Highly Transparent and Polarization-Maintained Terahertz Plasmonic Metamaterials Based on Metal-Wire-Woven Hole Arrays: Fundamentals and Characterization of Transmission Spectral Peaks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Configuration of a Metal-Wire-Woven Hole Array
2.2. Principle of Metal-Hole-Guided THz Waves
2.3. Measurement of Metal-Hole-Guided THz Waves
3. Results
3.1. Spectral Features of Metal-Hole-Supported THz Resonance Waves
3.2. Transmittance Performance of Metal-Hole Resonance Waves
4. Discussion
4.1. Spectral-Peak Splitting of a Resonance Wave
4.2. Interaction between Woven Metal Wires and a Resonance Wave
4.3. Power Flow Distributions of Resonance Waves
4.4. Characterization and Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azad, A.K.; O’Hara, J.F.; Singh, R.; Chen, H.-T.; Taylor, A.J. A Review of Terahertz plasmonics in subwavelength holes on conducting films. IEEE J. Sel. Top. Quantum Electron. 2013, 19, 8400416. [Google Scholar] [CrossRef]
- Miyamaru, F.; Tanaka, M.; Hangyo, M. Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays. Phys. Rev. B 2006, 74, 153416. [Google Scholar] [CrossRef]
- Matsui, T.; Agrawal, A.; Nahata, A.; Vardeny, Z.V. Transmission resonances through aperiodic arrays of subwavelength apertures. Nature 2007, 446, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Cía, M.; Pacheco-Peña, V.; Kuznetsov, S.A.; Beruete, M. Extraordinary THz transmission with a small beam spot: The leaky wave mechanism. Adv. Opt. Mater. 2018, 6, 1701312. [Google Scholar] [CrossRef]
- Han, J.; Azad, A.K.; Gong, M.; Lu, X.; Zhang, W. Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies. Appl. Phys. Lett. 2007, 91, 071122. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Cao, G.; Yang, H.; Zhou, X.; Wu, Y. Dynamic Control of Double Plasmon-Induced Transparencies in Aperture-Coupled Waveguide-Cavity System. Plasmonics 2018, 13, 345–352. [Google Scholar] [CrossRef]
- Zhou, F.; Qin, F.; Yi, Z.; Yao, W.; Liu, Z.; Wu, X.; Wu, P. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance. Phys. Chem. Chem. Phys. 2021, 23, 17041. [Google Scholar] [CrossRef] [PubMed]
- Miyamaru, F.; Kamijyo, M.; Hanaoka, N.; Takeda, M.W. Controlling extraordinary transmission characteristics of metal hole arrays with spoof surface plasmons. Appl. Phys. Lett. 2012, 100, 081112. [Google Scholar] [CrossRef] [Green Version]
- Ong, J.R.; Chu, H.S.; Chen, V.H.; Zhu, A.Y.; Genevet, P. Freestanding dielectric nanohole array metasurface for mid-infrared wavelength applications. Opt. Lett. 2017, 42, 2639–2642. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.-W.; Tzuang, L.; Dah-Ching; Ye, Y.-H.; Wu, Y.-T.; Tsai, M.-W.; Chen, C.-Y.; Lee, S.-C. Effect of Wood’s anomalies on the profile of extraordinary transmission spectra through metal periodic arrays of rectangular subwavelength holes with different aspect ratio. Opt. Express 2009, 17, 2631–2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.W.; Park, T.H.; Nordlander, P.; Mittleman, D.M. Optimum areal coverage for perfect transmission in a periodic metal hole array. Appl. Phys. Lett. 2010, 97, 261112. [Google Scholar] [CrossRef] [Green Version]
- Janke, C.; Rivas, J.G.; Schotsch, C.; Beckmann, L.; Bolivar, P.H.; Kurz, H. Optimization of enhanced terahertz transmission through arrays of subwavelength apertures. Phys. Rev. B 2004, 69, 205314. [Google Scholar] [CrossRef]
- Danila, O.; Manaila-Maximean, D. Bifunctional Metamaterials Using Spatial Phase Gradient Architectures: Generalized Reflection and Refraction Considerations. Materials 2021, 14, 2201. [Google Scholar] [CrossRef]
- Octavian, D. Polyvinylidene Fluoride-Based Metasurface for High-Quality Active Switching and Spectrum Shaping in the Terahertz G-Band. Polymers 2021, 13, 1860. [Google Scholar]
- Li, H.; Atakaramians, S.; Lwin, R.; Tang, X.; Yu, Z.; Argyros, A.; Kuhlmey, B.T. Flexible single-mode hollow-core terahertz fiber with metamaterial cladding. Optica 2016, 3, 941–947. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Zang, X.; Cai, B.; Li, Z.; Xie, L.; Zhuang, S. Mode splitting transmission effect of surface wave excitation through a metal hole array. Light Sci. Appl. 2013, 2, e60. [Google Scholar] [CrossRef] [Green Version]
- Sabah, C.; Thomson, M.D.; Meng, F.; Tzanova, S.; Roskos, H.G. Terahertz propagation properties of free-standing woven-steel-mesh metamaterials: Pass-bands and signatures of abnormal group velocities. J. Appl. Phys. 2011, 110, 064902. [Google Scholar] [CrossRef]
- Liu, D.; You, B.; Lu, J.-Y.; Hattori, T. Characterization of Terahertz Plasmonic Structures Based on Metallic Wire Woven Meshes. In Proceedings of the 2018 Progress in Electromagnetics Research Symposium (PIERS), Toyama City, Japan, 1–4 August 2018; pp. 588–591. [Google Scholar]
- Yariv, A.; Yeh, P. Wave propagation in periodic media. In Photonics, 6th ed.; Oxford University Press, Inc.: Oxford, UK, 2007; Chapter 12; pp. 560–582. [Google Scholar]
- You, B.; Lu, J.-Y.; Liu, T.-A.; Peng, J.-L.; Pan, C.-L. Subwavelength plastic wire terahertz time-domain spectroscopy. Appl. Phys. Lett. 2010, 96, 051105. [Google Scholar] [CrossRef] [Green Version]
- Miyamaru, F.; Kondo, T.; Nagashima, T.; Hangyo, M. Large polarization change in two-dimensional metallic photonic crystals in subterahertz region. Appl. Phys. Lett. 2003, 82, 2568–2570. [Google Scholar] [CrossRef]
- Miyamarua, F.; Hangyo, M. Slab-thickness dependence of polarization change of terahertz waves transmitted through metal hole arrays. J. Appl. Phys. 2006, 99, 016105. [Google Scholar] [CrossRef]
- Saleh, B.E.A.; Teich, M.C. Electromagnetic optics. In Fundamentals of Photonics, 1st ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2001; Chapter 5; pp. 157–192. [Google Scholar]
- Miyamaru, F.; Hayashi, S.; Otani, C.; Kawase, K.; Ogawa, Y.; Yoshida, H.; Kato, E. Terahertz surface-wave resonant sensor with a metal hole array. Opt. Lett. 2006, 31, 1118–1120. [Google Scholar] [CrossRef] [PubMed]
- Miyamaru, F.; Takeda, M.W.; Suzuki, T.; Otani, C. Highly sensitive surface plasmon terahertz imaging with planar plasmonic crystals. Opt. Express 2007, 15, 14804–14809. [Google Scholar] [CrossRef] [Green Version]
- Miyamaru, F.; Hangyo, M. Finite size effect of transmission property for metal hole arrays in subterahertz region. Appl. Phys. Lett. 2004, 84, 2742–2744. [Google Scholar] [CrossRef]
- Tanaka, M.; Miyamaru, F.; Hangyo, M.; Tanaka, T.; Akazawa, M.; Sano, E. Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays. Opt. Lett. 2005, 30, 1210–1212. [Google Scholar] [CrossRef]
- Han, J.; Lu, X.; Zhang, W. Terahertz transmission in subwavelength holes of asymmetric metal-dielectric interfaces: The effect of a dielectric layer. J. Appl. Phys. 2008, 103, 033108. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Jinbo, W.; Sasagawa, Y.; Miyamaru, F.; Zhang, M.; Takeda, M.W.; Qiu, C.; Wen, W.; Sheng, P. Resonant terahertz transmissions through metal hole array on silicon substrate. Opt. Express 2010, 18, 18558–18564. [Google Scholar] [CrossRef] [Green Version]
- Hasebe, T.; Yamada, Y.; Tabata, H. Analysis of sharp dip structures on terahertz transmission spectra of metallic meshes. Jpn. J. Appl. Phys. 2012, 51, 04DL03. [Google Scholar] [CrossRef]
- Yoshida, H.; Ogawa, Y.; Kawai, Y.; Hayashi, S.; Hayashi, A.; Otani, C.; Kato, E.; Miyamaru, F.; Kawase, K. Terahertz sensing method for protein detection using a thin metallic mesh. Appl. Phys. Lett. 2007, 91, 253901. [Google Scholar] [CrossRef]
- Hasebe, T.; Yamada, Y.; Tabata, H. Label-free THz sensing of living body-related molecular binding using a metallic mesh. Biochem. Biophys. Res. Commun. 2011, 414, 192–198. [Google Scholar] [CrossRef]
- Wu, X.; Zheng, Y.; Luo, Y.; Zhang, J.; Yi, Z.; Wu, X.; Cheng, S.; Yang, W.; Yue, Y.; Wu, P. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity. Phys. Chem. Chem. Phys. 2021, 23, 26864–26873. [Google Scholar] [CrossRef]
GA (mm) | Mw (mm) | Gu (mm) | RC (mm) | θ (°) | ρv (%) |
---|---|---|---|---|---|
0.27 | 0.125 | 0.665 | 0.233 | 45.43 | 74 |
0.20 | 0.106 | 0.506 | 0.213 | 47.04 | 71 |
0.15 | 0.079 | 0.379 | 0.160 | 48.29 | 71 |
0.13 | 0.063 | 0.323 | 0.124 | 44.61 | 73 |
0.09 | 0.036 | 0.216 | 0.070 | 36.22 | 77 |
Unit Cell | G (mm) | MY (mm) | MX (mm) | T (mm) | ρv (%) | Section |
---|---|---|---|---|---|---|
Two-hole unit | 1.17 | 1.51 | 0.89 | 0.81 | 17.4 | - - |
0.73 | 1.01 | 0.57 | 0.56 | 16.3 | ||
0.67 | 1.05 | 0.61 | 0.55 | 13.3 | ||
0.59 | 0.94 | 0.54 | 0.41 | 13.1 | ||
0.46 | 0.86 | 0.50 | 0.37 | 10.3 | ||
One-hole unit | 0.75 | 1.03 | 1.00 and 2.00 | 5.5 | (1) | |
0.47 | 1.17 | 4.9 | (2) | |||
0.33 | 0.84 | 5.4 | (3) | |||
0.28 | 0.76 | 4.0 | (4) | |||
0.23 | 0.69 | 5.0 | (5) | |||
0.18 | 0.61 | 5.0 | (6) | |||
One-slit unit | 0.78 | 0.73 0.56 0.51 0.55 | - - | 0.10 | 52.0 | - - |
0.73 | 0.39 | 56.0 | ||||
0.50 | 0.20 | 50.0 | ||||
0.25 | 0.69 | 31.0 |
Metal Hole Array (MHA) | High THz Transparency > 90% | Linear Polarization Maintenance | Free Dielectric Substrate Loss | EOT of THz SRW | Bendable and Deformable Features |
---|---|---|---|---|---|
MWW-HAs | ✓ | ✓ | ✓ | ✗ | High, robust metal structures |
Metal-slab-perforated HAs [8,24,25,26,27] | ✗ | ✗ | ✓ | ✓ | Low |
MHA patterns on semiconductor slabs | ✓ (Asymmetric holes) [5,28] | ✗ | ✗ (High loss) | ✓ | ✗ |
✗ (Symmetric holes) [29] | |||||
MHA pattern on polymer membranes [30,31,32] | ✓ | - - Not available | ✗ (Low loss) | ✓ | High, weak metal structures |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, B.; Lu, J.-Y.; Chen, P.-L.; Hung, T.-Y.; Yu, C.-P. Highly Transparent and Polarization-Maintained Terahertz Plasmonic Metamaterials Based on Metal-Wire-Woven Hole Arrays: Fundamentals and Characterization of Transmission Spectral Peaks. Materials 2022, 15, 1871. https://doi.org/10.3390/ma15051871
You B, Lu J-Y, Chen P-L, Hung T-Y, Yu C-P. Highly Transparent and Polarization-Maintained Terahertz Plasmonic Metamaterials Based on Metal-Wire-Woven Hole Arrays: Fundamentals and Characterization of Transmission Spectral Peaks. Materials. 2022; 15(5):1871. https://doi.org/10.3390/ma15051871
Chicago/Turabian StyleYou, Borwen, Ja-Yu Lu, Po-Lun Chen, Tun-Yao Hung, and Chin-Ping Yu. 2022. "Highly Transparent and Polarization-Maintained Terahertz Plasmonic Metamaterials Based on Metal-Wire-Woven Hole Arrays: Fundamentals and Characterization of Transmission Spectral Peaks" Materials 15, no. 5: 1871. https://doi.org/10.3390/ma15051871
APA StyleYou, B., Lu, J. -Y., Chen, P. -L., Hung, T. -Y., & Yu, C. -P. (2022). Highly Transparent and Polarization-Maintained Terahertz Plasmonic Metamaterials Based on Metal-Wire-Woven Hole Arrays: Fundamentals and Characterization of Transmission Spectral Peaks. Materials, 15(5), 1871. https://doi.org/10.3390/ma15051871