Hot Deformation Behavior, Processing Maps and Microstructural Evolution of the Mg-2.5Nd-0.5Zn-0.5Zr Alloy
Abstract
:1. Introduction
2. Material and Experimental Procedures
3. Results and Discussion
3.1. Stress–Strain Curves
3.2. Constitutive Model
3.2.1. Constitutive Equations
3.2.2. Strain Compensation Analysis
3.2.3. Deformation Mechanism
3.2.4. Assessment of the Constitutive Model
3.3. Processing Map
3.4. Microstructure Evolution of the Compression Alloy Was Analyzed by EBSD
4. Conclusions
- Hot deformation was performed in compressive modes.
- A manufacturability map of the Mg-2.5Nd-0.5Zn-0.5Zr alloy was established for the first time.
- A strain-compensated constitutive model for determining flow stress in this alloy was established with highly acceptable predictability.
- The dominant deformation mechanism of the alloy was dislocation climbing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.; Zheng, M.Y.; Wu, K.; Wang, E.D.; Fan, G.H.; Xu, S.W.; Kamado, S.; Liu, X.D.; Wang, G.J.; Lv, X.Y. Influence of rolling temperature on the microstructure and mechanical properties of Mg-Gd-Y-Zn-Zr alloy sheets. Mater. Sci. Eng. A 2013, 559, 615–622. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.A.; Chen, X.Y.; Zhao, J.X.; Bao, J.; Chen, Z.Y. Dynamic precipitation and recrystallization mechanism during hot compression of Mg-Gd-Y-Zr alloy. J. Mater. Res. Technol. 2021, 15, 37–51. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhang, W.C.; Yang, J.L.; Pan, J.Q.; Wang, H.X.; Chen, W.Z.; Cui, G.R. Evolution of microstructures, texture, damping and mechanical properties of hot extruded Mg-Nd-Zn-Zr alloy. J. Mater. Eng. Perform. 2021, 30, 8872–8882. [Google Scholar] [CrossRef]
- Sun, W.T.; Qiao, X.G.; Zheng, M.Y.; Xu, C.; Kamado, S.; Zhao, X.J.; Chen, H.W.; Gao, N.; Starink, M.J. Altered ageing behaviour of a nanostructured Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy processed by high pressure torsion. Acta Mater. 2018, 151, 260–270. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, S.G.; Errandonea, D.; Cox, G.A.; Cynn, H.; Daisenberger, D.; Finnegan, S.E.; McMahon, M.I.; Munro, K.A.; Popescu, C.; Storm, C.V. The phase diagram of Ti-6Al-4V at high-pressures and high-temperatures. J. Phys. Condens. Matter 2021, 33, 154001. [Google Scholar] [CrossRef]
- Camin, B.; Gille, M. The effect of specimen size and test procedure on the creep behavior of ME21 magnesium alloy. Crystals 2021, 11, 918. [Google Scholar] [CrossRef]
- Smith, D.; Joris, O.P.J.; Sankaran, A.; Weekes, H.E.; Bull, D.J.; Prior, T.J.; Dye, D.; Errandonea, D.; Proctor, J.E. On the high-pressure phase stability and elastic properties of β-titanium alloys. J. Phys. Condens. Matter 2017, 29, 155401. [Google Scholar] [CrossRef]
- Su, N.; Wu, Y.J.; Deng, Q.C.; Chang, Z.Y.; Wu, Q.Y.; Xue, Y.T.; Yang, K.; Chen, Q.; Peng, L.M. Synergic effects of Gd and Y contents on the age-hardening response and elevated-temperature mechanical properties of extruded Mg-Gd(-Y)-Zn-Mn alloys. Mater. Sci. Eng. A 2021, 810, 141019. [Google Scholar] [CrossRef]
- Hou, X.L.; Cao, Z.Y.; Wang, L.D.; Xu, S.W.; Kamado, S.; Wang, L.M. Microstructure and mechanical properties of extruded Mg-8Gd-2Y-1Nd-0.3Zn-0.6Zr alloy. Mater. Sci. Eng. A 2011, 528, 7805–7810. [Google Scholar] [CrossRef]
- Lei, B.; Jiang, B.; Yang, H.B.; Dong, Z.H.; Wang, Q.H.; Yuan, M.; Huang, G.S.; Song, J.F.; Zhang, D.F.; Pan, F.S. Effect of Nd addition on the microstructure and mechanical properties of extruded Mg-Gd-Zr alloy. Mater. Sci. Eng. A 2021, 816, 141320. [Google Scholar] [CrossRef]
- Fu, P.H.; Peng, L.M.; Jiang, H.Y.; Chang, J.W.; Zhai, C.Q. Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy. Mater. Sci. Eng. A 2008, 486, 183–192. [Google Scholar] [CrossRef]
- He, S.M.; Zeng, X.Q.; Peng, L.M.; Gao, X.; Nie, J.F.; Ding, W.J. Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy. J. Alloy. Compd. 2007, 427, 316–323. [Google Scholar] [CrossRef]
- Li, B.S.; Guan, K.; Yang, Q.; Niu, X.D.; Zhang, D.D.; Lv, S.H.; Meng, F.Z.; Huang, Y.D.; Hort, N.; Meng, J. Microstructures and mechanical properties of a hot-extruded Mg-8Gd-3Yb-1.2Zn-0.5Zr (wt%) alloy. J. Alloy. Compd. 2019, 776, 666–678. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Fu, P.H.; Peng, L.M.; Wang, D.; Wang, Y.X.; Hu, B.; Liu, M.; Sachdev, A.K.; Ding, W.J. Precipitation modification in cast Mg-1Nd-1Ce-Zr alloy by Zn addition. J. Magnes. Alloy. 2019, 7, 113–123. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhang, W.C.; Wang, H.X.; Yang, J.L.; Chen, W.Z.; Cui, G.R.; Wang, G.F. Microstructures evolution, texture characteristics and mechanical properties of Mg-2.5Nd-0.5Zn-0.5Zr alloy during the high strain rate hot-rolling. Mater. Sci. Eng. A 2021, 803, 140488. [Google Scholar] [CrossRef]
- Chen, W.Z.; Ma, J.F.; Cui, C.; Zhang, W.C.; Wang, W.K.; Liu, X.T.; Yang, J.L.; Cui, G.R. Texture role in the mechanical property improvement contributed by grain refinement for Mg-2.6Nd-0.55Zn-0.5Zr alloy subjected to extrusion process. Mater. Sci. Eng. A 2022, 831, 142185. [Google Scholar] [CrossRef]
- Zhao, S.C.; Guo, E.J.; Cao, G.J.; Wang, L.P.; Lun, Y.C.; Feng, Y.C. Microstructure and mechanical properties of Mg-Nd-Zn-Zr alloy processed by integrated extrusion and equal channel angular pressing. J. Alloy. Compd. 2017, 705, 118–125. [Google Scholar] [CrossRef]
- Gui, Z.Z.; Kang, Z.X.; Li, Y.Y. Evolution of the microstructure and fracture characteristics of a Mg-Nd-Zn-Zr-Mn alloy through heat treatment and extrusion. J. Alloy. Compd. 2018, 765, 470–479. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Yan, H.G.; Chen, J.H.; Wu, Y.Z.; Su, B.; Du, Y.G.; Liao, X.Z. Feasibility of high strain-rate rolling of a magnesium alloy across a wide temperature range. Scr. Mater. 2012, 67, 404–407. [Google Scholar] [CrossRef]
- Fu, P.H.; Peng, L.M.; Jiang, H.Y.; Ma, L.; Zhai, C.Q. Chemical composition optimization of gravity cast Mg-yNd-xZn-Zr alloy. Mater. Sci. Eng. A 2008, 496, 177–188. [Google Scholar] [CrossRef]
- Hoseini-Athar, M.M.; Mahmudi, R.; Babu, R.P.; Hedstrom, P. Microstructure, texture, and strain-hardening behavior of extruded Mg-Gd-Zn alloys. Mater. Sci. Eng. A 2020, 772, 138833. [Google Scholar] [CrossRef]
- Hu, L.; Lang, M.W.; Shi, L.X.; Li, M.G.; Zhou, T.; Bao, C.L.; Yang, M.B. Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method. J. Magnes. Alloy. 2021, in press. [Google Scholar] [CrossRef]
- Xia, X.S.; Chen, Q.; Zhang, K.; Zhao, Z.D.; Ma, M.L.; Li, X.G.; Li, Y.J. Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy. Mater. Sci. Eng. A 2013, 587, 283–290. [Google Scholar] [CrossRef]
- Yu, C.Q.; Feng, Y.C.; Zhang, J.P.; Wang, L.; Zhao, S.C.; Wang, L.P. Effect of initial microstructure conditions on the microstructure and mechanical properties of hot extruded Mg-6Nd-2Al alloy. J. Mater. Eng. Perform. 2022, 31, 742–752. [Google Scholar] [CrossRef]
- Bembalge, O.B.; Panigrahi, S.K. Hot deformation behavior and processing map development of cryorolled AA6063 alloy under compression and tension. Int. J. Mech. Sci. 2021, 191, 106100. [Google Scholar] [CrossRef]
- Lei, C.; Wang, Q.D.; Tang, H.P.; Liu, T.W.; Li, Z.Y.; Jiang, H.Y.; Wang, K.; Ebrahimi, M.; Ding, W.J. Hot deformation constitutive model and processing maps of homogenized Al-5Mg-3Zn-1Cu alloy. J. Mater. Res. Technol. 2021, 14, 324–339. [Google Scholar] [CrossRef]
- Yang, J.L.; Wang, G.F.; Jiao, X.Y.; Li, Y.; Liu, Q. High-temperature deformation behavior of the extruded Ti-22Al-25Nb alloy fabricated by powder metallurgy. Mater. Charact. 2018, 137, 170–179. [Google Scholar] [CrossRef]
- Yang, J.L.; Wang, G.F.; Jiao, X.Y.; Li, X.; Yang, C. Hot deformation behavior and microstructural evolution of Ti-22Al-25Nb-1.0B alloy prepared by elemental powder metallurgy. J. Alloy. Compd. 2017, 695, 1038–1044. [Google Scholar] [CrossRef]
- Chen, Q.; Hu, L.; Li, M.G.; Chen, Y.; Shi, L.X.; Zhou, T.; Yang, M.B. Optimizing process parameters of as-homogenized Mg-Gd-Y-Zn-Zr alloy in isothermal uniaxial compression on the basis of processing maps via prasad criterion and murty criterion. J. Mater. Eng. Perform. 2021, 5, 1–10. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Q.A.; Chen, X.Y.; Bao, J.; Chen, Z.Y. Effect of Sn addition on the deformation behavior and microstructural evolution of Mg-Gd-Y-Zr alloy during hot compression. Mater. Sci. Eng. A 2021, 826, 142026. [Google Scholar] [CrossRef]
- Zheng, X.W.; Luo, P.; Han, Z.L. Hot deformation behavior and processing map of high-strength Mg-2.5Nd-0.2Zn-1.0Zr alloy. J. Mater. Eng. Perform. 2022, 31, 1222–1230. [Google Scholar] [CrossRef]
- Wang, S.H.; Ma, J.F.; Yang, J.L.; Zhang, W.C.; Sun, Y.P.; Pan, J.Q.; Wang, H.X.; Chen, W.Z. Improving the ductility of Mg-2.5Nd-0.5Zn-0.5Zr alloy by multi-pass hot rolling. J. Mater. Res. Technol. 2021, 14, 2124–2130. [Google Scholar] [CrossRef]
- Bohlen, J.; Nürnberg, M.R.; Senn, J.W.; Letzig, D.; Agnew, S.R. The texture and anisotropy of magnesium-zinc-rare earth alloy sheets. Acta Mater. 2007, 55, 2101–2112. [Google Scholar] [CrossRef] [Green Version]
- Robson, J.D.; Henry, D.T.; Davis, B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation. Acta Mater. 2009, 57, 2739–2747. [Google Scholar] [CrossRef]
- Basu, I.; Al-Samman, T. Triggering rare earth texture modification in magnesium alloys by addition of zinc and zirconium. Acta Mater. 2014, 67, 116–133. [Google Scholar] [CrossRef]
- Deng, K.K.; Li, J.C.; Xu, F.J.; Nie, K.B.; Liang, W. Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite. Mater. Des. 2015, 67, 72–81. [Google Scholar] [CrossRef]
- Vagarali, S.S.; Langdon, T.G. Deformation mechanisms in h.c.p. metals at elevated temperatures-II. Creep behavior of a Mg-0.8% Al solid solution alloy. Acta Mater. 1982, 30, 1157–1170. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhao, G.Q.; Xu, X.X.; Chen, X.X.; Zhang, C.S. Constitutive modeling, processing map establishment and microstructure analysis of spray deposited Al-Cu-Li alloy 2195. J. Alloy. Compd. 2019, 779, 735–751. [Google Scholar] [CrossRef]
- Yang, Q.B.; Wang, X.Z.; Li, X.; Deng, Z.H.; Jia, Z.H.; Zhang, Z.Q.; Huang, G.J.; Liu, Q. Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression. Mater. Charact. 2017, 131, 500–507. [Google Scholar] [CrossRef]
- Sahoo, B.N.; Panigrahi, S.K. Deformation behavior and processing map development of AZ91 Mg alloy with and without addition of hybrid in-situ TiC+TiB2 reinforcement. J. Alloy. Compd. 2019, 776, 865–882. [Google Scholar] [CrossRef]
- Liu, Z.G.; Li, P.J.; Xiong, L.T.; Liu, T.Y.; He, L.J. High-temperature tensile deformation behavior and microstructure evolution of Ti55 titanium alloy. Mater. Sci. Eng. A 2017, 680, 259–269. [Google Scholar] [CrossRef]
- Fan, D.G.; Deng, K.K.; Wang, C.J.; Nie, K.B.; Shi, Q.X.; Liang, W. Hot deformation behavior and dynamic recrystallization mechanism of an Mg-5wt.%Zn alloy with trace SiCp addition. J. Mater. Res. Technol. 2021, 10, 422–437. [Google Scholar] [CrossRef]
Material Constants | Coefficients | ||||||
---|---|---|---|---|---|---|---|
α | 0.01 | 0.09 | −0.65 | 2.51 | −5.09 | 5.03 | −1.93 |
n | 15.56 | −170.07 | 1127.68 | −4034.49 | 7904.61 | −7960.32 | 3217.49 |
Q | 507.57 | −5781.23 | 43757.45 | −170718.30 | 354866.01 | −373319.75 | 156209.15 |
lnA | 88.95 | −1033.31 | 7893.32 | −31410.53 | 66790.89 | −71967.43 | 30880.84 |
(n) Values | Deformation Mechanisms | Ref. |
---|---|---|
2 | Grain boundary sliding | [25] |
3 | Viscous glide of dislocation | [26] |
5 | Dislocation climb | [40] |
8 and above | Cross-slip of screw dislocations/Constant substructure model | [36] |
Temperature (K) | Q (kJ/mol) | n | ||||
---|---|---|---|---|---|---|
0.001 s−1 | 0.01 s−1 | 0.1 s−1 | 1 s−1 | 10 s−1 | ||
573 | 271.9 | 268.9 | 224.3 | 197.7 | 144.4 | 4.86 |
623 | 203.5 | 201.3 | 167.9 | 148.1 | 108.1 | 3.64 |
673 | 199.3 | 197.1 | 164.4 | 144.9 | 105.9 | 3.56 |
723 | 197.8 | 195.7 | 163.2 | 143.9 | 105. 0 | 3.54 |
773 | 182.7 | 180.7 | 150.7 | 132.8 | 97.1 | 3.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Wang, S.; Yang, J.; Zhang, W.; Chen, W.; Cui, G.; Chu, G. Hot Deformation Behavior, Processing Maps and Microstructural Evolution of the Mg-2.5Nd-0.5Zn-0.5Zr Alloy. Materials 2022, 15, 1745. https://doi.org/10.3390/ma15051745
Ma J, Wang S, Yang J, Zhang W, Chen W, Cui G, Chu G. Hot Deformation Behavior, Processing Maps and Microstructural Evolution of the Mg-2.5Nd-0.5Zn-0.5Zr Alloy. Materials. 2022; 15(5):1745. https://doi.org/10.3390/ma15051745
Chicago/Turabian StyleMa, Junfei, Songhui Wang, Jianlei Yang, Wencong Zhang, Wenzhen Chen, Guorong Cui, and Guannan Chu. 2022. "Hot Deformation Behavior, Processing Maps and Microstructural Evolution of the Mg-2.5Nd-0.5Zn-0.5Zr Alloy" Materials 15, no. 5: 1745. https://doi.org/10.3390/ma15051745
APA StyleMa, J., Wang, S., Yang, J., Zhang, W., Chen, W., Cui, G., & Chu, G. (2022). Hot Deformation Behavior, Processing Maps and Microstructural Evolution of the Mg-2.5Nd-0.5Zn-0.5Zr Alloy. Materials, 15(5), 1745. https://doi.org/10.3390/ma15051745