Analysis of Engineering Characteristics and Microscopic Mechanism of Red Mud–Bauxite Tailings Mud Foam Light Soil
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.1.1. Red Mud and Bauxite Tailings Mud
2.1.2. Foaming Agent
2.1.3. Cement
2.2. Test Design and Specimen Preparations
2.3. Experimental Scheme
2.3.1. Fluidity and Wet Density Test
2.3.2. Unconfined Compression Test
2.3.3. XRD Test
2.3.4. SEM Test
2.3.5. Determination of Na+
3. Results and Discussion
3.1. Fluidity and Wet Density
3.2. Unconfined Compressive Strength Test
3.3. XRD Analysis
AlO2− + 2OH− + 2H2O = [Al(OH)6]3−
2[Al(OH)6]3− + 3Ca2+ + (X − 6)H2O = Ca3Al2O6·XH2O
2[Al(OH)6]3− + 6Ca2+ + 3SO42− + 26H2O = Ca6Al2(SO4)3(OH)12·26H2O
3.4. SEM Analysis
3.5. Analysis of Alkali Release Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, Y.S.; Jiang, J.; Ou, X.D.; Qin, J.X. Investigating the properties of foamed mixture lightweight soil mixed with bauxite tailings as filler. Adv. Mater. Sci. Eng. 2019, 2019, 6295348. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Jin, H.X.; Deng, Y.; Xiao, Y.D. Comprehensive utilization status of red mud in china: A critical review. J. Clean. Prod. 2020, 289, 125136. [Google Scholar] [CrossRef]
- Khairul, M.A.; Zanganeh, J.; Moghtaderi, B. The composition, recycling and utilisation of bayer red mud. Resour. Conserv. Recycl. 2018, 141, 483–498. [Google Scholar] [CrossRef]
- Zhu, X.B.; Li, W.; Guan, X.M. An active dealkalization of red mud with roasting and water leaching. J. Hazard. Mater. 2015, 286, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.G.; Kong, X.F.; Zhu, F.; Hartley, W.; Li, X.F.; Li, Y.W. Proposal for management and alkalinity transformation of bauxite residue in China. Environ. Sci. Pollut. Res. 2016, 23, 12822–12834. [Google Scholar] [CrossRef]
- Zhu, F.; Li, Y.B.; Xue, S.G.; Hartley, W.; Wu, H. Effects of iron-aluminium oxides and organic carbon on aggregate stability of bauxite residues. Environ. Sci. Pollut. Res. 2016, 23, 9073–9081. [Google Scholar] [CrossRef]
- Mukiza, E.; Zhang, L.L.; Liu, X.; Zhang, N. Utilization of red mud in road base and subgrade materials: A review. Resour. Conserv. Recycl. 2019, 141, 187–199. [Google Scholar] [CrossRef]
- Lockwood, C.L.; Stewart, D.I.; Mortimer, R.; Mayes, W.M.; Jarvis, A.P.; Gruiz, K.; Burke, I.T. Leaching of copper and nickel in soil-water systems contaminated by bauxite residue (red mud) from Ajka, Hungary: The importance of soil organic matter. Environ. Sci. Pollut. Res. 2015, 22, 10800–10810. [Google Scholar] [CrossRef] [Green Version]
- Xue, S.G.; Zhu, F.; Kong, X.F.; Wu, C.; Huang, L.; Huang, N.; Hartley, W. A review of the characterization and revegetation of bauxite residues (Red mud). Environ. Sci. Pollut. Res. 2016, 23, 1120–1132. [Google Scholar] [CrossRef]
- Krivenko, P.; Kovalchuk, O.; Pasko, A.; Croymans, T.; Hutt, M.; Lutter, G.; Vandevenne, N.; Schreurs, S.; Schroeyers, W. Development of alkali activated cements and concrete mixture design with high volumes of red mud. Constr. Build. Mater. 2017, 151, 819–826. [Google Scholar] [CrossRef]
- Mandal, A.K.; Verma, H.R.; Sinha, O.P. Utilization of aluminum plant’s waste for production of insulation bricks. J. Clean. Prod. 2017, 162, 949–957. [Google Scholar] [CrossRef]
- Alam, S.; Das, S.K.; Rao, B.H. Characterization of Coarse Fraction of Red Mud as a Civil Engineering Construction Material. J. Clean. Prod. 2017, 168, 679–691. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Li, Z.P.; Ren, Y.Y.; Wang, Y.G.; Zhang, W. Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials. J. Clean. Prod. 2020, 284, 124777. [Google Scholar] [CrossRef]
- Deelwal, K.; Dharavath, K.; Kulshreshtha, M. Valuation of characteristic properties of red mud for possible use as a geotechnical material in civil construction. House IP Int. J. Adv. Eng. Technol. (IJAET) 2014, 7, 1053–1059. [Google Scholar]
- Kushwaha, S.S.; Kishan, D.; Dindorkar, N. Stabilization of expansive soil using Eko soil enzyme for highway embankment. Mater. Today Proc. 2018, 5, 19667–19679. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, W.; Shi, D. Effect of elevated temperature on the properties of geopolymer synthesized from calcined ore-dressing tailing of bauxite and ground-granulated blast furnace slag. Constr. Build. Mater. 2014, 69, 41–48. [Google Scholar] [CrossRef]
- Hu, Y.; Jia, Q.; Shan, S.; Li, S.; Jiang, L.; Wang, Y. Development of CaO-based sorbent doped with mineral rejects–bauxite-tailings in cyclic CO2 capture. J. Taiwan Inst. Chem. Eng. 2015, 46, 155–159. [Google Scholar] [CrossRef]
- Shan, S.Y.; Ma, A.H.; Hu, Y.C.; Jia, Q.M.; Peng, J.H. Development of sintering-resistant CaO-based sorbent derived from eggshells and bauxite tailings for cyclic CO2 capture. Environ. Pollut. 2015, 208, 546–552. [Google Scholar] [CrossRef]
- Yang, H.; Chen, C.; Sun, H.; Lu, H.; Xing, H. Influence of heat-treatment schedule on crystallization and microstructure of bauxite tailing glass–ceramics coated on tiles. J. Mater. Process. Tech. 2008, 197, 206–211. [Google Scholar] [CrossRef]
- Ou, X.D.; Yang, J.W.; Yin, X.T.; Liao, Y.F. Experimental study on mechanism for self-weight consolidation of the red mud tailings placed in the karsts. Appl. Mech. Mater. 2011, 90–93, 3102–3107. [Google Scholar] [CrossRef]
- Ou, X.D.; Peng, Y.S.; Mo, P.; Jiang, J. Study on physical mechanics and hydraulic characteristics of lightweight earth mixed with bauxite tailings. Mater. Guide 2020, 34 (Suppl. S1), 241–245. (In Chinese) [Google Scholar]
- Xue, S.G.; Wu, Y.J.; Li, Y.W.; Kong, X.F.; Zhu, F.; William, H.; Li, X.F.; Ye, Y.Z. Industrial wastes applications for alkalinity regulation in bauxite residue: A comprehensive review. J. Cent. South Univ. 2019, 26, 268–288. [Google Scholar] [CrossRef]
- GB/T 51238-2018; Technical Standard for Building Foundation in Karst Area. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2018.
- Wang, Z.Y.; Ye, J.Y. Study on the effects of metakaolin, slag and red mud on the properties of high performance mixed cement. Cement 2009, 1–4. (In Chinese) [Google Scholar]
- Fang, Y.G. Research on Resource Utilization of High Alkali Red Mud and Its Application. Ph.D. Thesis, Wuhan University of Technology, Wuhan, China, 2010. (In Chinese). [Google Scholar]
- CJJ/T 177-2012; Technical Specification for Foamed Mixture Lightweight Soil Filling Engineering. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2012.
- GB/T 2419-2005; Test Method for Fluidity of Cement Mortar. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2005.
- JTG3430-2020; Test Methods of Soils for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2020.
- GB 50986-2014; Code for Design of Dry Red Mud Stack. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2014.
- GB 7053-86; Long-Term Larch Testing of Solidified Radioative Waste Forms. State Department of Environmental Conservation: Beijing, China, 1986.
- JJG 630-2007; Flame Photometer. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2007.
- Zhang, N.; Liu, X.M.; Sun, H.H. Hydration characteristics of red mud coal gangue based medium calcium system cementitious materials. J. Mater. Res. 2014, 28, 325–332. (In Chinese) [Google Scholar]
- Viallis, H.; Faucon, P.; Petit, J.C.; Nonat, A. Interaction between Salts (NaCl, CsCl) and Calcium Silicate Hydrates (C−S−H). J. Phys. Chem. B 1999, 103, 5212–5219. [Google Scholar] [CrossRef]
- Li, Y. Influence Mechanism of Alkali on Shrinkage Cracking and Sand Rock Powder Activity of Cement-Based Materials. Ph.D. Thesis, Wuhan University, Wuhan, China, 2016. [Google Scholar]
- GB 3838-2002; Standard for Groundwater Quality. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2017.
Chemical Composition | Fe2O3 | Al2O3 | SiO2 | CaO | Na2O | K2O | MgO | TiO2 | MnO | LOI |
---|---|---|---|---|---|---|---|---|---|---|
Red mud | 29.5 | 21.6 | 15.1 | 11.5 | 9.21 | 0.16 | 0.60 | 5.59 | 0.21 | 5.10 |
Bauxite tailings mud | 14.93 | 38.10 | 28.32 | 0.32 | / | 0.78 | / | 1.70 | / | 3.02 |
Serial ID | Total Cementitious Material (kg/m3) | Cement (kg/m3) | Proportion of Red Mud Content (% by Weight) | Red Mud (kg/m3) | Bauxite Tailings Mud (kg/m3) | Foam (L/m3) | Water–Binder Ratio |
---|---|---|---|---|---|---|---|
B40R0 | 420 | 252 | 0 | 0.0 | 168.0 | 602 | 0.6 |
B36R4 | 420 | 252 | 4 | 16.8 | 151.2 | 602 | 0.6 |
B32R8 | 420 | 252 | 8 | 33.6 | 134.4 | 602 | 0.6 |
B28R12 | 420 | 252 | 12 | 50.4 | 117.6 | 602 | 0.6 |
B24R16 | 420 | 252 | 16 | 67.2 | 100.8 | 602 | 0.6 |
B20R20 | 420 | 252 | 20 | 84.0 | 84.0 | 602 | 0.6 |
Types of Test | Tested Mixture | Initial Water Content of Specimen (%) | Dimensions of Specimen (mm) | Curing Duration (Days) | Curing Conditions | Other Condition |
---|---|---|---|---|---|---|
Unconfined compression test | All mixture listed in Table 2 | Optimum water content | Φ 50 × H 50 | 7, 28 | 20 °C, 95% humidity | / |
Dry–wet circulation | All mixture listed in Table 2 | Optimum water content | Φ 50 × H 50 | 28 | 20 °C, 95% humidity | Five wetting–drying cycles, oven-dried under 105 °C |
Types of Test | Tested Mixture | Dimensions of Specimen (mm) | Curing Duration (Days) | Process |
---|---|---|---|---|
XRD | B40R0, B36R4, and B24R16 | Powdery | 28 | Dried the sample, ground the sample into powder |
SEM | B40R0, B36R4, and B24R16 | 6 × 4 × 2 | 28 | Sliced the sample, dried the sample, sprayed gold on the sample |
Serial ID | B40R0 | B36R4 | B32R8 | B28R12 | B24R16 | B20R20 |
---|---|---|---|---|---|---|
Ratio | 0.727 | 0.783 | 0.764 | 0.744 | 0.826 | 0.829 |
Serial ID | Red Mud Content (%) | 28 d UCS P1 (MPa) | After Five Times of the Dry–Wet Circulation of UCS P2 (MPa) | UCS Loss Rate (P1 − P2)/P1 |
---|---|---|---|---|
B40R0 | 0 | 0.401 | 0.293 | 0.269 |
B36R4 | 4 | 0.613 | 0.502 | 0.181 |
B32R8 | 8 | 0.757 | 0.635 | 0.161 |
B28R12 | 12 | 0.942 | 0.823 | 0.126 |
B24R16 | 16 | 1.056 | 0.942 | 0.108 |
B20R20 | 20 | 1.006 | 0.887 | 0.113 |
Serial ID | B40R0 | B36R4 | B24R16 |
---|---|---|---|
Porosity | 75.91 | 77.82 | 78.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, X.; Chen, S.; Jiang, J.; Qin, J.; Tan, Z. Analysis of Engineering Characteristics and Microscopic Mechanism of Red Mud–Bauxite Tailings Mud Foam Light Soil. Materials 2022, 15, 1782. https://doi.org/10.3390/ma15051782
Ou X, Chen S, Jiang J, Qin J, Tan Z. Analysis of Engineering Characteristics and Microscopic Mechanism of Red Mud–Bauxite Tailings Mud Foam Light Soil. Materials. 2022; 15(5):1782. https://doi.org/10.3390/ma15051782
Chicago/Turabian StyleOu, Xiaoduo, Shengjin Chen, Jie Jiang, Jinxi Qin, and Zhijie Tan. 2022. "Analysis of Engineering Characteristics and Microscopic Mechanism of Red Mud–Bauxite Tailings Mud Foam Light Soil" Materials 15, no. 5: 1782. https://doi.org/10.3390/ma15051782
APA StyleOu, X., Chen, S., Jiang, J., Qin, J., & Tan, Z. (2022). Analysis of Engineering Characteristics and Microscopic Mechanism of Red Mud–Bauxite Tailings Mud Foam Light Soil. Materials, 15(5), 1782. https://doi.org/10.3390/ma15051782