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Abstract: Compounds with lower dynamic stiffness are a better solution from the tyre/road noise
point of view. The article presents the constructed test stand for the evaluation of dynamic stiffness
both in in situ and in laboratory conditions. As a result of the tests, it was found that poroelastic
pavements have a much lower dynamic stiffness (from 138.3 to 143.0 dB re. 1 N/m) compared to
the asphalt concrete pavement (150.3 dB re. 1 N/m). In the group of poroelastic pavements, lower
dynamic stiffness is characteristic for pavements with a binder course of porous asphalt. The results
of the research are a contribution to further work on the influence of the dynamic stiffness of the
pavements on the tyre/road noise level. The conducted measurements and analysis of the results
prove the usefulness of the proposed test stand for determining the dynamic stiffness of bituminous
mixtures in laboratory and field conditions. This is confirmed by the coherence between the force
and acceleration signals at the level of at least 0.96—which indicates a very good validation of the
test results with a random error lower than ±5% with 90% confidence level.

Keywords: dynamic stiffness; wearing course; poroelastic pavements; test stand

1. Introduction

Solutions with a poroelastic wearing course are a special type of road pavement. Such
a surface is characterized by the fact that the upper layer of the surface is made of a mineral-
rubber-asphalt mixture. Such a mixture contains more than 20% air void content and about
20% rubber granules. A poroelastic pavement has a positive effect on the reduction in
the tyre/road noise level. This is due to better sound absorption because of high void
content, and lower stiffness as a result of the use of rubber granulate to partially replace
mineral aggregate. Research on poroelastic pavement was carried out as part of the SEPOR
project (TECHMATSTRATEG1/347040/17/NCBR/2018) [1]. A mineral-rubber-asphalt
mix with a maximum aggregate grain size of 8 mm (designated as PSMA8) and a maximum
aggregate grain size of 5 mm (designated as PSMA5) was embedded in the wearing course
of poroelastic pavement. The binder course was a mix of stone mastic asphalt (SMA 11)
and porous asphalt (PA11).

Figure 1 shows the sound spectra of a statistical passenger vehicle travelling at a speed
of 80 km/h on four surfaces (PSMA8—poroelastic pavement with a maximum grain size of
8 mm, PSMA5—poroelastic pavement with a maximum grain size of 5 mm, AC11—asphalt
concrete with a maximum aggregate grain size of 11 mm, PAC8—porous asphalt with a
maximum aggregate grain size of 8 mm), determined according to the method of controlling
travelling. The PSMA8, PSMA5 and AC11 pavements were built as test sections under the
SEPOR project, and the PAC8 pavement was used on one of the provincial roads in Poland.
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The first configuration of the test stand was presented in [2]. This paper presents the 
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Figure 1. Sound spectra of a statistical passing of a passenger vehicle travelling at a speed of 80 km/h
on four surfaces (PSMA8, PSMA5, AC11, PAC8).

Differences in sound levels in the frequency range above 500 Hz are partly due to
the different grain size of the aggregate and different void content. Considering the same
maximum aggregate grain size of PSMA8 and PAC8 mixtures and similar void content, it
can be assumed that the differences in sound levels result from varying levels of stiffness of
these layers. Contrary to the assessment of the load capacity of road surfaces, in the case of
tyre/road noise, pavements with lower stiffness are the better solution. In the literature,
despite general records on the impact of the stiffness of the upper pavement layers on the
tyre/road noise level, there are no clear findings in this regard.

Results of testing of the rolling noise of car tyres confirm the need to develop a test
stand that could be used to reliably determine both the dynamic stiffness of bituminous
mixtures in laboratory conditions and road pavements in field conditions.

The first configuration of the test stand was presented in [2]. This paper presents the
modifications introduced in the previously built test stand and also presents the results
of dynamic stiffness measurements carried out directly on poroelastic pavements and
on asphalt concrete pavement (in situ tests), as well as the results of tests carried out in
laboratory conditions on samples cut from these pavements.

2. Literature Review

The dynamic stiffness of asphalt mixtures is usually determined under laboratory
conditions. Such tests can be carried out with the use of universal testing machines or other
dedicated machines and devices. Usually, they are also equipped with thermal chambers
that enable the testing of samples under various temperature conditions.

The detailed method of preparing bituminous samples and performing stiffness mea-
surements is presented in standard DIN EN 12697-26:2012 [3]. In accordance with the
above-mentioned standard, stiffness can be determined in:

• a two-point bending test on trapezoidal specimens or prismatic specimens (2PB-TR
and 2PB-PR tests, respectively),

• a three-point bending test on prismatic specimens or a four-point bending test on
prismatic specimens (3PB-PR and 4PB-PR tests),

• an indirect tensile test on cylindrical specimens (with the use of devices for applying
repeated load pulse indirect tension—IT-CY tests, or a cyclic indirect tension—CIT-
CY test);

• a direct uniaxial test, in which cylindrical specimens are subjected to direct tension-
compression (DTC-CY test) or only direct tension (DT-CY test). In the latter case, when
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the test consists only of direct tension, the specimen may also have a prismatic shape
(DT-PR test).

The research methods specified in standard [3] were used, inter alia, in tests of asphalt
specimens presented in the works [4–6]. Mackiewicz and Szydło [4] for determining the
complex stiffness modulus E* and phase angle ϕ used the four-point bending test on
prismatic specimens (4PB-PR). The tests were carried out for the frequency of 10 Hz and
four temperatures (−5 ◦C, 0 ◦C, +10 ◦C, and +25 ◦C). Mazurek and Iwański [5] investigated
the dynamic stiffness modulus using the direct tension-compression test (DTC-CY). The
tests were carried out for six different frequencies (0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz and
20 Hz) and five temperatures (−7 ◦C, +5 ◦C, +13 ◦C, +25 ◦C and +40 ◦C). In the studies
of Li et al. [6] for determining the resilient modulus of the thin layer surfacing cores the
repeated load pulse indirect tension test (IT-CY) was used. The tests were carried out for
five different temperatures (+5 ◦C, +10 ◦C, +15 ◦C, +20 ◦C, +25 ◦C).

A slightly different methodology for determining the dynamic modulus for bitumen
samples in laboratory conditions was proposed in the report of the American Transportation
Research Board [7] and standard [8], in which the sample is subjected to cyclic uniaxial sinu-
soidal compression (and not cyclic direct tension (DT-CY test) or direct tension-compression
(DTC-CY test)—as was the case in the tests carried out in accordance with standard [3]).
This is how the dynamic modulus was determined in [9,10]. In [9], a dedicated “Dynamic
Shear Rheometer” (DSR) device was used for this purpose, which enables setting loads in
the frequency range from 0.01 Hz to 25 Hz. The tests were carried out for three different
temperatures: +4 ◦C, +20 ◦C and +40 ◦C. However, the paper does not indicate the specific
frequencies for which the measurements were carried out. In [10], the dynamic modulus
was tested with the use of the servo-hydraulic testing system MTS 370.10. The tests were
carried out for five temperatures (−10 ◦C, +4 ◦C, +21 ◦C, +37 ◦C, and +54 ◦C) and six
frequencies (0.1 Hz, 0.5 Hz, 1 Hz, 5 Hz, 10 Hz and 25 Hz).

In a very similar way, when using the repetitive sinusoidal dynamic compressive-axial
load, the dynamic modulus of bituminous samples under laboratory conditions was also
tested by Walubita et al. [11] and Zhang et al. [12] (in accordance with the guidelines of
the older standard [13]). In the first case [11], the tests were carried out for 10 different
bituminous mixtures, 3 frequencies (0.1 Hz, 1 Hz and 10 Hz) and 5 different temperatures
(−10 ◦C, +4.4 ◦C, +21.1 ◦C, +37.8 ◦C and +54.4 ◦C). In the second case [12], the dynamic
modulus was tested for six different types of bituminous mixtures at three frequencies
(0.1 Hz, 5 Hz and 10 Hz) and two temperatures (+37.8 ◦C and +54.4 ◦C).

In laboratory conditions, attempts were also made to test the dynamic stiffness of
samples from bituminous mixtures in the same way as was developed for materials used
under floating floors in dwellings. The detailed method of specimen preparation and
the procedure for testing the dynamic stiffness of these types of material are included in
standard EN 29052-1 [14]. The assumptions of this standard were used in study [15] to
determine the dynamic stiffness of two samples of Stone Mastic Asphalt (SMA) mix with
significantly different densities and samples of other materials (expanded polystyrene
(EPS), polyurethane (PU) and concrete). The main difference in the test procedure proposed
by Vázquez and Paje (called the Resonant Method) was that the tests were carried out on
cylindrical samples with surfaces aligned with a thin layer of plaster of Paris and placed
directly on the laboratory floor—while according to standard [14], the sample should be
rectangular and set on a base plate. Similarly to the tested sample, the load plate used
in tests [15] had the shape of a steel cylinder—with a height selected so that its mass
corresponded to 2 kPa of the static load exerted on the tested sample. In order to determine
the extrapolated vertical resonance frequency of the sample with the loading mass pressing
it, excitation was induced with a sinusoidal sweeping signal, which was carried out by
means of a small modal exciter attached to a three-legged tripod in the frequency range from
10 Hz to 1000 Hz. A number of years later, the authors of paper [16] conducted analogous
tests of dynamic stiffness with the use of the Resonant Method in the frequency range
from 10 Hz to 7 kHz. As before, two types of SMA bituminous mixtures with significantly
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different stiffness modulus were tested. Measurements of the dynamic stiffness for both
bituminous mixtures were carried out for three samples taken during the construction of
the road.

The stiffness measurements carried out in laboratory conditions are closely related
to the geometry and dimensions of the tested samples and do not take into account the
influence of the stiffness of the lower structural layers of the pavement on the tested
stiffness. The method of preparing/levelling the surface of the samples (or the lack of their
preparation) may also significantly affect the obtained results. Therefore, more and more
attempts are being made to test dynamic stiffness directly on road surfaces.

Field research is most often based on impulse excitation realized with impact/modal
hammers and the recording of motion response with one or more accelerometers (or other
types of transducers) bound or bolted to the wearing course of the pavement. An example
of this type of research is described in studies [17,18]. To determine the transfer function
and mechanical impedance [Ns/m], an impact hammer was used with an impedance head
(direct point) and an accelerometer (transfer point) bound to the road surface at a distance
of 10 cm from one another. The tests were carried out on the upper surface of five different
poroelastic road surfaces (PERS). In each of the test sites, a 6-fold impulse excitation was
performed (an impact hammer hit against a circular steel plate mounted on the upper
surface of the impedance head). A similar test procedure was used in laboratory conditions
on cuboidal samples bound with polyurethane binder to a massive concrete base with
dimensions of 1 m × 1 m.

Pulse excitation to test the stiffness of asphalt pavements was also used in the experi-
mental device “The PiScan Probe” [19]. In addition to the impact hammer, the device had
two accelerometers connected with a special frame and weighted from the top with addi-
tional mass to ensure better contact of the transducers with the road surface. The distance
between the accelerometers could be regulated—15 cm or 30 cm (it was 30 cm during the
tests). The pavement stiffness expressed by the average elastic modulus and, additionally,
its thickness were determined using the method of Enhanced Resonance Search (ERS) in
15 different testing sites. The algorithm of the ERS method—which is a combination of the
SASW (Spectral Analysis of Surface Waves) and Resonant Method (previously used for the
same purpose in the case of concrete pavements), is described in detail in [20].

Unfortunately, despite the fact that the impact excitation generated with the use of
modal hammers are quick, uncomplicated and convenient in the implementation of various
types of field measurements (mainly due to the fact that they do not require any special
fixture to the tested structure), they do not provide such a high Signal-to-Noise ratio as
the excitations generated by the use of modal shakers/exciters [21]. Impact excitations
generated with modal hammers are a very good solution for testing smaller, homogeneous
structures. On the other hand, excitations generated with the use of modal shakers/exciters
(e.g., random noise, sine sweeps, etc.) prove to be much more effective with more complex
structures—including non-linear structures [21,22].

Most probably, it is the significant non-linearity (typical of asphalt mixtures) and the
use of impulse excitation to test the stiffness of the road surface that should explain such
large differences between the determined (3.9–17.7 GPa) and the expected (2.5–3.2 GPa
according to the IKRAM Group Sdn. Bhd. Standard) values of elastic modulus and a
difference of up to 56% between what was expected and what was determined with the
use of the “The PiScan Probe” to assess the thickness of the asphalt layer [19].

That is why a reliable determination of asphalt pavement stiffness in in situ conditions
should be based on modal exciters rather than on impulse excitation.

A good starting point for developing a methodology for this type of research could be
laboratory methods using portable modal exciters to determine various types of measures
of stiffness of the tested material. Unfortunately, the stiffness of the asphalt pavement
cannot be determined in situ in accordance with the guidelines of standard [14]. The
procedure for determining the apparent dynamic stiffness per unit area can be used only in
the case of samples with specific dimensions and masses. Moreover, asphalt pavements are
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subject to much more intense and complex loads [23] than the materials used for vibration
isolation of floating floors, to which the standard applies [14].

A much better solution when it comes to the possibility of conducting field measure-
ments aimed at reliable determination of the dynamic parameters of asphalt mixtures,
equated with their stiffness, is the application of the guidelines used in modal analysis
and dynamic diagnostics of buildings, machines, and various types of vehicles, which
are included in ISO 7626-2:1990 [24]. The standard indicates the appropriate method of
determining the frequency response function, which is mechanical mobility [m/Ns]), using
single-point translational excitation with an attached vibration exciter. According to the
information contained in [24], in order to determine the mobility function (or any other
frequency response function) it is possible to use any excitation waveform (discretely
stepped or slowly swept sinusoidal excitation, stationary random excitation, pseudo-
random/periodic-chirp/periodic-impulse or periodic-random excitation) generated with
the use of electrohydraulic, electrodynamic or piezoelectric exciters—provided that the
frequency spectrum covers the frequency of interest.

The solution to enable testing the driving-point dynamic stiffness of asphalt mixtures
at the field site in a manner similar to that described in [24] was presented by Vázquez and
Paje in [15]. The Non-resonant Method (or the impedance method) does not require the
application of a loading mass on the entire upper surface of the sample, or determination
of the resonant frequencies of the sample-mass system—as was the case with the determi-
nation of the apparent dynamic stiffness per unit area of the test specimen in accordance
with the guidelines of standard [14]. In the case of the Non-resonant Method proposed
in [15], a small vibration exciter (suspended from a tripod with a pinion-crank system),
a stinger and an impedance head attached to a circular plate with a diameter of 14 mm
were used to test the dynamic stiffness of various types of construction materials (including
samples from SMA bituminous mixtures). In the study, random excitation was used. It was
shown in [15] that the dynamic stiffness of asphalt mixtures can be determined using the
Non-resonant Method, provided that all tests be carried out on samples of the same shape
and dimension. The main advantage of the Non-resonant Method is that it can be carried
out in situ. Unfortunately, Vázquez and Paje only carried out laboratory tests on samples
bound to a concrete slab with a thin layer of plaster of Paris and (as far as the authors of
this paper are aware of) they have not yet published the results of in situ measurements of
the dynamic stiffness of pavements.

Taking into account the maximum grain size of aggregate in asphalt mixtures used in
typical road surfaces (up to 11–14 mm), the dimensions of the circular plate were considered
insufficient for mediating in the transfer of dynamic forces to the tested samples adopted
in [15]. Moreover, the stresses on road surfaces loaded with vehicle traffic are much greater
(about 2.0 MPa—according to the result of numerical simulations presented in [23]), than the
loads occurring in the case of materials used for floating floors (0.4–4.0 kPa)—for which the
dedicated dynamic stiffness test procedure has been developed [14]. Reliable determination
of the dynamic stiffness of bituminous composites requires a larger diameter of the circular
plate through which the loads from the exciter are transmitted, and much larger values of
both static and dynamic loads that can be generated. That is why the authors of this study
developed their own test stand for broadband measurement of dynamic stiffness of vibro-
insulating materials and bituminous composites using the Resonant and Non-resonant
Methods. The test stand and the results of preliminary tests related to the laboratory testing
of the influence of different static and dynamic loads on the dynamic stiffness of cylindrical
samples of rubberised asphalt mixtures, stone mastic asphalt (SMA) mixtures and asphalt
concrete (AC) were presented in [2]. The obtained results were characterized by very high
repeatability and strong coherence of signals recorded with the use of an impedance head.

3. Test Stand for Measuring Dynamic Stiffness

At the stage of modernisation of the test stand for dynamic stiffness determination,
an assumption was made about the possibility of carrying out measurements with the
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Resonant and Non-resonant Methods in laboratory conditions (on samples of any shape and
dimension) and with the Non-resonant Method in field conditions implemented directly
on various types of road surfaces.

In the test stand, described in detail by the authors in [2], the input excitation in the
exciter was transferred to the tested structure (road surface or tested samples) via a drive
rod (a so-called stinger) and an impedance head mounted at the opposite end (according to
guidelines [24]), which allowed for the simultaneous measurement of driving-point force
and acceleration.

The impedance head is not directly attached to the tested structure. It is usually
screwed to the dedicated hexagonal mounting bases with a diameter of over a dozen mm,
which are bound to the tested structure. Taking into account the typical size of the aggregate
grains used in bituminous mixtures and taking into account the operating ranges of the
TIRA TV 51144IN inertial exciter (311 N in the case of a generated random signal) as well as
the PCB 2888D01 impedance head, it was considered a reasonable compromise to transfer
the loads from the exciter to the tested samples or the road surface through a steel circular
plate with a diameter of 30 mm, which provides over 4.5 times the load transfer surface
(7.07 cm2) than that adopted in the test stand described in [15].

In a previous study [2] it was emphasized that to improve the test stand it is necessary
to conduct further tests (on samples in laboratory conditions and in situ on road surfaces)
with the use of a stiffer stinger.

In further tests, two atypical stingers were used: one made of stainless steel; and the
other made of polyamide.

Dynamic stiffness tests using the above-mentioned stingers were carried out on
SEMAG-ACOUSTIC mats, type GF1-730 and GG1-930 (6 mm and 10 mm thick). The
test stand with mounted stainless steel and polyamide stingers is shown in Figure 2.
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Figure 2. View of the test stand with the stinger mounted: (a) made of stainless steel; (b) made
of polyamide.

As a result of the research, it was found that in the case of asphalt mixtures, a much
better solution is to use an atypical stinger made of polyamide (with a diameter almost
twice as large as the standard stinger made of nylon) or made of stainless steel. Therefore,
in further testing, whether carried out on bituminous samples in laboratory conditions or
directly on the road surface, a stinger made of rigid polyamide was used.

In order to increase the mobility of the test stand in laboratory conditions, a massive
cast iron measuring/scribing plate (the so-called test stand base) was mounted on a custom
designed steel support structure equipped with a set of three swivel wheels, which allows
researchers to move the stand freely. Additionally, a three-point mechanism for precise
screw lifting (for transport/displacement) and lowering was mounted on the steel support-
ing structure to secure it in a horizontal position on the laboratory floor for the duration
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of measurements (in the so-called measurement mode). The supporting structure of the
measuring base is shown in Figure 3.

Materials 2022, 15, 1821 7 of 19 
 

 

duration of measurements (in the so-called measurement mode). The supporting struc-

ture of the measuring base is shown in Figure 3. 

 

Figure 3. Base of the test stand (100 cm × 75 cm) with a visible supporting structure with a set of 3 

swivel wheels and a three-point screw mechanism used in the measurement mode. 

Other modifications were also made to the test stand. Instead of the 32-channel SCA-

DAS Recorder data acquisition system from SIEMENS, a 16-channel SCADAS Mobile 

measurement system (Plano, TX, USA) was used (with 24-bit measurement cards type 

VB8-II with a dynamic range of 130 dB and a signal-to-noise ratio of at least 106 dB). Ad-

ditionally, a control measurement was introduced based on the CMOS Multi-Function 

Analogue Laser Sensor—IL series produced by Keyence International, with an IL-600 sen-

sor head (measuring range from 200 to 1000 mm) and the IL-1000 type amplifier. The laser 

displacement measurement system is shown in Figure 4. 

  
(a) (b) 

Figure 4. Laser displacement measurement system by Keyence International (Mechelen, Belgium): 

(a) sensor head type IL-600; (b) amplifier type IL-1000. 

To power the data acquisition system and the amplifier and exciter in the field, a 

Honda EU20i single-phase portable generator with a nominal power of 1.6 kW (max 2.0 

kW), IP23 protection rating, and weight of approx. 21 kg was used. 

4. Research Methodology 

The study was divided into two stages. In the first stage (stage No. 1), measurements 

of dynamic stiffness were carried out directly on selected road surfaces (in situ). In the 

second stage (stage No. 2), the dynamic stiffness was determined in laboratory conditions 

on samples taken at the in-situ test sites. 

In situ measurements (stage No. 1) were carried out in Poland on the experimental 

section of the road near Kartoszyno (on 17 March 2021) and on pavements located in the 

Bialystok University of Technology campus (on 30 April 2021). In the case of the experi-

mental section in Kartoszyno, four test sites were selected on pavements with a poroelastic 

wearing course made of PSMA5 and PSMA8 with SMA11 and PA11 as binder courses. At 

the Bialystok University of Technology campus, research was carried out in one location 

with a typical asphalt concrete (AC) surface on a concrete base course. 

Figure 3. Base of the test stand (100 cm × 75 cm) with a visible supporting structure with a set of
3 swivel wheels and a three-point screw mechanism used in the measurement mode.

Other modifications were also made to the test stand. Instead of the 32-channel
SCADAS Recorder data acquisition system from SIEMENS, a 16-channel SCADAS Mobile
measurement system (Plano, TX, USA) was used (with 24-bit measurement cards type VB8-
II with a dynamic range of 130 dB and a signal-to-noise ratio of at least 106 dB). Additionally,
a control measurement was introduced based on the CMOS Multi-Function Analogue Laser
Sensor—IL series produced by Keyence International, with an IL-600 sensor head (measur-
ing range from 200 to 1000 mm) and the IL-1000 type amplifier. The laser displacement
measurement system is shown in Figure 4.
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Figure 4. Laser displacement measurement system by Keyence International (Mechelen, Belgium):
(a) sensor head type IL-600; (b) amplifier type IL-1000.

To power the data acquisition system and the amplifier and exciter in the field, a Honda
EU20i single-phase portable generator with a nominal power of 1.6 kW (max 2.0 kW), IP23
protection rating, and weight of approx. 21 kg was used.

4. Research Methodology

The study was divided into two stages. In the first stage (stage No. 1), measurements
of dynamic stiffness were carried out directly on selected road surfaces (in situ). In the
second stage (stage No. 2), the dynamic stiffness was determined in laboratory conditions
on samples taken at the in-situ test sites.

In situ measurements (stage No. 1) were carried out in Poland on the experimental
section of the road near Kartoszyno (on 17 March 2021) and on pavements located in
the Bialystok University of Technology campus (on 30 April 2021). In the case of the
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experimental section in Kartoszyno, four test sites were selected on pavements with a
poroelastic wearing course made of PSMA5 and PSMA8 with SMA11 and PA11 as binder
courses. At the Bialystok University of Technology campus, research was carried out in
one location with a typical asphalt concrete (AC) surface on a concrete base course.

In each of the adopted test sites, three measurements were taken at points separated by
at least 30 cm from one another. At each test site, samples were taken for further testing in
laboratory conditions. The mobile test stand and exemplary test sites are shown in Figure 5.
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Figure 5. Test site No. 5—asphalt concrete pavement (AC) on a concrete base course (internal road at
the Bialystok University of Technology campus).

In the second stage of the study (stage No. 2), measurements of dynamic stiffness
were carried out in the laboratory of the Bialystok University of Technology on samples
taken from road pavements where in situ measurements were carried out (from five test
sites). The samples drilled from the pavement were made to the standardized dimensions
(diameter: 10 cm; height: 7 cm) (Figure 6). The thickness of the layer of the PSMA5 and
PSMA8 poroelastic mixtures was 3 cm on average, and the thickness of the binder course
of SMA11 and PA11 was 4 cm on average.
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In Table 1 average values of selected parameters characterizing bituminous mixtures
are summarised, based on laboratory tests of samples taken from the tested pavements,
made at the Bialystok University of Technology [25,26]. Unfortunately, the article does
not contain more detailed information on the composition and production technology of
the poroelastic mixtures tested due to the fact that such data are kept confidential by the
manufacturer of the poroelastic mixtures and the surface contractor.

Table 1. Characteristics of the bituminous mixtures according to research at the Bialystok University
of Technology.

Bituminous Mixtures PSMA5 PSMA8 SMA11 PA11 AC

Coarse aggregate and crumb rubber (>2 mm),
% by mass 70.35 68.83 67.79 80.96 56.24

Fine aggregate 0/2, % by mass 10.56 10.43 15.92 6.30 28.92
Filler, fiber and hydrated lime, % by mass 10.88 12.27 9.92 6.02 9.36
Binder soluble, % by mass 8.21 8.47 6.37 6.72 5.48
Air void content, % 28.8 23.6 2.20 15.00 1.80
Bulk density, Mg/m3 1.466 1.553 2.453 2.092 2.393
Density, Mg/m3 2.059 2.030 2.459 2.358 2.436

For each of the samples, three measurements of dynamic stiffness were carried out
with the use of identical data acquisition settings and the signal generated by the exciter—as
in the case of in situ measurements.

To maximize the possibilities of the test stand, measurements of dynamic stiffness
were carried out in a frequency bandwidth that is twice as wide (2048 Hz) as in previous
tests [2]. The same number of spectral lines was assumed to obtain the Fast Fourier
Transform (FFT) resolution of the recorded signal at the level of 1 Hz—which is quite
sufficient considering the bandwidth, acquisition time of a single spectrum (1 s) and the
assumed total measurement time including 500 spectra measurements—necessary for later
averaging and obtaining results with at least 90% certainty that the random error of the
calculated frequency response function will be less than ±5% (according to [24], with the
coherence of the recorded signals at the level of 0.8, a minimum of 178 spectra averages
are required to be 90% confident that the random error of the computed magnitude of the
frequency response function is less than ±5%).

In accordance with the recommendations of ISO 7626-2 [24] the time-domain weighting
of the signals was undertaken using the Hanning time-weighting function. The total time
of data acquisition was not shortened in the measurements through the enabling the
Overlap function.

Analysis of preliminary test results show that the coherence of the recorded signals for
both in situ tests and lab samples of the pavement are close to 1.0 (in each case significantly
exceeding the value of 0.9). With 500 averages and such a high level of coherence of the
recorded signals, the random error should be significantly lower than ±5% [24].

The ISO 7626-2 [24] and PN-EN 29052-1 [14] standards allow for both sinusoidal (at
constant amplitude and variable excitation frequency), random (white noise) or shock
excitation. In the conducted measurements, a random excitation in the form of white
noise was used. The parameters of the generated random signal were set in a slightly
narrower band than the recorded vibrations—that is from 2.56 Hz to 2000 Hz. The signal
amplification after preliminary tests was assumed at the level of 0.2 V—at which the
permissible values of the acceleration of the exciter vibrations and the amplitude of the
force limited to +/−100 N are not exceeded.

With the applied static load from the exciter at the level of about 10 kg and the diameter
of the load plate of 30 mm, the sample load at the driving-point was 138.8 kPa.

The registration and analysis of the recorded data was carried out using the LMS
Test.Lab Spectral Testing software (version 16A, Siemens PLM Software, Plano, TX, USA).
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5. Field and Laboratory Test Results

Figures 7 and 8 show the averaged coherence functions (avg) for each of the tested
asphalt mixes—independently for laboratory tests (L) and in situ measurements (S). In
order to visualize the differences between the individual measurements, the coherence in
the charts is shown linearly on a scale from 0.95 to 1.001.
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In the following graphs (Figures 9 and 10), the exemplary results of in situ dynamic
stiffness measurements (S) and laboratory measurements on samples taken from the above-
mentioned sections (L) are presented. The dynamic stiffness in the graphs is presented
in [N/m] on the dB/Level scale. To better visualize the differences between individual
dynamic stiffness measurements, the graphs are not presented from 0—but from 100 dB
re. 1 N/m. In each of the following graphs, the maximum value on the vertical axis was
assumed to be 170 dB re. 1 N/m.

To facilitate the visual comparative analysis of the obtained dynamic stiffness, the
following diagrams have compiled averaged values from individual measurement series—
independently for in situ tests (Figure 11) and laboratory tests (Figure 12).
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Figure 9. Dynamic stiffness in the case of the PSMA5 poroelastic pavement with PA11 as binder
course—in situ measurements (S).
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Figure 11. Summary of averaged values of dynamic stiffness from individual measurement series for
in situ measurements (S).
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Figure 12. Summary of averaged values of dynamic stiffness from individual measurement series for
measurements on samples in the laboratory (L).

To visualize the differences in the dynamic stiffness obtained as a result of field tests
carried out directly on asphalt surfaces and tests carried out in laboratory conditions, all
averaged values were summarised in one graph (Figure 13):
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Figure 13. Comparison of the averaged values of dynamic stiffness from individual measurement
series for in situ measurements on road surfaces (S) and on samples in the laboratory (L).

The dynamic stiffness for selected frequencies (100 Hz, 300 Hz, 500 Hz and 1000 Hz)
is also summarised in tabular form (Tables 2–11). Additionally, arithmetic averages and
standard deviations were determined for each of the measurement series.

Table 2. Dynamic stiffness (dB re. 1 N/m) for PSMA5 poroelastic pavement with PA11 as binder
course—measurements in situ (S).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 137.4 136.6 137.2 137.1 0.4
300 138.5 138.0 138.5 138.3 0.3
500 138.1 138.1 138.9 138.4 0.5

1000 141.7 138.5 138.5 139.6 1.8
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Table 3. Dynamic stiffness (dB re. 1 N/m) for PSMA5 poroelastic pavement with SMA11 as binder
course—measurements in situ (S).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 140.0 140.1 138.6 139.6 0.8
300 140.7 140.7 139.7 140.4 0.5
500 140.2 141.1 140.8 140.7 0.5

1000 142.1 140.7 141.0 141.3 0.8

Table 4. Dynamic stiffness (dB re. 1 N/m) for PSMA8 poroelastic pavement with PA11 as binder
course—measurements in situ (S).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 139.6 139.5 143.0 140.7 2.0
300 140.5 141.0 143.2 141.6 1.4
500 140.2 139.0 143.9 141.0 2.6

1000 143.8 141.7 143.6 143.0 1.2

Table 5. Dynamic stiffness (dB re. 1 N/m) for PSMA8 poroelastic pavement with SMA11 as binder
course—measurements in situ (S).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 142.1 142.7 141.5 142.1 0.6
300 142.9 143.2 142.3 142.8 0.5
500 143.5 142.9 143.7 143.4 0.4

1000 143.2 144.8 142.8 143.6 1.1

Table 6. Dynamic stiffness (dB re 1 N/m) for asphalt concrete (AC) on a concrete base course—in situ
measurements (S).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 151.9 152.4 150.2 151.5 1.2
300 150.9 151.9 149.1 150.6 1.4
500 150.1 149.1 148.7 149.3 0.7

1000 148.7 152.5 148.4 149.9 2.3

Table 7. Dynamic stiffness (dB re. 1 N/m) for PSMA5 poroelastic layer with PA11 as binder course—
laboratory measurements (L).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 140.5 140.0 140.3 140.3 0.3
300 140.5 140.2 140.4 140.4 0.2
500 140.1 140.1 139.6 139.9 0.3

1000 140.7 140.3 140.5 140.5 0.2
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Table 8. Dynamic stiffness (dB re. 1 N/m) for PSMA5 poroelastic layer with SMA11 as binder
course—laboratory measurements (L).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 139.9 141.1 140.9 140.6 0.6
300 140.0 140.9 140.7 140.5 0.5
500 138.8 141.0 140.3 140.0 1.1

1000 140.9 141.5 141.0 141.1 0.3

Table 9. Dynamic stiffness (dB re. 1 N/m) for PSMA8 poroelastic layer with PA11 as binder course—
laboratory measurements (L).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 143.2 142.1 141.8 142.4 0.7
300 142.7 141.6 141.3 141.9 0.7
500 142.4 140.5 142.3 141.7 1.1

1000 142.9 141.4 141.4 141.9 0.9

Table 10. Dynamic stiffness (dB re. 1 N/m) for PSMA8 poroelastic layer with SMA11 as binder
course—laboratory measurements (L).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 142.3 141.7 141.9 142.0 0.3
300 142.1 141.5 141.3 141.6 0.4
500 141.2 139.5 139.7 140.1 0.9

1000 142.2 141.9 142.6 142.2 0.4

Table 11. Dynamic stiffness (dB re 1 N/m) for asphalt concrete (AC) on a concrete base course—
laboratory measurements (L).

Frequency Sample No. Average Value Standard Deviation[Hz] 1 2 3

100 155.1 155.4 156.2 155.6 0.6
300 149.5 150.1 150.8 150.1 0.6
500 142.1 148.4 150.9 147.1 4.5

1000 146.6 146.0 150.7 147.7 2.5

6. Results Analysis

The measurements and analysis of the recorded signals show that in each case there is
a very strong coherence between force and acceleration signals (practically in the entire
analysed frequency band the values are very close to 1.0). In the most unfavourable case
(measurement of the dynamic stiffness on a poroelastic pavement with a wearing course of
the PSMA8 with PA11 as binder course), the coherence does not fall below the level of 0.96.
According to the guidelines of ISO 7626-2 [24], with the coherence significantly above 0.8
and the use of averages from 500 spectra, a random error of less than ±5% was definitely
obtained with 90% confidence level. Coherence at a level so close to 1.0 indicates strong
validation of the research results.

Analysing the results of dynamic stiffness measurements carried out directly on the
tested poroelastic pavements, it was found that the pavement made of the PSMA5 with
the PA11 as binder course was characterized by the lowest stiffness. Dynamic stiffness
for selected frequencies in the range of 100–1000 Hz is from 137.1 to 139.6 dB re. 1 N/m.
Slightly higher stiffness was obtained in the case of the poroelastic pavement PSMA5 with
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SMA11 as binder course (139.6–141.3 dB re. 1 N/m). Much higher averaged dynamic
stiffness was obtained for the poroelastic pavement made of PSMA8 with PA11 as binder
course (140.7–143.0 dB re. 1 N/m). The highest dynamic stiffness in the case of poroelastic
pavements was obtained for the PSMA8 with SMA11 as binder course (142.1–143.6 dB re.
1 N/m). A pavement with a wearing course of asphalt concrete (AC) on a concrete base
course is characterized by a much higher dynamic stiffness than poroelastic pavements
and is in the range of 149.9–151.5 dB re. 1 N/m.

The data summarised in Tables 2–6 show that a satisfactory convergence of the results
for in situ measurements carried out within individual measurements series was obtained.
The standard deviations of the averaged values of dynamic stiffness did not exceed 1.2 dB
re. 1 N/m in most cases.

In the dynamic stiffness tests under laboratory conditions on samples taken from road
surfaces, the same trend of changes was found as in the field tests. The lowest dynamic
stiffness is characteristic of the PSMA5 with PA11 as binder course (139.9.3–140.5 dB re.
1 N/m). Slightly higher values were obtained for the PSMA5 with SMA11 as binder course
(140.0–141.1 dB re. 1 N/m). In the case of PSMA8 with SMA11 and PA11 as binder courses,
quite similar levels of average dynamic stiffness were obtained (139.7–142.6 dB re. 1 N/m).

Similarly, as in the case of dynamic stiffness tests of the road surface, also in the
case of laboratory tests, the highest values were obtained for samples of asphalt concrete
(147.1–155.6 dB re. 1 N/m).

The values of standard deviations for the results of measurements carried out in
laboratory conditions on samples of poroelastic layers did not exceed the value of 1.2 dB re.
1 N/m. For asphalt concrete (AC) samples on a cement concrete base course, the standard
deviation was 0.6 dB re. 1 N/m for frequencies of 100 and 300 Hz. The significant scatter at
higher frequencies (4.5 dB re. 1 N/m at 500 Hz) requires further analysis.

When comparing the averaged dynamic stiffness, it can be stated that there is a good
agreement between the values determined in the laboratory tests and the results obtained
in situ on road surfaces (Table 12).

Table 12. The averaged dynamic stiffness from all measurements in situ (S) and laboratory measure-
ments (L), dB re. 1 N/m.

Wearing Course/Binder Course S L

PSMA5/PA11 138.3 140.3
PSMA5/SMA11 140.5 140.6
PSMA8/PA11 141.6 142.0
PSMA8/SMA11 143.0 141.5
AC/Concrete (BUT) 150.3 150.1

There were, however, some differences in the values of dynamic stiffness in the range
of certain frequencies. They were caused by different test conditions. In the laboratory, the
tests were carried out with the use of a rigid cast iron surface plate, and under in situ condi-
tions, a flexible substructure and subsoil were under the binder course of the pavement.

The determined results confirm the lower stiffness of the PSMA5 (with the maximum
grain size of 5 mm) compared to the PSMA8 (with the maximum grain size of 8 mm). In the
case of the PSMA5, a more favourable effect of the PA11 as binder course on the dynamic
stiffness of the pavement was also noted. In both field and laboratory tests, a significantly
higher dynamic stiffness of the asphalt concrete pavement was found.

Based on the findings, it can be concluded that the dynamic stiffness influences
the differences in the levels of tyre/road noise between poroelastic surfaces and asphalt
concrete surfaces (see Figure 1). Such a statement is acceptable considering the fact that the
stiffness of the porous asphalt pavements is closer to that of the SMA and AC surfaces than
to the poroelastic pavements, as it was shown in [2]. However, from an acoustical point of
view, further research into the stiffness of the mixtures used for the top layers of pavements
is necessary.
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7. Conclusions

As part of the research, a similar trend was found in the distribution of dynamic
stiffness of the tested pavements and layers, both in the case of field measurements and
tests in laboratory conditions.

The lowest dynamic stiffness is characteristic of the PSMA5 on the porous asphalt
PA11 as binder course (the average values for in situ and laboratory tests were 138.3 and
140.3 dB re. 1 N/m, respectively). Slightly higher stiffness was established for the PSMA5
on the SMA11 as binder course (140.5 and 140.6 dB re. 1 N/m). Even higher values of
dynamic stiffness were found for the PSMA8 with PA11 and SMA11 as binder courses
(141.6 and 142.0 dB re. 1 N/m and 141.5 and 143.0 dB re. 1 N/m). The highest dynamic
stiffness in the group of tested mixtures was determined for asphalt concrete (AC) on a
cement concrete as base course (150.1 and 150.3 dB re. 1 N/m).

Slight differences in the values of dynamic stiffness in the range of certain frequencies
in the in situ and laboratory conditions result from different test conditions. In the labora-
tory, the tests were carried out with the use of a measuring base (in the form of a rigid cast
iron surface plate), and under in situ conditions, a flexible substructure and subsoil were
under the binder course of the pavement.

At the same time, satisfactory values of standard deviations within individual mea-
surement series were obtained. Slightly larger dispersions of the values of dynamic stiffness
in the vicinity of the mean values were noted in the case of in situ tests.

The findings concerning the dynamic stiffness of poroelastic and asphalt concrete
layers made as part of the study confirm its influence on the level of rolling noise. The
constructed test stand enables the testing of mineral-asphalt mixtures (including poroelastic
mixtures) in laboratory conditions before deciding to use them on a specific road in real
field conditions. However, it does not allow for the assessment of the pavement load
capacity due to the assumed range of the applied loads. It is necessary to continue the
research with the use of the proposed test stand and tire/road noise measurements to
develop the relationship between the stiffness and the level of generated sounds.

The conducted measurements and analysis of the results prove the usefulness of
the proposed test stand for determining the dynamic stiffness of bituminous mixtures in
laboratory and field conditions. This is confirmed by the coherence between the force and
acceleration signals at the level of at least 0.96—which indicates a very good validation of
the test results with a random error lower than ±5% with 90% confidence level.
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