o’ .
veel materials
ve w

Article

Bonding Behaviour of Steel Fibres in UHPFRC Based on
Alkali-Activated Slag

Alexander Wetzel *', Daniela Gobel, Maximilian Schleiting

check for
updates

Citation: Wetzel, A.; Gobel, D.;
Schleiting, M.; Wiemer, N.;
Middendorf, B. Bonding Behaviour
of Steel Fibres in UHPFRC Based on
Alkali-Activated Slag. Materials 2022,
15,1930. https://doi.org/10.3390/
mal5051930

Academic Editor: Doo-Yeol Yoo

Received: 16 February 2022
Accepted: 1 March 2022
Published: 4 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Niels Wiemer and Bernhard Middendorf

Department of Structural Materials and Construction Chemistry, University of Kassel, 34125 Kassel, Germany;
daniela.goebel@uni-kassel.de (D.G.); schleiting@uni-kassel.de (M.S.); niels.wiemer@uni-kassel.de (N.W.);
middendorf@uni-kassel.de (B.M.)

* Correspondence: alexander.wetzel@uni-kassel.de

Abstract: The mechanical performance of fibre-reinforced ultra-high-performance concrete based on
alkali-activated slag was investigated, concentrating on the use of steel fibres. The flexural strength
is slightly higher compared to the UHPC based on Ordinary Portland Cement (OPC) as the binder.
Correlating the flexural strength test with multiple fibre-pullout tests, an increase in the bonding
behaviour at the interfacial-transition zone of the AAM-UHPC was found compared to the OPC-
UHPC. Microstructural investigations on the fibres after storage in an artificial pore solution and a
potassium waterglass indicated a dissolution of the metallic surface. This occurred more strongly
with the potassium waterglass, which was used as an activator solution in the case of the AAM-UHPC.
From this, it can be assumed that the stronger bond results from this initial etching for steel fibres
in the AAM-UHPC compared to the OPC-UHPC. The difference in the bond strength of both fibre
types, the brass-coated steel fibres and the stainless-steel fibres, was rather low for the AAM-UHPC
compared to the OPC-UHPC.

Keywords: ultra-high-performance concrete; fibre pullout; silica fume; potassium waterglass; fibre
reinforcement

1. Introduction

The main characteristics of ultra-high-performance concrete are its low capillary
porosity and its high compressive strength [1]. Both characteristics evolve from its low
water/binder ratio and its microstructure optimization by the use of reactive fines such as
silica fumes. An issue with OPC-based ultra-high-performance concrete is the high content
of cement. Due to the benefits of its high compressive strength, less concrete is needed
and therefore, in terms of the CO,-, water-, and material-footprint, this type of concrete
can be beneficial [2]. Anyhow, the aim is to lower these footprints further by optimizing
the composition. Alkali-activated material is based on alumo-silicatic precursors, most
times slags, fly ashes, or metakaolin and an activator, usually alkali-waterglass or alkali-
hydroxide [3-5]. In prior work, it was reported that it is possible to produce a UHPC
without Portland cement by using alkali-activated slag [6]. Furthermore, it was shown
that due to the use of silica fumes in certain amounts, the rheological behaviour of the
AAM-UHPC could be improved and a water/binder ratio even lower than 0.2 could be
realized without using any superplasticizers. Anyhow, the use of superplasticizers in that
high-alkaline system is rather inefficient [7].

In the present study, this mix was optimized in terms of setting time and compressive
strength. Furthermore, a different kind of silica fume from ferro-silicium production was
used to reduce the cost of the final product. The main aspects of this paper, however, are
the mechanical characteristics under variations of the added steel fibres. For this reason,
flexural-bending tests were conducted as well as fibre-pullout tests [8]. In preliminary
investigations on UHPCs based on OPC single- and multiple-fibres, pullout tests were
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correlated with flexural-bending tests [9]. It is well known that steel fibres improve the post-
cracking behaviour of UHPCs [10]. Steel fibres in the size range of about 6-60 mm length
and 0.15-0.50 mm in diameter are used for UHPCs in an amount of about 1-3 vol% [11].
Beneath the benefits of higher bending strength and improved post-cracking behaviour,
the fibres preserve the concrete of macrocracks due to interlocking, resulting in the uni-
form distribution of microcracks [12]. Steel fibres show a tensile strength in the range
of 1000-2500 MPa. Under load, a crack occurs in the concrete, and when it widens, the
fibres are pulled out; due to frictional forces, improved post-cracking behaviour was dis-
played. In the case of fibre failure, the post-cracking behaviour, which might be described
as pseudo-ductile, gets lost. Thus, the geometry of the fibres and the bonding strength be-
tween fibres and the inorganic binder matrix are essential [13-15]. Therefore, the presented
investigations focus on the bond behaviour of the steel fibres in ultra-high-performance
concrete based on alkali-activated slag. It is proven whether the post-cracking behaviour
is enhanced, as is known for the UHPC based on OPC [9]. The correlation between the
flexural strength and the pullout strength is discussed.

2. Materials and Methods

The UHPC studied and optimized in these investigations is based on alkali-activated,
ground-granulated, blast-furnace slag, hereinafter referred to as slag. The activator solution
used was potassium waterglass. In prior work, a mix of alkali-hydroxide and a different
type of waterglass was used [6]. Two different potassium waterglass solutions were used
here, where the first one had a modulus (5i0,:K,0; mol%) of 3.9 and the second one of
1.0. Anyhow, the main aspect of the UHPC is its low porosity, which is gained by adding a
certain amount of fines following packing-density optimization [6]. Here, beneath quartz
powder, two different types of silica fumes were used. The first one was a co-product of
metallic-silicium production, and the second one was a co-product of ferro-silicium-alloy
production in electric-arc furnaces; the latter is denoted as the f-silica fume. The grain-
size distributions and the specific surfaces of all of the precursors are given in Table 1.
The specific surfaces of the fines were estimated with Blaine, for the slag and by the gas
adsorption after BET for the two types of silica fumes.

Table 1. Properties of raw materials.

Slag Metakaolin Silica Fume F-Silica Fume
Si0, (Wt%) 35.80 52.67 96.57 88.77
Al,O3 (Wt%) 11.70 4291 0.06 0.76
Fe;O3 (Wt%) 0.37 0.33 0.06 1.31
CaO (Wt%) 43.80 0.03 0.51 0.20
MgO (wt%) 5.80 0.07 0.25 0.55
MnO (Wt%) 0.30 0.01 0.02 0.13
KO (Wt%) 0.40 0.53 0.73 2.06
Na,O (wt%) 0.20 0.04 0.16 0.24
SO; (Wt%) 0.17 0.04 0.12 0.76
TiO, (Wt%) 1.08 0.03 0.01 0.04
LOI (Wt%) 0.27 3.25 1.41 4.73
spec. surf. (cm?/g) 3900 91,100 218,000 193,200
d10 (um) 1.2 1.5 0.3 0.2
d50 (um) 10.4 5.2 0.6 0.4
doo (nm) 31.7 20.8 19 9.8

The mixes were prepared in intensive mixers either with a volume of 1 dm? or 3 dm?.
All measurements were performed in an air-conditioned laboratory at 65% relative humidity
and at 20 °C. For the mixing procedure, first, the dry components without the sand were
mixed for 60 s, followed by the addition of the waterglass solution, followed by further
mixing for 180 s. Finally, after a break to remove the residual dry components on the mixing
tool and the container, the sand was added, and after another 150 s, the mix was directly
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poured into the moulds. If fibres were used, they were added directly after the addition of
the sand, taking care not to agglomerate the fibres. After covering, the samples were stored
at 20 °C and 65% r.h. After one day, the samples were demoulded and stored in closed
plastic bags at 20 °C until testing. Beneath the setting time, the spread flow was measured
directly after mixing under standard conditions (20 °C/65% r.h.). Flexural strength (DIN
EN 12390-5, [16]) and compressive strength (DIN EN 12390-3, [17]) were measured on
prisms measuring 40 x 40 x 160 mm?>. Therefore, after 4-point flexural strength testing,
the residual pieces were used for compressive strength tests.

To compare the results of the flexural strengths with each other, the averaged flexural
strengths were compared at three defined deformation values. These were defined in
accordance with the DafStb-guideline “Stahlfaserbeton” for deflections of 611 = 0.5 mm,
812 = 3.5 mm, and at maximum load [18]. For small deformations, the flexural strength is

referred to as the service-load range Uiﬂk 1), and for large deformations, as the fracture

range (folk 12)- The statistical-characteristic values of the post-cracking flexural strength
(N/mm?) are determined by the following equations [18]:
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F is the applied load (N), ! is the support distance (mm), b is the section width (mm), i
is the section height (mm), M is the moment (Nmm), W is the section modulus (mm?), and
the index i is the sample number.

Due to the post-cracking flexural strengths in the service- and fracture-load range, the
performance characteristics of the fibre concretes are clearly describable. The characteristic
values are required for the performance factor. These results depend on the coefficient of
variation (v):

For v >0.25

fZﬂk,Li =051 ‘fiﬂm,u ®G)
forv>0.25
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t is the threshold for t distribution (5%-fractile).

For further investigation on the bond behaviour between the metallic fibre and the
matrix, fibre-pullout tests were made. For the flexural strength and the fibre-pullout
tests, two different fibres were used (Figure 1); brass-coated steel fibres (SFs), which are
commonly used in UHPCs to increase the post-cracking behaviour, on the one hand, and on
the other hand, stainless-steel fibres (SSFs). Both fibre types had a length of 17 mm =+ 10%.
The SF consists of high-strength steel, with a tensile strength of approx. 2000 N/mm? and a
thickness of 0.2 mm =+ 15%. The SSFs are austenitic chromium-nickel steel fibres with a
tensile strength of approx. 1980 N/mm? and a thickness of 0.2 mm + 10%. The difference
in surface roughness is obvious from the SEM pictures (Figure 1c,d).

Fibre-pullout tests were conducted using a ‘Compact-Tension-Shear” device (CTS
test) to quantify the bond between the fibres and the binder matrix [8,9]. For the fibre-
pullout tests, the CTS device was used to measure 5 fibres simultaneously (Figure 2).
The fibre-pullout test was conducted in displacement control with a constant speed of
0.1 mm/s (using a 150 kN Zwick/Roell testing rig). The fibres were embedded in a gauge,
guaranteeing a straight-embedding angle and a defined distance to the sample rim and
between each fibre. For further descriptions, see Wiemer et al. 2020 [9], where the bond
behaviour of the OPC-UHPC and the same fibre types as in the present work were tested.
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Figure 1. Steel fibres in light microscope (a) brass-coated steel fibres (SF), (b) stainless-steel fibres (SSF);
and in SEM (low vacuum, secondary electron mode) (c) brass-coated steel fibre (SF), (d) stainless-steel
fibre (SSF).

b)

fibre

Figure 2. CTS device for the fibre-pullout tests: (a) installed sample for multiple-fibre pullout (5 fibres)
in the CTS device during a pullout, (b) sketch of setup.
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The maximum bond stress (Tyay) is calculated by the following equation:

Fp0x/fibre
Timax = ‘;‘IL ®)
f - 7T - le

where F;x is the maximum pullout load, df is the fibre diameter, and [, is the embedded

fibre length I,. The maximum fibre stress is a measure for the efficiency of the fibre
utilization [13]:

Fiax/fibre  Fyay/fibre

o = = 6

e = o ©®)

1

The utilization factor (1) quantifies the effectiveness of the fibres in percent. Its value
is defined as the ratio of the maximum tensile stress ¢,y of the fibre after pulling out the
tensile strength f, of the fibre. A utilization of more than 100% leads to a failure of the fibres.

- Ofmax

uf = fy

Additionally, force—displacement diagrams are used to quantify dissipated energy or
pullout work (Wp). In the present work, the dissipated energy is defined as the integral
over the entire embedding length of 5 mm, which indicates the work needed to pull out the
fibres. The dissipated energy is given in the unit of work (Nm).

s=5
Wp — / @ds ®)

=0

100 ()

In terms of the flexural strength, the dissipated energy can be considered as the work
that must be applied for the corresponding deflection of a specimen. In this case, the
calculation is made using a deflection in the centre of the prism from 0 mm to 5 mm.

After the pullout of the fibres, the interface at the embedding depth was characterized
via scanning electron microscopy. The single fibres were measured in a low vacuum (50 Pa)
with an acceleration voltage of 15 kV using a large-field detector for the secondary electron
(SE) mode and a low-voltage high-contrast detector (vCD) for the backscattered electron
(BSE) mode.

3. Results

The properties of fresh and hardened concrete were investigated for different types
of mixes (Table 2). As reported in [6], the M1 mix was composed of slag and silica fumes
as precursors, quartz sand and quartz powder were used as aggregates, and a mix of
potassium waterglass and potassium hydroxide was used as the activator solution. In
mix M2, a different type of waterglass solution was used (Wollner K57N), with a solid
content of 53% and a modulus (molar ratio of SiO,:K,0O) of 1 after the manufacturer’s
specification. Most obviously, the setting time improved to more than 100 min compared to
M1, the compressive strength was increased, and the workability was increased, showing
a slump flow of 340 mm, although the water/binder ratio was reduced. A reduction in
the w/b ratio (M3) led to a further increase in compressive strength. Beneath the slump
flow, the performance of M4 was comparable to M3; the difference in the mix design was
a different type of silica fume (SF2), which was derived from ferro-silicium production.
Further measurements with fibre reinforcement were conducted using the formulation M2
to counteract the workability decrease using fibres.
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Table 2. Mix composition for AAM-UHPC and OPC-UHPC formulation as a reference (ref:
Wiemer et al. 2020 [9].)

UHPC™f

M1 M2 M3 M4 (OPO)
Quartz sand (Wt%) 50 50 50 50 41.2
Quartz powder (Wt%) 8 8 8 8 8.5
Blast furnace slag (BFS) (Wt%) 27 27 27 27
CEMI52.5R SR/NA (Wt%) - - - - 34
Silica fume 1 (SF1) (Wt%) 15 15 15 - 7.2
Silica fume 2 (SF2) (Wt%) 0 - - 15 -
Waterglass modulus (Si0,:K,0) 39# 1+ 1+ 1+ -
KOH 10 molar v - - - -
KOH (10M)/K5SiO3 (3.9) (wt./wt.) 1.5 - - - -
Superplasticizer (PCE) (wt% bwoc) - - - - 1.3
w /b ratio * (wt./wt.) 0.250 0.230 0.175 0.175 0.21
Comp. strength (7d) (MPa) 108.0 162.9 188.4 190.9 138.2
Comp. strength (28d) (MPa) 157.5 194.2 211.8 212.8 176.7
Slump flow (mm) 220 340 300 240 280
Setting time (min) 29 116 106 100 560

* excluding solid content of activator solution. # solid content of 40%. * solid content of 53%.

Figures 3 and 4 show the average flexural strengths of the test samples with steel
and stainless-steel fibres (SFs and SSFs) for a fibre content of 1.0 vol% after 7 days and
28 days (Figure 4). The results are represented by the three characteristic values described
above according to the dAfStb-guideline [18], which reflects the characteristic ranges and
considers the standard deviations. The outlier samples of the strongly scattering measured
values or the untypical curves were taken out.

w
o

{ +-A+-SF13_1%_OPC-UHPC (n=6) ++0+-SSF13_1%_OPC-UHPC (n=6)
= —A—SF13_1%_AAM-UHPC (n=3) —-0—-SSF13_1%_AAM-UHPC (n=3)
=25
(=]
e
[
»
- 20
[
=
x
o
W 15 4
10 4
54
0 . . . . . . .
0.0 0.5 1.0 15 20 25 3.0 35 4.0

s [mm]

Figure 3. Flexural strength of AAM-UHPC compared to OPC-UHPC [9] after 7 days. The number n
of tests is given in the legend.

Table 3 lists all of the values determined for the two binder variations and the fibre
types by a fibre content of 1.0 vol% after 7 days. Summarized are the mean values of the
maximum force and the resulting flexural strengths. Moreover, the performance factor was
used for a direct comparison of the average characteristic values in the service range and
fracture range. Likewise, the dissipated energy over the flexural course up to a deflection
of 5 mm for comparison is given.
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Table 3. Comparison of the flexural strength values of SSF and SF as a function of concrete composition.

SF13_1%_OPC-UHPC SSF13_1%_OPC-UHPC
5]_1 =0.5mm 6L2 =3.5mm 6L(max) 6L1 =0.5mm 6L2 =3.5mm 6L(max)

mean forces [kN] 7.59 1.55 10.59 5.26 3.64 8.93
standard deviation F [kN] 0.90 0.28 0.98 2.06 1.70 1.30
standard deviation s [mm)] 0.00 0.00 0.26 0.00 0.00 0.54
average f.q, [MPa] 11.86 241 16.55 8.21 5.69 13.95
feax [MPa] 6.05 1.23 8.44 4.19 2.90 7.11
performance factor L 6.05/1.23 L 4.19/2.90

dissipated energy [Nm] 22.03 +£3.2 24.12+29

SF13_1%_AAM-UHPC SSF13_1%_AAM-UHPC
6L1 =0.5mm 6]_2 =3.5mm 6L(max) 5L1 =0.5mm 5L2 =3.5mm 6L(max)

mean forces [kN] 7.97 5.40 11.28 6.96 4.52 11.59
standard deviation F [kN] 0.42 0.55 0.75 0.37 1.04 0.49
standard deviation s [mm] 0.00 0.00 0.08 0.00 0.00 0.15
average f g, [MPa] 12.45 8.43 17.63 10.87 7.05 18.11
feax [MPa] 6.35 4.30 8.99 5.54 3.60 9.24
performance factor L 6.35/4.30 L 5.54/3.60

dissipated energy [Nm] 34.04+29 31.214+29

In the case of the OPC-UHPC, the specimens with the SF had a higher maximum
flexural strength compared to the specimens containing the SSE. In contrast, the dissipated
energy of the specimens with the SSF was higher compared to the specimens containing
the SF. Furthermore, the SSF led to a higher displacement of the sample at the maximum
flexural strength.

In the case of the AAM-UHPC, the maximum flexural strength was similar for both
fibre types and in general was somewhat higher compared to the OPC-UHPC samples.
Moreover, the dissipated energy was higher compared to the OPC-UHPC samples, so
higher flexural strengths at larger deflections were obtained for the AAM-UHPC.

~-SF13_1%_AAM-UHPC (n=3) -0-SSF13_1%_AAM-UHPC (n=3)

- A-SF13_1%_AAM-UHPC_28d (n=5) ©-SSF13_1%_AAM-UHPC_28d (n=4)
©
o
= 24.70
£ 25 !
g
[
1
=2 fL 18.92
-
=
E’ A 16.73
L 45
125
12.25
io:d - 10.66
’ 8.4
741
5 4
0 . . . . .
0.0 0.5 1.0 15 20 25 3.0 35 4.0
s [mm]

Figure 4. Flexural strength of AAM-UHPC after 7 (red curve) and 28 days (grey curve). The number
n of tests is given in the legend.

The results of the flexural strength of the AAM-UHPC after 28 days show a difference
between the modes of action of the two types of fibres. Compared to the SSF, the specimens
with the SF showed a maximum flexural strength that was about 23 percent higher (Table 4).
In general, significantly higher flexural strength was obtained by the SF after 28 days. In
addition, the maximum flexural strength at 28 days was obtained after late deflection,
with the specimens with the SSF showing the largest difference at a displacement of about
2.4 mm compared to a displacement of about 1.0 mm after 7 days. This is consistent with
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the dissipated energy values after 28 days, which are generally higher than the values after
7 days. The SF samples were able to dissipate significantly more energy than the samples
containing the SSF.

Table 4. Comparison of the flexural strength values after 28 days of SSF and SF as a function of
concrete composition.

SF13_1%_AAM UHPC_28d SSF13_1%_AAM-UHPC_28d
6]_1 =0.5mm SLZ =3.5mm BL(max) 5L1 =0.5mm 6L2 =3.5mm SL(maX)

mean forces [kN] 6.63 10.70 15.81 7.84 6.82 12.11
standard deviation F [kN] 1.39 2.29 2.17 1.87 1.74 2.61
standard deviation s [mm] 0.00 0.00 0.40 0.00 0.00 0.44
average f.qy, [MPa] 10.36 16.73 24.70 12.25 10.66 18.92
feax [MPa] 5.28 8.53 12.59 6.25 5.44 9.65
performance factor L 5.28/8.53 L 6.25/5.44

dissipated energy [Nm] 5293 +8.3 38.71 £7.6

The fibre-pullout tests showed a strong influence of the UHPC matrix on the bond
between the fibre types and the concrete matrix. The average curves of the two fibre types
(SFs and SSFs) from the AAM-UHPC and OPC-UHPC are shown in Figure 5. The indicated
bond stresses were based on one fibre drawn from a specimen with five fibres. The bond
stresses shown refer to the simultaneous extraction of five fibres from one specimen. The
results showed that, in general, there was a higher bond strength between the fibres and
the AAM-UHPC compared to the OPC-UHPC matrix. Considering the standard deviation,
both fibre types were in a similar range. The SF showed the highest maximum bond stress
with ~10 MPa, while the SSF had a maximum bond stress of ~9 MPa. The bond between the
fibre and the OPC-UHPC matrix was lower compared to the AAM-UHPC and, moreover,
showed a significant difference between fibre types, with maximum bond stresses of ~7 MPa
and ~4 MPa for the SSF and SF, respectively (Table 5). The bond behaviour between the
SF and the OPC matrix continued to have high maximum bond stresses via the frictional
bond, so the maximum bond stress was reached at a higher slip (the standard deviation up
to about 1.4 mm). This behaviour was different for the SFs and the AAM matrix. In this
case, the maximum bond stress was reached after a slip of approx. 0.18 mm, and then, the
curve decreased over the pullout.

-
N

—A-SF_AAM-UHPC (n=5) /A SF_OPC-UHPC (n=15)

-
N

-©-SSF_AAM-UHPC (n=5)  -{3-SSF_OPC-UHPC (n=10)

Bond strength Tmax [MPa]
=

0 0.5 1 15 2 2.5 3 35 4 4.5 5
Slip s [mm]

Figure 5. Fibre pullout of different fibres, as matrix AAM-UHPC and OPC-UHPC were used. The
number n of tests is given in the legend.
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Table 5. Results of the fibre-pullout tests for the different fibres, as matrix AAM-UHPC and OPC-
UHPC were used.

F / OfM /
Fmax F;!ll)at)'( e 1:y D¢ SFmax TMax Fi’bt:ag U wp
N N MPa mm mm MPa MPa % Nmm
SF_AAM 160.9 32.2 2000 0.20 0.18 10.3 1024 51.2 60.7
SF_OPC 69.2 13.8 2000 0.25 0.11 3.5 282 14.1 49.3
SSF_AAM 1426 28.5 1980 0.20 0.13 9.1 907 45.8 57.3
SSF_OPC 112 224 1980 0.20 0.18 7.1 713 36.0 439

Fmax: maximum pullout load, Fmax/fibre: maximum pullout load per fibre, Fy: tensile strength of the fibre,
SFmax: fibre-pullout load at maximum pullout load, Dy: fibre diameter, Tmax: maximum bond stress, 0¢ may / fibre:
maximum reached fibre tensile stress, Us: capacity utilization of the fibre; Wp: pullout work.

The fibres were studied in a scanning electron microscope (SEM) directly after pullout
experiments (Figure 6). In general, for both metal surface types, bigger parts of the AAM
matrix, some measuring more than 100 pm, adhered to the metal fibres. The uppermost
previously embedded parts are shown. Large parts of the surface were covered with the
residual AAM matrix, which is why it might be assumed that cohesion failure within the
AAM matrix occurred.

|
!
n
i

Figure 6. Microstructure on fibres in SEM, SF (a) and SSF (b) in secondary electron mode images.

To unravel the influence of the higher-alkaline environment in the case of the AAM-
UHPC, some fibres (the SF and the SSF) were stored in the potassium waterglass solution
used in mixtures M2-M4 (K57, see Table 1) compared to storage in an artificial pore
solution [19] for different time periods. After 24 h, the brass coating of the steel fibres
(SFs) was already dissolved after storage in the waterglass solution (Figure 7d, upper
part). The resulting steel surface exhibited a higher roughness, which was comparable
to the roughness of the SSF (Figure 7a,d). The surface of the SSF did not change after
storage in the waterglass solution. Storing both fibre types in the artificial pore solution
primarily showed precipitates, which might be calcium hydroxide, C-5-H phases and
calcium-sulphate crystals. Anyhow, a dissolution of the brass coating on the SF and a
change in the surface roughness cannot be recognized for both fibre types (Figure 7e,f). For
a shorter time period of 6 h (Figure 8d), the dissolution of the brass coating only occurred
for the waterglass solution, but not completely, as could be observed for the samples stored
in the waterglass solution for 24 h. Less precipitations were observed on the fibres stored
in the artificial pore solution (Figure 8e,f).
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Figure 7. Microstructure on fibres in SEM, SSF (a,c,e), and SF (b,d,f) in secondary electron mode
images, untreated (a,b), after 24 h in waterglass solution (c,d) and after 12 h in artificial pore solu-
tion (e,f).
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Figure 8. Microstructure on fibres in SEM, SSF (a,c,e), and SF (b,d,f) in secondary electron mode im-
ages, untreated (a,b), after 6 h in waterglass solution (c,d) and after 6 h in artificial pore solution (e,f).

4. Discussion

The modification of the mix design led to a higher compressive strength and an
increase in the setting time. In particular, the setting time is quite important. While the
setting time for M1 was about half an hour, it was increased to about two hours.

Already, small differences in the chemical composition of the ground-granulated,
blast-furnace slag might lead to a change in the setting time [20]. Thus, the mix designs
M2-M4 are much more robust concerning changes in the raw-material charges. The use
of the waterglass with a modulus of 1 instead of the mix of alkali-hydroxides with alkali-
waterglass (modulus 3.9) changed the rheology [21] towards higher slump values. Thus, the
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water/binder-ratio, and with this, the total amount of activator could be reduced leading
to a further increase in compressive strength. This increase is due to the reduced capillary
porosity, which in turn will probably lead to a further increase in durability. In the last
optimization step from M3 to M4, the type of silica fume was changed. Generally, f-silica is
much less cost intensive due to impurities concerning the SiO, content. In particular, the
residual-carbon content (LOI, see Table 1) is much higher, which is generally an indicator
of inferior quality. Anyhow, in this UHPC based on AAM, the higher carbon content does
not show any negative impact on fresh and hardened concrete properties.

The flexural strength for the AAM-UHPC with a content of 1 vol% of fibres, for both
steel and stainless-steel fibres (M2 plus fibre), were higher compared to the OPC-UHPC.
After 7 days, the flexural strength of the SSF sample of the OPC-UHPC was significantly
lower compared to the OPC-UHPC with the SF and both mixtures of the AAM-UHPC (the
SF and the SSF). This gets more obvious by not only comparing the maximum flexural
strength but also the performance factor and the total dissipated energy (Table 3).

The bond behaviour of both fibre types, stainless-steel (SSF) and brass-coated steel
(SF), which was determined by straight multiple-fibre pullout tests, revealed a good bond
behaviour to the AAM-UHPC matrix. In comparison to the UHPC based on the OPC [4],
higher maximum bond stresses were determined by both fibre types in the adhesive and
frictional bond, resulting in a higher dissipated energy and utilization rate. The difference
between the PC-based and the AAM-based systems is comparable to results reported
elsewhere [22,23]. The bond stress—slip curve of the SF differed depending on the UHPC
matrix, while the OPC-UHPC showed a high friction bond and the friction bond of the
AAM-UHPC decreased after maximum bond stress.

Compared to the OPC-UHPC [9], the bond with the metallic surface seemed strength-
ened for the AAM-UHPC. The surface of the SF changed due to the alkaline environment;
the brass coating etched off. This enhanced the surface roughness and affected enhanced
bonding to the AAM-UHPC matrix. Compared to fibres pulled out of the OPC-UHPC,
those pulled out of the AAM-UHPC seemed to show a higher roughness anyway [9].
The smaller difference for the SF and the SSF in the AAM-UHPC can be explained by a
comparable roughness, which resulted from etching of the brass coating of the SE. Further
investigations are needed to determine how the highly alkaline environment of the fresh
AAM-UHPC attacks the surface of the steel fibres and enables a better bond, or whether
C-A-5-H and N-A-5-H phases [24] can produce a better bond to metal surfaces compared
to C-5-H phases. Although, the AAM-UHPC is characterized by a very low w/b ratio and
thus a low capillary porosity and a high durability, so the steel corrosion in the AAM would
be different from the corrosion processes in OPC-based systems [25]. Thus, durability
aspects need to be investigated in future.

5. Conclusions

The AAM-UHPC was optimized by changing the waterglass solution towards a lower
modulus; thus, only one activator component needed to be added. The compressive
strength, setting time, and slump flow were improved by that optimization step. As the
bending strength of the UHPC without reinforcement is rather low, fibres, mainly steel
fibres, were added to reduce this disadvantage. It was shown that the bond of the steel
fibres to the AAM-UHPC was comparable to the OPC-UHPC and even better. Not only is
the maximum value of the bending strength of major interest, but so is the performance
factor, which gives information about the post-cracking behaviour. This performance
factor showed a difference towards the different fibre types used; for the different binder
types, the difference was even bigger. The differences in the fibre types (SF, SSF) were low
compared to the difference in the fibre pullout, especially compared to the pullout tests
of the fibres and the OPC-UHPC. Experiments on the fibres stored in a waterglass and an
artificial pore solution indicated that the improved bond of the steel fibres to the AAM
resulted from the slight dissolution of the surface, which increased the topography and
therefore the friction during pullout.
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