Carbon Nanotube-Based Thermoelectric Modules Enhanced by ZnO Nanowires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Compounds
2.2. Synthesis of ZnO NWs
2.3. Assembly of Doped SWCNT Films
2.4. Characterization
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamakawa, Y. Solar PV Energy Conversion and the 21st Century’s Civilization. Sol. Energy Mater. Sol. Cells 2002, 74, 13–23. [Google Scholar] [CrossRef]
- Pereirinha, P.G.; González, M.; Carrilero, I.; Anseán, D.; Alonso, J.; Viera, J.C. Main Trends and Challenges in Road Transportation Electrification. Transp. Res. Procedia 2018, 33, 235–242. [Google Scholar] [CrossRef]
- Grenier, A.; Page, S. The Impact of Electrified Transport on Local Grid Infrastructure: A Comparison between Electric Cars and Light Rail. Energy Policy 2012, 49, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Filip, M.E.; Csaba, G.; Lelea, D. Comparative Analysis of Heat Recovery Methods from Internal Combustion Engines. IOP Conf. Ser. Mater. Sci. Eng. 2019, 477, 012011. [Google Scholar] [CrossRef]
- Monthioux, M.; Kuznetsov, V.L. Who Should Be given the Credit for the Discovery of Carbon Nanotubes? Carbon 2006, 44, 1621–1623. [Google Scholar] [CrossRef]
- Lekawa-Raus, A.; Patmore, J.; Kurzepa, L.; Bulmer, J.; Koziol, K. Electrical Properties of Carbon Nanotube Based Fibers and Their Future Use in Electrical Wiring. Adv. Funct. Mater. 2014, 24, 3661–3682. [Google Scholar] [CrossRef]
- Bandaru, P.R. Electrical Properties and Applications of Carbon Nanotube Structures. J. Nanosci. Nanotechnol. 2007, 7, 1239–1267. [Google Scholar] [CrossRef] [PubMed]
- Kumanek, B.; Janas, D. Thermal Conductivity of Carbon Nanotube Networks: A Review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Fina, A. Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Bazbouz, M.B.; Aziz, A.; Copic, D.; De Volder, M.; Welland, M.E. Fabrication of High Specific Electrical Conductivity and High Ampacity Carbon Nanotube/Copper Composite Wires. Adv. Electron. Mater. 2021, 7, 2001213. [Google Scholar] [CrossRef]
- Zou, J.; Liu, D.; Zhao, J.; Hou, L.; Liu, T.; Zhang, X.; Zhao, Y.; Zhu, Y.T.; Li, Q. Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity. ACS Appl. Mater. Interfaces 2018, 10, 8197–8204. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, C.; Yasuda, Y.; Takeya, S.; Ata, S.; Nishizawa, A.; Futaba, D.; Yamada, T.; Hata, K. Carbon Nanotube-Copper Exhibiting Metal-like Thermal Conductivity and Silicon-like Thermal Expansion for Efficient Cooling of Electronics. Nanoscale 2014, 6, 2669–2674. [Google Scholar] [CrossRef] [PubMed]
- Nakai, Y.; Honda, K.; Yanagi, K.; Kataura, H.; Kato, T.; Yamamoto, T.; Maniwa, Y. Giant Seebeck Coefficient in Semiconducting Single-Wall Carbon Nanotube Film. Appl. Phys. Express 2014, 7, 025103. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, N.; Ichinose, Y.; Dewey, O.S.; Taylor, L.W.; Trafford, M.A.; Yomogida, Y.; Wehmeyer, G.; Pasquali, M.; Yanagi, K.; Kono, J. Macroscopic Weavable Fibers of Carbon Nanotubes with Giant Thermoelectric Power Factor. Nat. Commun. 2021, 12, 4931. [Google Scholar] [CrossRef]
- Blackburn, J.L.; Ferguson, A.J.; Cho, C.; Grunlan, J.C. Carbon-Nanotube-Based Thermoelectric Materials and Devices. Adv. Mater. 2018, 30, 1704386. [Google Scholar] [CrossRef]
- Shi, X.; Sun, C.; Bu, Z.; Zhang, X.; Wu, Y.; Lin, S.; Li, W.; Faghaninia, A.; Jain, A.; Pei, Y. Revelation of Inherently High Mobility Enables Mg3Sb2 as a Sustainable Alternative to N-Bi2Te3 Thermoelectrics. Adv. Sci. 2019, 6, 1802286. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zheng, L.; Ge, B.; Lin, S.; Zhang, X.; Chen, Z.; Chang, Y.; Pei, Y. Promoting SnTe as an Eco-Friendly Solution for p-PbTe Thermoelectric via Band Convergence and Interstitial Defects. Adv. Mater. 2017, 29, 1605887. [Google Scholar] [CrossRef]
- Yan, X.; Liu, W.; Wang, H.; Chen, S.; Shiomi, J.; Esfarjani, K.; Wang, H.; Wang, D.; Chen, G.; Ren, Z. Stronger Phonon Scattering by Larger Differences in Atomic Mass and Size in P-Type Half-Heuslers Hf1−xTixCoSb0.8Sn0.2. Energy Environ. Sci. 2012, 5, 7543–7548. [Google Scholar] [CrossRef]
- Janas, D. From Bio to Nano: A Review of Sustainable Methods of Synthesis of Carbon Nanotubes. Sustainability 2020, 12, 4115. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Burghard, M. Chemically Functionalized Carbon Nanotubes. Small 2005, 1, 180–192. [Google Scholar] [CrossRef]
- Miners, S.A.; Rance, G.A.; Khlobystov, A.N. Chemical Reactions Confined within Carbon Nanotubes. Chem. Soc. Rev. 2016, 45, 4727–4746. [Google Scholar] [CrossRef] [PubMed]
- Nonoguchi, Y.; Ohashi, K.; Kanazawa, R.; Ashiba, K.; Hata, K.; Nakagawa, T.; Adachi, C.; Tanase, T.; Kawai, T. Systematic Conversion of Single Walled Carbon Nanotubes into N-Type Thermoelectric Materials by Molecular Dopants. Sci. Rep. 2013, 3, 3344. [Google Scholar] [CrossRef] [PubMed]
- Bulmer, J.S.; Lekawa-Raus, A.; Rickel, D.G.; Balakirev, F.F.; Koziol, K.K. Extreme Magneto-Transport of Bulk Carbon Nanotubes in Sorted Electronic Concentrations and Aligned High Performance Fiber. Sci. Rep. 2017, 7, 12193. [Google Scholar] [CrossRef]
- Kang, D.; Park, N.; Ko, J.; Bae, E.; Park, W. Oxygen-Induced p-Type Doping of a Long Individual Single-Walled Carbon Nanotube. Nanotechnology 2005, 16, 1048–1052. [Google Scholar] [CrossRef]
- Zappa, D.; Dalola, S.; Faglia, G.; Comini, E.; Ferroni, M.; Soldano, C.; Ferrari, V.; Sberveglieri, G. Integration of ZnO and CuO Nanowires into a Thermoelectric Module. Beilstein J. Nanotechnol. 2014, 5, 927–936. [Google Scholar] [CrossRef] [Green Version]
- Rdest, M.; Janas, D. Effective Doping of Single-Walled Carbon Nanotubes with Polyethyleneimine. Materials 2021, 14, 65. [Google Scholar] [CrossRef]
- Liu, P.; Fan, Z.; Mikhalchan, A.; Tran, T.Q.; Jewell, D.; Duong, H.M.; Marconnet, A.M. Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation. ACS Appl. Mater. Interfaces 2016, 8, 17461–17471. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, G.; Liu, C.; Fan, S. High-Density Carbon Nanotube Buckypapers with Superior Transport and Mechanical Properties. Nano Lett. 2012, 12, 4848–4852. [Google Scholar] [CrossRef]
- Wang, D.; Song, P.; Liu, C.; Wu, W.; Fan, S. Highly Oriented Carbon Nanotube Papers Made of Aligned Carbon Nanotubes. Nanotechnology 2008, 19, 075609. [Google Scholar] [CrossRef]
- Kumanek, B.; Przypis, Ł.; Wróbel, P.S.; Krzywiecki, M.; Walczak, K.Z.; Janas, D. Convenient but Powerful Method to Dope Single-Walled Carbon Nanotube Films with Iodonium Salts. Appl. Nanosci. 2020, 10, 529–539. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, M.S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A.G.; Saito, R. Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes. Carbon 2002, 40, 2043–2061. [Google Scholar] [CrossRef]
- Costa, S.; Borowiak-Palen, E.; Kruszynska, M.; Bachmatiuk, A.; Kalenczuk, R. Characterization of Carbon Nanotubes by Raman Spectroscopy. Mater. Sci.-Pol. 2008, 26, 433–441. [Google Scholar]
- Zhou, Q.; Wen, J.Z.; Zhao, P.; Anderson, W.A. Synthesis of Vertically-Aligned Zinc Oxide Nanowires and Their Application as a Photocatalyst. Nanomaterials 2017, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rust, C.; Li, H.; Gordeev, G.; Spari, M.; Guttmann, M.; Jin, Q.; Reich, S.; Flavel, B.S. Global Alignment of Carbon Nanotubes via High Precision Microfluidic Dead-End Filtration. Adv. Funct. Mater. 2021, 32, 2107411. [Google Scholar] [CrossRef]
- Komatsu, N.; Nakamura, M.; Ghosh, S.; Kim, D.; Chen, H.; Katagiri, A.; Yomogida, Y.; Gao, W.; Yanagi, K.; Kono, J. Groove-Assisted Global Spontaneous Alignment of Carbon Nanotubes in Vacuum Filtration. Nano Lett. 2020, 20, 2332–2338. [Google Scholar] [CrossRef] [PubMed]
- Lekawa-Raus, A.; Kurzepa, L.; Kozlowski, G.; Hopkins, S.C.; Wozniak, M.; Lukawski, D.; Glowacki, B.A.; Koziol, K.K. Influence of Atmospheric Water Vapour on Electrical Performance of Carbon Nanotube Fibres. Carbon 2015, 87, 18–28. [Google Scholar] [CrossRef]
- Nizam Uddin, M.; Siddiquey, I.A.; Jahurul Islam, M.; Fouad, O.A.; Nagano, M. 1H-1,2,3-Triazole, a Promising Precursor for Chemical Vapor Deposition of Hydrogenated Carbon Nitride. J. Cryst. Growth 2009, 311, 3528–3532. [Google Scholar] [CrossRef]
- Hayashi, D.; Nakai, Y.; Kyakuno, H.; Yamamoto, T.; Miyata, Y.; Yanagi, K.; Maniwa, Y. Improvement of Thermoelectric Performance of Single-Wall Carbon Nanotubes by Heavy Doping: Effect of One-Dimensional Band Multiplicity. Appl. Phys. Express 2016, 9, 125103. [Google Scholar] [CrossRef]
- Zhou, W.; Vavro, J.; Nemes, N.M.; Fischer, J.E.; Borondics, F.; Kamaras, K.; Tanner, D. Charge Transfer and Fermi Level Shift in P-Doped Single-Walled Carbon Nanotubes. Phys. Rev. B 2005, 71, 205423. [Google Scholar] [CrossRef] [Green Version]
- Jantrasee, S.; Moontragoon, P.; Pinitsoontorn, S. Thermoelectric Properties of Al-Doped ZnO: Experiment and Simulation. J. Semicond. 2016, 37, 092002. [Google Scholar] [CrossRef]
- Ishibe, T.; Tomeda, A.; Watanabe, K.; Kamakura, Y.; Mori, N.; Naruse, N.; Mera, Y.; Yamashita, Y.; Nakamura, Y. Methodology of Thermoelectric Power Factor Enhancement by Controlling Nanowire Interface. ACS Appl. Mater. Interfaces 2018, 10, 37709–37716. [Google Scholar] [CrossRef] [PubMed]
Sample | SWCNTs [mg] | PEI [M] | Triazole [M] | ZnO [mg] | Solvent Mixture [mL] |
---|---|---|---|---|---|
Pure SWCNT film | 150.0 | - | - | - | 80 |
n-doped SWCNT film | 150.0 | 0.1 | - | - | 80 |
n-doped SWCNT film filled with ZnO NWs (5 wt%) | 142.5 | 0.1 | - | 7.5 | 80 |
n-doped SWCNT film filled with ZnO NWs (10 wt%) | 135.0 | 0.1 | - | 15.0 | 80 |
n-doped SWCNT film filled with ZnO NWs (15 wt%) | 127.5 | 0.1 | - | 22.5 | 80 |
p-doped SWCNT film | 150.0 | - | 0.1 | - | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taborowska, P.; Wasiak, T.; Sahlman, M.; Lundström, M.; Janas, D. Carbon Nanotube-Based Thermoelectric Modules Enhanced by ZnO Nanowires. Materials 2022, 15, 1924. https://doi.org/10.3390/ma15051924
Taborowska P, Wasiak T, Sahlman M, Lundström M, Janas D. Carbon Nanotube-Based Thermoelectric Modules Enhanced by ZnO Nanowires. Materials. 2022; 15(5):1924. https://doi.org/10.3390/ma15051924
Chicago/Turabian StyleTaborowska, Patrycja, Tomasz Wasiak, Mika Sahlman, Mari Lundström, and Dawid Janas. 2022. "Carbon Nanotube-Based Thermoelectric Modules Enhanced by ZnO Nanowires" Materials 15, no. 5: 1924. https://doi.org/10.3390/ma15051924
APA StyleTaborowska, P., Wasiak, T., Sahlman, M., Lundström, M., & Janas, D. (2022). Carbon Nanotube-Based Thermoelectric Modules Enhanced by ZnO Nanowires. Materials, 15(5), 1924. https://doi.org/10.3390/ma15051924