of Nb-0%). However, an ellipsoidal morphology was observed in
the Nb-doped samples. The size of the obtained individual particles was approximately
200–300 nm, and the particle assembly, comprising ellipsoidal particles, was several mi-
crons. This phenomenon can be explained by the abovementioned hypothesis, which states
that doped Nb can selectively affect the growth plane of TiO2; therefore, the grain growth
of TiO2 was suppressed on increasing the Nb content.
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Figure 6. SEM images of the obtained Nb-TiO2 samples under different Nb doping levels without
loading pressure.

Figure 7 shows the XRD profiles of the obtained Nb-TiO2 samples with different
Nb doping levels. Similar to the Nb-TiO2 samples subjected to various load pressures, it
can be confirmed that many anatase peaks from the TiO2 phase were detected. Similarly,
Nb-incorporated TiO2 phases such as TiNb2O7 were detected at approximately 2θ = 23◦,
indicating that Nb-incorporated TiO2 can be successfully synthesized via this process
(Figure 7a). Interestingly, the diffraction angle of the (204) plane shifted to a low angle
degree as the Nb content increased, as shown in Figure 7b. This result can be explained
as follows: The lattice constant of the TiO2 crystal increased owing to the increase in the
Nb content in the TiO2 crystal. The exchange of Ti in the TiO2 crystal with Nb during
the process indicates that Nb doping was successfully realized [46–48]. In addition, the
crystallinity decreased on increasing the Nb doping level, based on the decrease in the
half-width (Figure 7c).
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Figure 7. (a) XRD pattern of obtained Nb-TiO2 samples under different Nb doping levels;
(b) Relationship between the percentage of Nb/Ti and diffraction angle of the (204) plane according
to different Nb doping levels; (c) Analytical result of the relationship between the half-width and
peak intensity of the (204) plane according to different Nb doping levels.
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To determine the electrocatalytic activity of the obtained Nb-TiO2 samples for the
ORR, the ORR performance was estimated using electrochemical measurements (Figure 8).
The effect of the loading pressure and Nb doping level on the electrocatalytic activity
was evaluated using the Nb-TiO2 samples that were synthesized using different load
pressures (Figure 8a) and Nb doping levels (Figure 8b). The samples were denoted as 0,
15, and 25 MPa according to the load pressure utilized and 0%, 10%, and 20% according
to the doping levels used for synthesis. Overall, the ORR onset potential of all the LSV
curves for different loading pressures decreased as 0.691, 0.672, and 0.624 V for 0, 15,
and 25 MPa, respectively. However, for different Nb doping level series, the ORR onset
potential increased until 10% and subsequently decreased until 20%. In addition, the
electron transfer number n exhibited the maximum values at 0 MPa, slightly decreasing
at 15 MPa and increasing at 25 MPa, within the error ranges. These results suggest that
high load pressures induce an increase in the Nb content and TiNb2O7 phase, thereby
suppressing the ORR activity. The reported Nb-doped TiO2 samples synthesized via the
sol–gel method and the 0 MPa samples with the maximum values of iORR and EORR were
compared. The value of EORR was very similar to the reference value (0.7 V); however, the
value of iORR for the 0 MPa samples synthesized in this study was 10 times higher than the
reference value. It can be assumed that the obtained amount of TiO2-x with electron transfer
properties, particularly Ti4O7 with high conductivity [24,49,50], was suppressed under this
synthetic process owing to the Kirkendall effect (Figure 5); therefore, the value of iORR at
0 MPa decreased. The oxygen vacancies, which contribute toward the electrical transfer
ability in oxides, decreased according to the pressure; therefore, it is necessary to further
study this issue to perform this experiment at low temperatures. In the case of the Nb
doping level series, the values of iORR, EORR, and n increased up to 10% and then decreased
thereafter. This is interesting because the optimized Nb content in this process, that is, Nb
10%, is the optimal condition for achieving high electrocatalytic activity. In addition, for
a comparison, a Pt/20% C electrode was used as a benchmark in this study. The value
of n for the 10% Nb-doped sample was 3.25, whereas that for the Pt/20% C electrode
was 3.93; this indicates that the samples prepared in this study were comparable to the
benchmark, without employing Pt and C. This result, in turn, shows that the Pt- and C-free
samples prepared in this study have the potential to enhance the ORR. In general, there
are two reaction pathways for the ORR: two- and four-electron reactions. Regarding the
application in energy systems, such as batteries and fuel cells, the preferential occurrence of
the four-electron reaction for the ORR is important in order to improve the energy efficiency.
Thus, it can be considered that the key factor determining the reaction pathway is n. When
n exceeds 3.0, the four-electron reaction will be dominant in the ORR. When the Nb doping
amount is 10%, the value of n is found to be 3.3, thus indicating that the four-electron
reaction is dominant. By contrast, when the Nb doping amounts are 1% and 20%, the
n values are below 3.0, suggesting that the two-electron reaction is dominant. These results
indicate that the Nb doping level can affect the selectivity of the ORR between the two-
and four-electron pathways. Furthermore, based on these results, an increase in NbTi4O7,
instead of a decrease in highly conductive Ti4O7, leads to a low n value, which, in turn,
results in low electrocatalytic activity during this process.

In summary, the relationship between the crystal structure and electrocatalytic activity
can be explained as follows: First, oxygen vacancies contributing toward conductivity can
be obtained via Nb doping. Second, Nb contents <10% induce an increase in TiNb2O7,
leading to a decrease in conductivity. Third, a decrease in the surface area of the particles
results in a decrease in the electrocatalytic effect. These summarized considerations were
assembled, as shown in the following schematic (Figure 9).

In the case of Nb contents <10%, the surface area increased owing to crystal growth,
and the oxygen vacancies that contribute toward conductivity increased. However, in
the case of Nb contents >10%, the TiNb2O7 content increased, resulting in the formation
of sintering structures; this decreased the surface area and electrocatalytic activity. In



Materials 2022, 15, 1633 9 of 12

conclusion, the most optimized condition to produce high-performance catalysts is 10%
Nb-incorporated Ti oxides.
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4. Conclusions

In this study, we systematically demonstrated the relationship between the electro-
catalytic activity and the load pressure and Nb content by synthesizing Nb-incorporated
TiO2 under a hydrothermal process. In the case of the samples obtained using various
load pressures during the process, the Nb content and the obtained amount of TiNb2O7
increased, leading to the synthesis of particles with ellipsoid morphologies. The obtained
individual particles were approximately 200 nm. In addition, when the Nb doping amount
was increased, XRD results showed that the diffraction angle shifted to a lower angle
and the half-width decreased. This implies that Ti atoms were exchanged with Nb atoms
during the process; therefore, the TiO2 crystallinity decreased. Using these samples, it was
confirmed that the 10% Nb doping level was the optimal condition to achieve high elec-
trocatalytic activity in terms of iORR and EORR. This also suggests that the 10% Nb-doped
samples have the ability to enhance electrocatalytic activity.
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