
����������
�������

Citation: Fahmy, M.A.; Alsulami,

M.O. Boundary Element and

Sensitivity Analysis of Anisotropic

Thermoelastic Metal and Alloy Discs

with Holes. Materials 2022, 15, 1828.

https://doi.org/10.3390/ma15051828

Academic Editor: Pavel Novak

Received: 10 February 2022

Accepted: 24 February 2022

Published: 28 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Boundary Element and Sensitivity Analysis of Anisotropic
Thermoelastic Metal and Alloy Discs with Holes
Mohamed Abdelsabour Fahmy 1,2,* and Mohammed Owaidh Alsulami 3

1 Department of Mathematics, Jamoum University College, Umm Al-Qura University,
Makkah 25371, Saudi Arabia

2 Faculty of Computers and Informatics, Suez Canal University, New Campus, Ismailia 41522, Egypt
3 Department of Mathematical Sciences, Faculty of Applied Sciences, Umm Al-Qura University,

Makkah 24381, Saudi Arabia; s44286044@st.uqu.edu.sa
* Correspondence: maselim@uqu.edu.sa; Tel.: +96-653-793-0306

Abstract: The main aim of this paper was to develop an advanced processing method for analyzing
of anisotropic thermoelastic metal and alloy discs with holes. In the boundary element method
(BEM), the heat impact is expressed as an additional volume integral in the corresponding boundary
integral equation. Any attempt to integrate it directly will necessitate domain discretization, which
will eliminate the BEM’s most distinguishing feature of boundary discretization. This additional
volume integral can be transformed into the boundary by using branch-cut redefinitions to avoid the
use of additional line integrals. The numerical results obtained are presented graphically to show
the effects of the transient and steady-state heat conduction on the quasi-static thermal stresses of
isotropic, orthotropic, and anisotropic metal and alloy discs with holes. The validity of the proposed
technique is examined for one-dimensional sensitivity, and excellent agreement with finite element
method and experimental results is obtained.

Keywords: boundary element method; sensitivity; metal; alloy; anisotropic; thermoelasticity

1. Introduction

Thermoelastic analysis is a critical topic in engineering that has sparked a lot of
attention in recent years. Thermoelastic research can be carried out using experimental,
analytical, and numerical solutions. Only problems with simple geometry and specified
boundaries can be solved analytically. To solve problems with complicated boundaries,
numerical methods such as the finite element method (FEM) or the boundary element
method (BEM) must be utilized.

When thermal effects are considered, several methods for solving the volume integral
equation in the boundary element formulation have been presented over the years [1–3].
These methods include the dual reciprocity method [4] and multiple reciprocity method [5],
particular integral boundary element method [6], and the exact boundary integral transfor-
mation method (EBITM) [7]. The EBITM is the most attractive of these boundary element
methods since it maintains the BEM’s notion of border discretization without any addi-
tional internal treatments or numerical approximations. The EBITM has been successfully
employed to transform the volume integral to the boundary in isotropic thermoelasticity [8]
and anisotropic thermoelasticity [9].

The main purpose of the considered boundary element analysis is to convert the
additional volume integral into the boundary by using branch-cut redefinitions to avoid
utilizing additional line integrals.
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2. Formulation of the Problem

The thermoelastic field is estimated by solving the elastostatic boundary integral
equation with associated thermal data on a region Ω bounded by a surface S, generated
first by the boundary element analysis of the following heat conduction equations:

kij(x1, x2)Θ,ij = cρ
.

Θ, kij = k ji , (k12)
2 − k11k22 < 0, (i, j = 1, 2), (1)

where kij, c, ρ, and Θ are anisotropic thermal conductivity coefficients, specific heat capacity,
density, and temperature, respectively.

The plane-stress constitutive equations, which describe the relationship between stress
σij and strain εij for a homogeneous, anisotropic solid in the x1 − x2 plane (σ13 = σ23 =
σ33 = 0), can be expressed as follows:

σ11
σ22
σ12

 =

 c11 c12 c16
c12 c22 c26
c16 c26 c66


ε11
ε22

2ε12

,
ε11
ε22

2ε12

 =

 a11 a12 a16
a12 a22 a26
a16 a26 a66


σ11
σ22
σ12

,

(2)

where cmn and amn are the stiffness and compliance constants, respectively.
The generalized variable that describes the field point Q(x1, x2) position can be

expressed as
zj =

(
x1 − xp1

)
+ µj

(
x2 − xp2

)
, (3)

where µj is the material complex constant, and
(
xp1, xp2

)
are the global coordinates of the

source point P.

3. Boundary Element Implementation

In the presence of the thermal effect of Equation (1) in Equation (2), we can write the
following boundary integral equation [10]:

Θ(P) +
∫
S

(Θ∗q− q∗Θ)dS =
N

∑
q=1

Θq(P) +
∫
S

(Θ∗qq − q∗ Θq)dS

αq, (4)

where αq are unknown coefficients, n is the outward unit normal vector, q is the heat flux vector,
Θq and qq are particular solutions, and Θ∗ and q∗ are anisotropic fundamental solutions.

Equation (4) can be expressed as the following linear algebraic system [11]:

[H]{Θ} = [G]

{
∂Θ
∂n

}
, (5)

where H and G are nonsymmetric and symmetric matrices, respectively.
The thermoelastic field is estimated in a progressively coupled technique by solving

the elastostatic BIE with accompanying thermal data, generated first by the boundary
element solution of heat conduction.

The boundary integral equation based on the thermal effect can now be written as

cij(P)ui(P) =
∫
S

U∗ij(P ·Q)ti(Q)dS−
∫
S

T∗ij(P.Q)ui(Q)dS

+
∫
S

γiknkΘ(Q)U∗ij(P, Q)dS

−
∫
Ω

γikΘ,k(Q)U∗ij(P, q)dΩ,

(6)
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where cij, ui, ti, γik, U∗ij, and T∗ij are the free term, displacements, tractions, thermal moduli,
displacement fundamental solutions, and traction fundamental solutions, respectively.

The volume integral is represented by

Vj = −
∫
Ω

γikΘ,k(Q)U∗ij(P, q)dΩ (7)

According to Lekhnitskii [12], the fundamental solutions are

U∗ij

(
P,

Q
q

)
= 2Re

{
βik Ajklnzk

}
, (8)

T∗1j(P, Q) = 2n1Re

{
µ2

k Ajk

zk

}
− 2n2Re

{
µk Ajk

zk

}
(9)

T∗2j(P, Q) = −2n1Re
{

µk Ajk
zk

}
+ 2n2Re

{ Ajk
zk

}
. (10)

where βik and Ajk are complex constants, and Re{·} is the real value of the variable between
the brackets.

The volume integral in Equation (7) should be redefined in the transformed domain Ω̂
as follows:

Vj = −
∫
Ω

γ−ikΘ−,k(Q)U∗−ij(P, q)dΩ̂ (11)

in which

style γ−ik =

(
γ11

−γ11K12+γ12K11√
∆

γ21
−γ21K12+γ22K11√

∆

)
, (12)

where ∆ = k11k22 − k12 > 0
Then, the volume integral in Equation (11) can be written as follows [13]:

Vj =
∫
s

[(
γ−ikQ∗−ijk,tΘ− γ−ikQ∗−ijkΘ−,t

)
n−t − γ−ikU∗−ijΘn−k

]
dŜ (13)

where

Q∗−ijk = 2Re

{
βim Ajmµ−km

µ2
−1m + µ2

−2m
z−mlnz−m

}
, (14)

Q∗−ijk,t = 2Re

{
βim Ajmµ−kmµ−tm

µ2
−1 + µ2

−2
(1 + lnz−m)

}
, (15)

and
z−m = µ−jm

(
x̂j − x̂pj

)
, (16)

µ−mn =

(
K11+µ1K12√

∆
K11+µ2K12√

∆
µ1 µ2

)
. (17)

The above transformation can be valid upon adding the line integral as follows:

Vj =
∫
s
[(γ−ikQ∗−ijk,tΘ− γ−ikQ∗−ijkΘ−,t)n−t − γ−ikU∗−ijΘn−k]dŜ

+
m
∑

n=1

∫ L2n−2
L2n−1

Lj(ζ1)dζ1,
(18)

where ζ1 =
(

x1 − xp1
)

is the local coordinate of P, and (L1, L2), (L3, L4), [?], (L2n−1, L2n−2)
are integral intervals of all source points where branch-cut lines intersect the domain.
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Furthermore, Lj is expressed as

Lj = 4πΘγ−ik

(
K12
K11

Im
{

βip Ajpµ−1pµ−kp

µ2
−1p+µ2

−2p

}
+
√

∆
K11

Im
{

βip Ajpµ−2pµ−kp

µ2
−1p+µ2

−2p

})
−4πγ−ik

(
K12
K11

Θ−,1 +
√

∆
K11

Θ−,2

)
ζ1Im

{
βip Ajpµ−kp

µ2
−1p+µ2

−2p

}
−4πΘ

(
K12
K11

γ−i1 +
√

∆
K11

γ−i2

)
Im
{

βip Ajp
}

(19)

where Im{·} is the imaginary value of the variable between the brackets.
All source points whose branch-cut lines cross the domain require the additional line

integral to be integrated with intervals (L1, L2), (L3, L4), . . . , (L2n−1, L2n−2). To do so, a
strong and robust code is needed to determine all possible intersection points of all source
points. Consequently, not only is this inefficient computationally, but it is also extremely
difficult to build a strong and robust code to account for all conceivable occurrences of a
complex shape. Another significant disadvantage is the requirement to compute internal
thermal data along the branch-cut lines involved for evaluation of the extra line integral.
However, these internal thermal data can only be obtained after solving the boundary
integral equation for thermal analysis, and positions of the internal points are unknown
in advance. To do so, the BEM code for computing the associated thermal field must be
included into the mechanical analysis code, allowing the computations to be interconnected.
This necessitates validating the exact transformation without using the extra line integrals.
This procedure is covered in detail in below.

The additional line integral must be integrated over all source points with branch-cut
lines that cross the domain.

According to Shiah and Wang [13], we can write

Q∗−jjk,tt = U∗−ij,k, (20)

where ∫
Ω

γ−ikU∗−ij,kΘdΩ̂ =
∫
s

(
γ−ikQ∗−ijk,tΘ− γ−ikQ∗−ijkΘ−,t

)
n−tdŜ. (21)

The derivative of U∗ij in Equation (8) yields

U∗−ij,k = 2Re
{

βim Ajmµ−km

z−m

}
. (22)

The generalized variable z−m in the polar coordinates can be expressed as

z−m = r̂
(

µ−11 cos θ̂ + µ−21 sin θ̂
)

. (23)

By substituting Equation (23) into Equation (22), we have

U−ij,k =
2
r̂

Re

{
βi1 Aj1µ−k1

µ−11cosθ̂ + µ−21sinθ̂
+

βi2 Aj2µ−k2

µ−12cosθ̂ + µ−22sinθ̂

}
. (24)

Then, we can re-express U∗ij,k as

U∗−ij,k =
2
r̂

b

∑
n=−b

D(n)
−ijkeinθ̂ , (25)
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where b is an integer big enough to ensure series convergence,
(

r̂, θ̂
)

are the polar coor-

dinates, and D(n)
−ijk is the material complex constant. In the current work we considered

b = 16.
From Equation (23) and using the theory of Fourier series, we can write D(n)

−ijk as

D− jjk
n = 1

2π

π∫
−π

Re
{

βi1 Aj1µ−k1

µ−11cosθ̂+µ−21sinθ̂

+
βi2 Aj2µ↓2

µ−12cosθ̂+µ−22sinθ̂

}
e−inθ̂dθ̂.

(26)

Then, Q∗−ijk which satisfies Equation (20) can be expressed as

Q∗−ijk

(
r̂, θ̂
)
= r̂ρ−ijk

(
θ̂
)

. (27)

Substituting Equation (23) into Equation (20), we get

d2ρ−ijk

(
θ̂
)

dθ̂2
+ ρ−ijk

(
θ̂
)
= 2

b

∑
n=−b

D(n)
−ijkeinθ̂ . (28)

From Equation (28), ρ−ijk

(
θ̂
)

is determined to be

ρ−ijk

(
θ̂
)
=

b

∑
n=−b

2
(1− n2)

D(n)
−ijkeinθ̂ , (29)

when n = ±1, ρ−ijk

(
θ̂
)

is not properly defined in Equation (29). As a result, the Fourier
series of U∗−ij,k is split into two halves—one for n 6= ±1 and one for n = ±1.

Thus, we can write U∗−ij,k as

U−ij,−k =
2
r̂

(
D(1)
−ijkeiθ̂ + D(−1)

−ijk e−iθ̂
)

, (30)

where Q∗−ijk can be expressed as

Q∗−ijk

(
r̂, θ̂
)
= r̂lnr̂λ−ijk

(
θ̂
)

. (31)

Substituting Equation (31) into Equation (20), we obtain

λ−ijk

(
θ̂
)
+ ln r̂

d2λ−ijk

(
θ̂
)

dθ̂2
+ λ−ijk

(
θ̂
) = 2

(
D(1)
−ijkeiθ̂ + D(−1)

−ijk e−iθ̂
)

, (32)

where Equation (32) can be satisfied under the following condition:

λ−ijk
(
θ̂
)
= D(−1)

−ijk eiθ̂ + D(−1)
−ijk e−iθ̂ . (33)

Then, by using Equations (27), (29), (31), and (33), we can write Q∗−ijk as

Q∗−ijk
(
r̂, θ̂
)
= r̂

b
∑

n=−b
n 6=±1

2D(n)
−ijk

(1−n2)
einθ̂ + r̂ ln r̂

(
D(1)
−ijkeiθ̂ + D(−1)

−ijk e−iθ̂
)

, (34)

where D(n)
−ijk is computed using Equation (26).
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The explicit expression of Q∗−ijk,t may be written as follows [13]:

Q∗−ijk,1 =
b
∑

n=−b
n 6=±1

2D(n)
−jjk

(1−n2)
(cosθ − insinθ)einθ̂

+lnr̂
(

D(1)
−ijk + D(−1)

−ijk

)
+ cosθ̂

(
D(1)
−ijkeiθ̂ + D(−1)

−ijk e−iθ̂
)

,

(35)

Q∗−ijk,2 =
b
∑

n=−b
n 6=±1

2D(n)
−ijk

(1−n2)

(
sin θ̂ + in cos θ̂

)
einθ̂

+lnr̂
(

D(1)
−ijk − D(−1)

−ijk

)
+ sinθ

(
D(1)
−ijkeiθ̂ + D(−1)

−ijk e−iθ̂
)

.

(36)

4. Numerical Results and Discussion

To validate the analysis, we consider a thick hollow disc with four inside holes [13]. The
current problem was analyzed using FlexPDE 7 which is based on the finite element method
(FEM). For the elastic boundary conditions, the exterior surface was fully constrained,
although the interior was traction-free in all directions. Moreover, insulation was required
on all surfaces of the four inside holes.

The thermoelastic constants of monoclinic graphite–epoxy can be written as follows:
Elasticity tensor

Cpjkl =



430.1 130.4 18.2
130.4 116.7 21.0
18.2 21.0 73.6

0 0 201.3
0 0 70.1
0 0 2.4

0 0 0
0 0 0

201.3 70.1 2.4

19.8 −8.0 0
−8.0 29.1 0

0 0 147.3

GPa; (37)

Mechanical temperature coefficient

βpj =

 1.01 2.00 0
2.00 1.48 0

0 0 7.52

·106 N/km2; (38)

Thermal conductivity tensor

kpj =

 5.2 0 0
0 7.6 0
0 0 38.3

 W/km; (39)

Mass density ρ = 7820 kg/m3;
Heat capacity c = 461 J/(kg K).
Figures 1–3 show the effect of transient and steady-state heat conduction on the quasi-

static thermal stresses σ11, σ12, and σ22 along the x-axis in the transient, as well as the
steady-state heat conduction for isotropic, orthotropic, and anisotropic cases.

Figure 1 depicts the distribution of the quasi-static thermal stress component σ11 in the
context of the isotropic, orthotropic, and anisotropic materials. It demonstrates that, in the
context of the three considered materials, σ11 increases at first to a maximum value, before
decreasing to a minimum value in the transient heat conduction (THC) and steady-state
heat conduction (SHC). It shows that, in the context of the three considered materials, σ11
converges to zero with increasing distance x.
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1 
 

 
Figure 1. Variation of the thermal stress σ11 along x-axis in the transient and steady-state heat
con-duction for isotropic, orthotropic, and anisotropic cases.

Figure 2 depicts the distribution of the quasi-static thermal stress component σ12,
demonstrating that the stress component σ12 reaches a zero value. It shows that, in the
context of isotropic and orthotropic materials, σ12 increases to a maximum value, before
sharply decreasing in the transient and steady-state heat conduction. However, in the
context of the anisotropic material, σ12 increases to a maximum value, before decreasing
to a minimum value in the transient and steady-state heat conduction. In the context of
the three materials, σ12 converges to zero with increasing distance x, while the values of
the stress component σ12 in the transient heat conduction are higher than those in the
steady-state heat conduction.

1 
 

 Figure 2. Variation of the thermal stress σ12 along x-axis in the transient and steady-state heat
con-duction for isotropic, orthotropic, and anisotropic cases.
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Figure 3 shows the distribution of the quasi-static thermal stress component σ22 in
the context of the three materials; it begins with a negative value decrease in the transient
and steady-state heat conduction. The values of σ22 in the context of the isotropic and
orthotropic materials increase initially in the range 0 ≤ x ≤ 0.7, before decreasing in
the range 0.7 ≤ x ≤ 1, and again increasing to a maximum value in the transient and
steady-state heat conduction. However, in the context of the anisotropic material, σ22
increases at first, before decreasing to a minimum value in the transient and steady-state
heat conduction The values of the stress component σ22 in the transient heat conduction are
higher than those in the steady-state heat conduction and converge to zero with increasing
distance x in the transient and steady-state heat conduction.
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Quasi-static thermal stresses σ11 and σ12 of anisotropic thermoelastic metal and alloy
discs with holes were calculated on the inner surface of the disc, as well as the other four
holes inside. Figures 4 and 5 show the sensitivity variations of the thermal stresses σ11
and σ12 along the x-axis in the transient and steady-state heat conduction for isotropic,
orthotropic, and anisotropic cases.
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The numerical results of the quasi-static thermal stresses σ11 and σ12 for the four holes
are presented in Figures 6 and 7 for BEM and FEM analysis of anisotropic thermoelastic
metal and alloy discs with holes. It can be seen from these figures that the BEM results are
in very good agreement with the FEM results.
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and FEM.

The advantages of spark plasma sintering (SPS) over conventional hot pressing (HP)
or hot isostatic pressing (HIP), such as reduced sintering time and temperatures, min-
imize grain growth and frequently result in improved mechanical, physical, or optical
properties. Therefore, SPS has been used successfully to manufacture a variety of metals.
The thermoelastic problem studied in Wang et al. [14] can be treated as a special case of
our study of analysis of anisotropic thermoelastic metal and alloy discs with holes. To
analyze the thermal stress sensitivity distribution in the SPS process, we used the same
model as in [14] with the boundary element method (BEM). In this special case under
consideration, the numerical results for the quasi-static thermal stresses σ11 and σ12 are
shown in Figures 8 and 9. It can be seen from these figures that our BEM results are in
excellent agreement with the FEM results and experimental (Exp) results of Wang et al. [14].
We refer the interested readers to [15–22] for further references.
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Table 1 shows a comparison of the computer resources needed in the analysis of
anisotropic thermoelastic metal and alloy discs, for BEM with additional line integrals
(Case 1) versus BEM without additional line integrals (Case 2). It can be seen from this
table that the proposed BEM without additional line integrals is more accurate and efficient
than the BEM with additional line integrals.

Table 1. Comparison of computer resources required for BEM with additional line integrals (Case 1)
and BEM without additional line integrals (Case 2).

FEM BEM (Case 1) BEM (Case 2)

CPU time (min) 28 24 4

Memory (MB) 26 22 1

Disc space (MB) 38 32 0

Accuracy of results (%) 2.2 2.1 1.1

5. Conclusions

The examination of the numerical results and figures enables us to make some con-
cluding remarks:

1. The current research has received a lot of attention because of its practical applications
in fields such as astronautics, geomechanics, earthquake engineering, nuclear reactors,
material science, and other industrial applications.

2. Because the proposed boundary element approach only needs to solve the boundary
unknowns, it solves problems faster and more accurately than domain approaches
while also minimizing the solver’s processing costs.

3. Avoiding the use of additional line integrals by using branch-cut redefinitions in the
current study plays a significant role in all the physical quantities and their design
sensitivities.

4. The current results were validated against the numerical and experimental results
obtained through other methods previously validated. It should be noted that the BEM
results are in excellent agreement with the FEM and experimental results, confirming
the accuracy of the BEM technique.

5. Current numerical results for our complex and general problem may be of inter-
est to engineers and material science researchers, as well as those working on the
development of anisotropic thermoelastic metal and alloy discs with holes.
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6. It can be concluded from analysis results that the proposed technique is more efficient
than other techniques in the literature for analyzing anisotropic thermoelastic metal
and alloy discs with holes.

7. The numerical results show that the proposed BEM is ideal for analyzing anisotropic
thermoelastic metal and alloy discs with holes.
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